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A theoretical study of the electronic structure of crystalline mercury has been made. The energy bands
were calculated using the relativistic augmented-plane-wave method. They were found to be free-electron-
like with splittings due to the crystal potential and the spin-orbit interaction. The Fermi surface is quite
similar to the model proposed by Brandt and Rayne and is in agreement with de Haas-van Alphen, magneto-
resistance, and cyclotron-resonance data. The filled d band was found to be higher in energy than might at
first be expected. This is explained as an indirect relativistic effect due to the fact that a relativistically self-
consistent atomic potential was used in the construction of the muffin-tin potential for the crystal. Experi-
mental evidence which supports the location of the d bands relative to the conduction band can be found in
the optical reflectivity measurements made on the liquid state.

I. INTRODUCTION

NTIL very recently there had been very little
experimental work relating directly to the Fermi
surface of mercury. In 1947 Pippard' reported anom-
alous-skin-effect results. The de Haas—van Alphen
(dHvA) effect in mercury was first reported in 1951
by Verkin, ef al.? and in 1952 by Shoenberg.? In 1963
Gustafson, et al.* presented results for position annihila-
tion in liquid and solid mercury. However, the orienta-
tion of the crystals in these early experiments was not
known. It was not until 1965 that Brandt and Rayne®
reported dHvA data on oriented single crystals which
provided detailed information on the Fermi surface.
They proposed a model of the Fermi surface which was
a slight modification of the free-electron surface. It was
pointed out by these authors that this model should
support a set of open orbits. The same year Dixon and
Datars® found experimental evidence of these open
orbits in their transverse-magnetoresistance data. They
also reported effective masses from Azbel’-Kaner
cyclotron-resonance measurements which were con-
sistent in angular dependence with the model proposed
by Brandt and Rayne. Dishman and Rayne’ have pre-
sented additional transverse magnetoresistance results
which indicate the existence of a second set of open
orbits which are also consistent with the proposed
model. A more complete report of the dHvA effect has
recently been prepared by Brandt and Rayne.® They
have determined the topology and size of the Fermi
surface from their data using a three-parameter model
based on the pseudopotential method.

* Work was performed in the Ames Laboratory of the U. S.
Atomic Energy Commission. Contribution No. 1889.
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In this paper we report the results of an energy-band
calculation for mercury using the method of relativistic
augmented plane wave (RAPW).? This is followed by a
discussion of the various experimental results (including
some information on the liquid state) and their relation-
ship to the theoretical calculation.

II. THEORETICAL PROCEDURE

The alpha phase of mercury has a rhombohedral
crystal structure. Discussions of this structure and the
corresponding Brillouin zone can be found in several
text books.1> 2 The lattice is composed of three equal
crystallographic axes inclined to each other at the same
angle a. The fcc lattice is a special case of this in which
a=60°. For mercury a="70°44.6' at 5°K with the lattice
constant equal to 5.643 a.u.’*'* The Brillouin zone is
shown in Fig. 1. In the fcc Brillouin zone the faces con-
taining the points 7" and L are both regular hexagons
of the same size and distance from the center of the
zone T'; the face containing the point X is square. The
distortion from fcc has the effect of pushing the L
faces closer to I' and the T faces further away until the
distances I'T" and I'X are almost exactly equal and about
259, greater than the distance I'L. An atom in the fcc
lattice has 12 nearest neighbors, whereas in the rhom-
bohedral lattice of mercury these 12 atoms separate
into two sets (six atoms each) which differ in distance
from the central atom by about 159,. Worster and
March!® have investigated the stability of solid mercury
using pair potentials derived from structure data for
the liquid and found the fcc and rhombohedral lattices
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to have almost exactly the same energy (differing
by only 0.01 eV/atom). It is also interesting in this
regard that the coordination number for liquid mercury
as found by x-ray diffraction techniques'® is 10.0 and
the average atomic distance (at 28°C) is 5.76 a.u. One
expects the electronic environments in the liquid and
solid to be quite similar except, of course, for properties
which result from Bragg reflections due to periodicity
in the crystal.

The crystal potential was constructed by super-
posing atomic potentials and charge densities centered
on the lattice sites. The relativistic self-consistent-field
calculations of Liberman, ef al.)” for the configuration
5d"%6s? were used. Exchange was treated throughout
using the Slater free-electron approximation. Inside
the APW sphere radius (2.718 a.u.) the potential was
spherically symmetric, and outside it was flattened into
the muffin-tin form. The reciprocal lattice vectors used
in the basic set were selected so that all the energy levels
throughout the zone had converged to an accuracy of
better than 0.005 Ry. This required 19 reciprocal lattice
vectors, yielding a secular determinant of order 38. The
matrix elements in the RAPW method have been dis-
cussed previously.!® This aspect of the calculation will
not be repeated here.

F16. 1. Brillouin zone for the
rhombohedral crystal structure
of mercury.

III. RESULTS AND DISCUSSION
The Fermi Surface

The relativistic energy bands are shown in Figs. 2
and 3. They are free-electron-like with splittings due to
the combined effect of the crystal potential and the spin-
orbit interaction. The dashed region near the bottom of
the band and the inset in Fig. 3 will be discussed in the
next section. Because mercury is divalent, the Fermi
energy will be near the top of the first band. We have
used the dHvA data of Brandt and Rayne?® to estimate
the value shown in Figs. 2 and 3. Their data indicate
that the Fermi energy must lie above the lower level
at X and below the maximum in this band between X
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F16. 2. Relativistic energy bands for mercury.

and K. This fixes the Fermi energy between 0.670 and
0.685 Ry (measured from the bottom of the band at
—0.255 Ry). The value Er=0.680 gives good agree-
ment with the dHvA frequency associated with this
portion of the Fermi surface. We have used this approxi-
mate value of the Fermi energy to determine the inter-
sections of the Fermi surface with the Brillouin zone
faces as shown in Fig. 4. This Fermi surface is topologi-
cally equivalent to the model proposed by Brandt and
Rayne® to explain their dHvA data. In the first zone
there is a multiply connected hole surface which in-
cludes most of the T and X faces except for regions near
the points 7" and X. A schematic representation of this
part of the Fermi surface is shown in Fig. 5. In the
second zone there are lens-shaped electron surfaces
centered on the points L and oriented with maximum
cross section in the L-faces.

In discussing a noncubic crystal structure such as
rhombohedral mercury, it is important to be very
careful in the use of crystallographic notations to
indicate planes and directions. Before proceeding to a
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Fic. 3. Relativistic energy bands for mercury.
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F16. 4. Intersections of Fermi
surface with Brillouin zone
faces.

comparison between the Fermi surface and the various
experimental results, let us review briefly the nomen-
clature. The Brillouin zone shown in Fig. 1 was con-
structed in the usual manner by finding the region
contained by the perpendicular bisectors of reciprocal
lattice vectors. The basic reciprocal lattice vectors in
rhombohedral mercury have the following (x,y,2)
coordinates:

b, = (1.111, 0, 0.4990)
b= (—0.5553, 0.9618, 0.4990) )]
bs;=(—0.5553, —0.9618, 0.4990).

All reciprocal lattice vectors can be designated by

(l,m,n) =Iby1+mbe+nbs.

Some of the reciprocal lattice vectors used in con-
structing the Brillouin zone are indicated in Fig. 6.

F16. 5. Schematic representation of the multiply connected first
zone hole surface of mercury showing closed orbits.

Of course, the reciprocal lattice point (Z,m,%) defines the
set of lattice planes (Imn) in the direct lattice.

Some of the experimental results we will discuss
involve the orientation of a magnetic field with respect
to the crystal. However, in discussing the Fermi surface
we shall be concerned with the orientation of the mag-
netic field with respect to the Brillouin zone. Directions
corresponding to lines of atoms in the crystal will be
specified in the usual manner by [Imn]. To determine
the orientation these directions have with respect to the
Fermi surface, we find the normal to the plane in
reciprocal space which contains all the reciprocal lattice
vectors (m'n’) such that the inner product with
[lmn] vanishes. For instance, the direction [001] has
zero inner product with the reciprocal lattice vectors
(110), (100) and (110). The normal to the plane in
reciprocal space which contains these three vectors is

C. KEETON AND T. L.
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parallel to the zone edge WKW. This is shown in Fig. 7.
We notice that the three orthogonal directions [111],
[112], and [1107] (called trigonal, bisectrix, and binary,
respectively), specify the same directions relative to
the Brillouin zone as the corresponding reciprocal
lattice vectors (111), (112) and (110). However [110]
and (110) have different orientations with respect to the
Brillouin zone, as do also [001] and (001). In the follow-
ing discussion we shall frequently refer to the orienta-
tion of a magnetic field with respect to the Fermi
surface. It is hoped that Fig. 7 will help the reader avoid
some of the confusion which arises from the use of many
different forms of brackets. We shall also use the ac-
cepted convention that (¢mn) represents [lmn ] and all

(L1,

1,0,
( ) (1,1,0)

Fi1G. 6. Reciprocal lattice
vectors corresponding to
faces of the Brillouin zone.
(1,0,0) normal to the plane
of the figure.

K (0,0,
(0,1,0)

(A

equivalent directions; similarly, {{mn} represents (immn)
and all equivalent planes (or reciprocal lattice vectors).
As a final remark, it should be noticed that although in
Fig. 7 the binary direction [110] is perpendicular to the
bisectrix direction [1127], the equivalent direction
[101] (one of the set (110)) makes an angle of 30°
with the [112] direction.

The experimental evidence for the electron lenses
can be seen in the dHvA data of Brandt and Rayne.?
The curve marked o in Fig. 8a corresponds to a side
view of one of the sets of lenses. With field oriented in
the [101] direction, the minimum cross section of the
lenses is observed. From the theoretical Fermi surface
we calculate the corresponding frequency to be 37.4
X108 G compared to the observed value of 32.2 X108 G.
As the field is rotated to either the [1007] or the [001]
direction, the frequency increases by about 109, because
the Fermi surface pulls out toward the point K as
shown in Fig. 4. The observed frequencies also increase
by about this same amount as can be seen in Fig. 8(a).

()
TRIGONAL py;

Fic. 7. The orientation of
certain crystallographic direc-
tions with respect to the
Brillouin zone.
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Fi6. 8. de Haas-van Alphen data of Brandt and Rayne (Ref. 8) (a) magnetic field in_the (010) plane. Dashed curve corresponds to
the behavior expected from cylinders oriented along (100). (b) Magnetic field in the (011) plane. (c) Magnetic field in the (100) plane.
Dashed curves correspond to the behavior expected from cylinders oriented along {(100). (d) Magnetic field in the (111) plane. Dashed
curves correspond to the behavior expected from ellipsoidal lenses on the {100} zone faces.

With the field in either the [100] or [001] direction
there are two sets of lenses with the same orientation
relative to the field. As the field is rotated toward the
[101] direction, one of the sets assumes an orientation
such that the maximum cross section of the lenses is
approached. We calculate this maximum to corre-
spond to the frequency 107X10° G. The frequency
corresponding to this set of lenses should therefore
rise very sharply over the angular range given in
Fig. 8(a). We see only the first part of this expected
signal in the experimental results near [100] and
[oo1].

The maximum cross section of the lenses should be
observed for field orientation in the {100} direction.
In Fig. 8(b) we show the experimental results of Brandt
and Rayne for the magnetic field in a plane perpen-
dicular to the binary direction, i.e., lying in the mirror
plane. The scale of the figure is too small to include the
predicted value of 107X10% G. However, a scatter of
signals near the (100) direction with frequency around
68X 10% G have been observed. These were assigned to
the lens orbit by Brandt and Rayne. We agree that this
is a possible interpretation. It would require a little
bending of the theoretical bands, but no more than has
been necessary in other similar situations. It would
simply require the lenses to be thicker and have a
smaller maximum cross section than we have calculated.
But it is tempting for us to believe the bands and look

for an alternative interpretation of the data. It is, for
instance, possible that the lenses do have a maximum
cross section corresponding to a frequency of about
107X10°% G, and that they simply have not been ob-
served. There is no experimental data which goes con-
tinuously from the maximum cross section to the side
view of the lenses. This interpretation would leave the
frequencies around 68X10° G in Fig. 8(b) unexplained.
It is always possible that these are mixing frequencies
or even harmonics (68X 108 G is not too different from
twice the side-view frequencies which range from 32 to
35X10% G at this orientation). And, as we shall point
out later, there are also orbits on the hole surface which
yield frequencies of this same order of magnitude. In our
opinion this assignment of orbits is not yet completely
resolved.

The multiply connected hole surface is shown in
Figs. 4 and 5. All but one of the closed orbits on this
surface have previously been classified by Brandt and
Rayne. The surface covers most of the 7" and X faces
except for small regions around the points 7" and X.
There is experimental evidence confirming the presence
of these small openings. As noticed by Brandt and
Rayne, in the vicinity of X and K the hole surface may
be approximated by two parallel cylinders oriented in
the (001) directions (parallel to K-W in Fig. 1). The
experimental frequencies corresponding to these cylin-
drical regions are designated B§; in Fig. 8(c). With
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F16. 9. View of theoretical Fermi
surface corresponding to minimum
cross sections of the electron lenses
and_the 7 orbit on the hole surface.
[101] normal to the plane of the figure.

magnetic field in the [010] direction, the orbits around
one set of cylinders have minimum cross section. (There
are, of course, three sets of cylinders corresponding to
the three equivalent (001) directions. The other two
sets do not support closed orbits at this field orienta-
tion.) As the field is rotated toward [0117, this cross
section increases and one of the other sets begins to
support closed orbits; these two sets acquire the same
orientation with respect to the magnetic field at [011].
This leads to crossing of the frequencies at [011] as
can be seen in Fig. 8(c). Notice that Brandt and Rayne
have made this interpretation quite plausible by calcu-
lating the angular dependence to be expected from
cylindrical surfaces oriented in the (001) direction. As
mentioned earlier, it was this feature of the Fermi
surface which we used to fix the Fermi energy. It was
chosen such that the intersection with the energy bands
between the points X and K gave the same size cylinder
as was experimentally observed. As a last comment on
the experimental results shown in Fig. 8(c), the fre-
quencies indicated as 8 do not correspond to any
portion of the theoretical Fermi surface. Unless they
correspond to difference frequencies, their presence is
unexplainable.

The other openings in the hole surface occur around
the T points. The experimental evidence for this feature
of the Fermi surface can be found in closed orbits which
thread through these openings and the openings at X.
Brandt and Rayne have designated these as 7 orbits,
and they can be seen in Figs. 8(a) and 8(b). Additional
experimental results are shown in Fig. 8(d). In Fig. 9
we show the shape of this orbit corresponding to its
minimum cross sectional area (magnetic field in
(101) direction). The theoretical surface predicts a
frequency of 13.8)X10% G compared to the experimental
results of 15.8)X10% G obtained from Fig. 8(a). As the
field is rotated in the (111) plane [see Fig. 8(d)] away
from the [110] direction, the Fermi surface supports
this closed orbit only over a small angular range. From
Fig. 4 we predict closed orbits for a range of about
9-10° on either side of [1107]. This is in good agreement
with the two lower sets of experimental frequencies
shown in Fig. 8(d) and designated as 7 orbits. The fre-
quencies around [2117] are also designated as 7 in

C. KEETON AND T. L. LOUCKS

152

Fig. 8(d), but actually correspond to a different orbit.
This orbit threads through the opening at 7" and around
the point W where the cylinders spread out as they join
together (Fig. 5). We prefer to designate this orbit as v
in order to distinguish it from the 7 orbits. There is a
break in the data between the v and 7 orbits for the
small angular range in which the orbits run along the
cylinders and are either open orbits or extended orbits.
These open orbits are discussed later. The experimental
frequencies designated by = in Fig. 8(b) also corre-
spond to the v orbits. The observed angular dependence
is consistent with the Fermi surface model. In this
same figure there are frequencies in the range of
27X10% G for fields oriented near [1117]. We cannot
find extremal areas on the theoretical Fermi surface to
explain these.

There is one additional closed orbit which has not
previously been discussed. We designate this as a p
orbit. It goes across the 7 faces and through two of the
openings centered at the X points as shown in Fig. 5.
We estimate that for the field orientation in the (011)
plane this orbit should exist for directions between
[211] and [100]. The frequency should increase be-
tween [211] and [100] with a value of about 45X 10¢ G
in the (100) direction. There is no clear evidence
that these orbits have been observed experimen-
tally. However, in Fig. 8(d) we notice that around
[211] the data gets a little sparse where we would
expect the u orbit to have about the same frequency as
the lens orbit. This could be the result of beating be-
tween these two signals. Also, in Fig. 8(b) there are
frequencies around [211] which could be due to this
orbit. This aspect of the Fermi surface (as well as the
exact size of the lenses) will have to be determined by
further experimental work from which these orbits can
be clearly identified.

Both Dixon and Datars® and Brandt and Rayne?
have measured effective masses for orbits on the
cylindrical portions of the hole surface. The two groups
reported results for different magnetic field traverses.
In both cases, however, the angular dependence of the
results was consistent with the theoretical Fermi surface
and with the de Haas—van Alphen results. Itis somewhat
disturbing, however, that with the field oriented in the
(110) direction (a measurement both groups made)
Dixon and Datars reported m=0.79 while Brandt and
Rayne gave 0.23. The former was based on Azbel’-
Kaner cyclotron resonance measurements, the latter
on the temperature variation of the amplitude of
the torque oscillations from de Haas-van Alphen
measurements. Note added in proof. In a private com-
munication from W. R. Datars we have been informed
that their earlier effective mass measurements® actually
corresponded to the electron lenses. This removes the
apparent discrepancy between their results and those
of Brandt and Rayne.®

The Fermi surface supports two sets of open orbits.
An example of each is shown in Fig. 10. The set desig-
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TasLE I. Distances to neighboring atoms in zinc
(hcp) and mercury (rhombohedral).

Number Distance (a.u.)
atoms Zinc Mercury
6 5.02 5.65
6 5.52 6.55
6 7.44 8.65

nated A was first predicted by Brandt and Rayne’ and
later observed by Dixon and Datars® in their trans-
verse magnetoresistance results. These are shown in
Fig. 11. Using the lattice constants for mercury we
calculate that for the configuration in Fig. 11 the mag-
netoresistance should saturate with the field 38° from
(110) toward (100). The path of the resulting open
orbit is shown in Fig. 12. The direction of motion in
reciprocal space is parallel to the (010) direction. The
other set of open orbits, designated B in Fig. 10, were
observed by Dishman and Rayne.” In their paper can
be found a complete discussion of both sets of open
orbits. Note added in proof. Dixon and Datars (to be
published) have found evidence of other sets of open
orbits which can be related to the model shown in
Fig. 10.

In the above discussion we have shown that the
theoretical Fermi surface based on the RAPW calcu-
lation is consistent with the available experimental
evidence. However, the theoretical calculation was
performed after the experimental evidence had already
been interpreted on the basis of a modification of the
free-electron model. Brandt and Rayne® used a param-
eterized pseudopotential fit of their de Haas-van Alphen
data to determine a Fermi surface model. It is interest-
ing that these authors did not find it necessary to
include the spin-orbit interaction as Anderson and Gold"
had done for lead. Because the symmetry is lower in the
rhombohedral lattice, the crystal field splits levels which
would be degenerate in the fcc lattice if the spin-orbit
interaction were not included. Therefore, the pseudo-
potential parameters for mercury contain the combined
effect of the weak crystal potential and the spin-orbit
interaction. It is gratifying that the relativistic calcula-
tion using an ad koc potential reproduces the essential

F16. 10. Schematic representation of the multiply connected
first-zone hole surface of mercury showing an example of each of
the two sets of open orbits.

197, R. Anderson and A. V. Gold, Phys. Rev. 139, A1459
(1965).
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F1e. 11. Transverse magnetoresistance results of Dixon and
Datars (Ref. 6) with the magnetic field lying in a plane normal
to [001].

features of the Fermi surface model based on experi-
mental results.

The d Bands

A result which at first surprised us was the location of
the filled 54 bands. The inset in Fig. 3 shows three of
these bands cutting across the bottom of the 6s-6p
bands and the other two just below it. Mattheiss®
has calculated the energy bands for zinc (hcp) and
found that the 3d band was about 0.5 Ry below the
bottom of the 4s-4p bands. This is in contrast to the
neighboring element copper (fcc) in which the 34
band occupies energies ranging from about % to % of
the Fermi energy.

There are several factors which could effect the rela-
tive position of the d bands. One is the overlap from
neighboring atoms in the crystal. In performing atomic
self-consistent field calculations for transition elements
we have observed the effect that changes in the outer
portion of the potential have on the relative positions
of s and d levels. Modifications which make the potential
more binding in the outer portion of the atomic poten-
tial lower the energy of the outer d level with respect to

Fic. 12. Path of the open orbit
on the first-zone hole surface which
gives rise to the saturation in the
magnetoresistance as shown in
Fig. 11.

0 T,, F. Mattheiss, Phys. Rev. 134, A970 (1964).
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the s level. The superpositioning procedure used to
form the muffin-tin potential tends to make it more
binding in the outer region. We thus expect that if the
overlap from neighboring atoms is different for mercury
and zinc, it would affect the relative positions of the d
bands. Unfortunately, it is not an easy matter to
separate out the various contributions to this effect.
For instance, the atomic radius of mercury is, roughly,
259, greater than that of zinc. On the other hand, the
two elements have different crystal structures and
different nearest-neighbor distances. Distances to the
18 nearest neighbors for the two lattices are given in
Table I. We see that the 12 nearest neighbors are,

09 T T T T T T T T T 1
Ca A ]
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F16. 14. (a) Results of Wilson and Rice (Ref. 22) deduced from
their reflectance data for liquid mercury. Excess absorption over
that predicted by the Drude theory as a function of photon
energy. (b) Test of the Kramers-Kronig sum rule,
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F1c. 13. Results of atomic self-
consistent-field calculations for mer-

cury and zinc.
70

1.02
117

roughly, 259, closer in zinc than in mercury. Certainly
this is a very crude argument, but we might conclude
that although the mercury atoms are larger, they are
correspondingly further away from their nearest
neighbors, and consequently the overlap would be about
the same for the two elements. We therefore do not
believe this to be an important factor in determining the
position of the d bands.

There is an entirely different effect, however, which
can account for the shift in the d-band position. In
Fig. 13, we have shown the results of atomic self-con-
sistent-field calculations for mercury and zinc. The
nonrelativistic calculations for these two elements by
Herman and Skillman? give almost identical results
for the outer s and d levels. However, the relativistic
calculation by Liberman et al.'” for mercury show the
5d levels considerably higher in energy with respect to
the 6s level. Liberman ef al. have explained the shift in
the d level as an indirect relativistic effect. The states
of lower angular momentum are more tightly bound by
the effective potential in the relativistic calculation.!?
We used the relativistic atomic potential to construct
the crystal potential and believe this accounts for the
position of the d bands.

Since the location of the d bands seems plausible, we
look for experimental evidence to support the result.
We do not know of any such experiments on solid
mercury. However, the reflection spectrum of liquid
mercury has been measured recently by Wilson and
Rice,? and their results tend to confirm the location of
the d bands. They were able to account for the imaginary
part of the dielectric constant in the energy range
below 7 €V by extending the Drude theory to in-
clude the effects of electron-ion interactions. This
energy range corresponds to the free-electron-like
portion of our energy bands above the d bands. There
are three absorption peaks in the imaginary part of the
dielectric constant which occur in the energy range
corresponding to our d bands. The experimental results
are shown in Fig. 14(a). The positions of the peaks
relative to the Fermi energy are shown by arrows along

21 F, Herman and S. Skillman, Afemic Structure Calculations
(Prentice-Hall, Inc., Englewood Cllffs New Jersey, 1963).
2 E. G, Wilson and Stuart A, Rice, Phys Rev. 145 55 (1966).
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the inset portion of Fig. 3. It is apparent that the
absorptions are due to transitions between these d
bands and the states above the Fermi energy. In Fig.
14(b) we see evidence that some of the d bands cut across
the bottom of the s-p band. The ordinate of this figure
can be regarded as the number of electrons which
contribute to the dielectric constant up to the energy
fuw. We see that it tends toward the value 2, but at the
energy corresponding to the position of the d bands
there is an abrupt change in slope. Thus, the d-band
absorptions begin contributing before the states at the
bottom of the conduction band.

Wilson and Rice” have interpreted their results in
terms of 5d core electrons which are split by the spin-
orbit interaction. They point out that the energy dif-
ference between the J=% and J=$§ states of Hg(II)
in the configuration 5d%°6s? is 1.87 eV compared to the
splitting of 1.7 eV between the absorption peaks in
Fig. 14(a). We would like to point out that the crystal
field can equally well account for the splitting. We have
noted that the d bands shown in the inset in Fig. 3
extend over the same energy range as the observed
absorption peaks. The 4 bands are split by the com-
bined effects of the spin-orbit interaction and the crystal
field (lack of spherical symmetry due to the neighboring
atoms). To emphasize this we have also calculated these
bands in the nonrelativistic limit. The results are shown
in Fig. 15. The d bands are still split into two sets;
however, the effect is now entirely due to the crystal
field. In the crystal, therefore, the splitting of the d
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Fic. 15. Nonrelativistic
energy bands for mercury near
the bottom of the conduction
band.
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bands is a combined effect of both the spin-orbit inter-
action and the crystal field. The same should be true in
the liquid state, since, as we have pointed out earlier,
the average electronic environment due to nearest
neighbors should be quite similar in the two states.
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