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Interpolation Scheme for Band Structure of Noble and Transition
Metals: Ferromagnetism and Neutron Diffraction in ¹t
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A simple interpolation scheme for paramagnetic fcc transition and noble metals has been developed and
extended to the ferromagnetic state of Ni. It is based on the representation of d and conduction bands by
linear combinations of atomic orbitals and orthogonalized plane waves, respectively, and includes hybridiza-
tion effects through the use of k-dependent matrix elements. The energy bands of augmented-plane-wave
calculations from first principles for Cu and paramagnetic Ni are fitted with an rms deviation of about
0.12 eV. The density of states of paramagnetic Ni is calculated and shown to be significantly influenced by
hybridization. A self-consistent calculation of the ferromagnetic band structure of Ni is carried out by the
incorporation of correlation effects through the use of an intra-atomic Coulomb interaction patterned along
the lines suggested by Gutzwiller, Hubbard, and Kanamori. Experimental information relating to the
magnetization, ferromagnetic Kerr effect, Fermi surfaces, neutron magnetic form factor, electronic specific
heat, and high-field susceptibility is used to determine the parameters characteristic of the ferromagnetic
state and to check the predictions of the resulting band structure. The k-dependent splitting of the bands
averages 0.37 eV in the vicinity of the Fermi level. The wave functions resulting from these calculations are
shown to be suKciently realistic to permit the calculation of the total charge density in Cu and the magnetic
form factor of Ni. The use of approximate spin-polarized wave functions appropriate to the solid demon-
strates the importance of both unpaired and paired electrons to the magnetic form factor. The net con-
duction-electron polarization is found to be small and positive. The effective s-d exchange energy changes
sign between the central and outer parts of the Brillouin zone. The inclusion of spin-orbit effects is discussed,
and the reduction of the density of states at the Fermi level due to this interaction is calculated. The effect
is too small to explain the presence of ferromagnetism in Ni and its absence in Pd and Pt.

volved in the ferromagnetic state, nor how the resulting
formidable self-consistency problems involved in the
solution could be dealt with practically.

Some of these issues have now been resolved. At least
for Ni, the existing experimental evidence' now over-
whelmingly favors an itinerant description. The results
of band calculations for the noble and the transition
metals are now believed reliable. Particularly in the
case of Cu, there is available a wide variety of Fermi-
surface experiments' which agree very well with band
calculations. In addition, there is the reassuring fact
that the band calculations of Segalp and Burdick, 4 based
respectively on the Kohn-Rostoker and augmented-
plane-wave (APW) methods, yielded substantially the
same results. However, it is in regard to the third
problem that the progress to date has been most limited.
The recognition that correlations among the d electrons
can be described semiquantitatively in terms of purely
intra-atomic Coulomb interactions, because of the
screening resulting from the presence of conduction
electrons, has been most important. ' " '5 However, even

I. INTRODUCTIOÃ

HE description of the electronic energy levels of
ferromagnetic transition metals in realistic band-

theoretic terms represents a fairly recent development'
for essentially three reasons. First, it was not clear to
what extent a view which regards all the d electrons in
transition metals as itinerant was valid. Second, so-
phisticated band calculations from first principles for
these metals in their paramagnetic state have only be-
come available during the past few years. '—' Third, it
was not evident how to formulate a tractable, although
realistic, form of the Coulomb interaction, which is
necessary for describing the electron correlations in-

9 For example, E. Fawcett and W. A. Reed, Phys. Rev. Letters
9, 336 (1962); Phys. Rev. 131, 2463 (1963); E. Fawcett, Advan.
Phys. 13, 139 (1964);A. S. Joseph and A. C. Thorsen, Phys. Rev.
Letters 11, 554 (1963).

"For an excellent summary, see The Fermi Surface, edited by
W. A. Harrison and M. B. Webb (John Wiley 8z Sons, Inc.,
New York, 1960).Also, J.F. Koch, R. A. Stradling, and A. F. Kip,
Phys. Rev. 133, A240 (1964)."J.C. Slater, Phys. Rev. 49, 537, 931 (1936).

'2 J. H. Van Vleck, Rev. Mod. Phys. 25, 220 (1953)."M. C. Gutswiller, Phys. Rev. Letters 10, 159 (1963); Phys.
Rev. 134, A923 (1964).'i J. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1963);
A277, 237 (1964); A281, 401 (1964)."J.Kanamori, Progr. Theoret. Phys. (Kyoto) 30, 275 (1963).
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'To avoid the fairly formidable bibliography that would be
required in order to summarize the principal contributions
responsible for the development of this viewpoint, we cite instead
C. Herring, in 3dagletism, edited by G. Rado and H. Suhl (Aca-
demic Press Inc. , New York, 1966), VoL 4, which contains a most
comprehensive discussion of these matters, together with a com-
plete set of references. We wish to thank Dr. Herring for sending
us the manuscript of this important book prior to publication.' C. Herring, J. Appl. Phys. 31, 3S (1960); H. Brooks, in Elec-
tronic 5trlcture and A/loy Chemistry of the Transition E/ements,
edited by Paul A. Beck (Interscience Publishers, Inc. , New York,
1963);N. F. Mott, Advan. Phys. 13, 325 (1964).' B.Segall, Phys. Rev. 125, 109 (1962).' G. A. Burdick, Phys. Rev. 129, 138 (1963).

5 J. G. Hanus, M.I.T. Solid State and Molecular Theory Group
Quarterly Progress Report No. 44, 29, 1962 (unpublished).

6 L. F. Mattheiss, Phys. Rev. 134, A970 (1964).' J. H. Wood, Phys. Rev. 117, 714 (1960); 126, 517 (1962).
J. Yamashita, M. Fukuchi, and S. Wakoh, J. Phys. Soc.

Japan 18, 999 (1963);S. Wakoh and J. Yamashita, ibid 19, 1342.
(1964).
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after this simpliGcation, one is still left with the problem
of dealing adequately with the remaining correlations,
and in particular with the degeneracy of the d electrons
whose importance to the existence of the ferromagnetic
state has been stressed by Van Vleck"" and Herring. '
At the time of writing, the self-consistency problem
alluded to above is beginning to be attacked' by band
calculations from first principles, but it seems clear that
it will be some time until the results of such calculations
achieve the same degree of reliability as corresponding
paramagnetic calculations.

As an interim measure, one might ask whether
pseudopotential (or interpolation) techniques, which
have been so successful in elucidating the band struc-
tures of semiconductors" and simple metals" in terms
of rather elementary calculations, might not be usefully
extended to apply first to the noble and transition
metals in their paramagnetic state, and second to ferro-
magnetic metals by suitably generalizing the band
Hamiltonian to include correlation effects. The results
of such calculations are valuable, because in permitting
a description of the electron energy levels in terms of
relatively few adjustable parameters, they facilitate the
incorporation of and comparison with a wide variety
of experimental information. An optimized choice of
such parameters that provides excellent agreement with
many experiments and essential contradiction with
none would yield an energy level scheme whose over-all
validity one would be inclined to trust. Unfortunately,
in the case of the transition metals the sort of detailed
Fermi-surface results that are now available for the
noble metals are still largely lacking, and thus it is
impossible to describe with any finality certain details
of the energy levels in the immediate vicinity of the
Fermi surface. However, any further experimental re-
sults are easily incorporated into band calculations
utilizing interpolation schemes by means of fine adjust-
ments of the parameters. Another advantage of the
application of pseudopotential schemes to ferromagnetic
materials is the possibility of testing quantitatively the
validity of truncated Coulomb Hamiltonians such as
those discussed by Gutzwiller, " Hubbard, ' and
Kanamori. "

The present paper is devoted to the development of
an interpolation scheme applicable to paramagnetic fcc
transition and noble metals (particularly Cu and Ni)
and its extension to the ferromagnetic state of Ni. The
characteristic parameters are adjusted and checked by
detailed calculations or discussion of such experimental
information as the magneton number, '0 the ferromag-

"J.H. Van Vleck, Nuovo Cimento Suppl. 6, 857 (1957).
rr A. C. Switendick, J. Appl. Phys. 37, 1022 (1966).
"J.C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).

From the many papers since written on the subject, we cite only
one of the most recent: M. L. Cohen and T. K. Bergstresser,
Phys. Rev. 141, 789 (1966).

'9 For example, W. A. Harrison, EseldoPotentials in the Theory
of 3fetals (W. A. Benjamin, Inc. , New York, 1966).

20 C. Kittel, Introdlction to Solid State I'hysics (John Wiley R
Sons, Inc. , New York, 1956), 2nd ed. , Chap. 15.

netic splitting of the bands, ' Fermi surface experiments, '
magneto-optical experiments, " the electronic specific
heat, " the magnetic form factor as determined from
neutron diffraction, " and the high-Geld suscepti-
bility. ""In the exposition of this scheme, we shall also
have occasion to incorporate the spin-orbit interaction
and to discuss its inQuence on the density of states at
the Fermi surface and hence on the existence of the
ferromagnetic state in Ni-related materials such as Pd
and Pt.

Since our first report on this subject, "Mueller'~ has
independently formulated a different sort of interpola-
tion scheme, which is somewhat more accurate than the
present one although rather more complicated in its
requirement of explicit orthogonalization of conduction-
band functions to d functions. It should be emphasized,
however, that both techniques yield results which are
well within the calculated error associated with first-
principles calculations. For example, in Cu, the present
method can fit first-principles calculations with an rms

deviation of 0.11 eV and maximum error of 0.37 eV, as
compared to Mueller's rms value of 0.08 eV. Mueller's

work is important in that it delineates the inhuence of
the s-d orthogonalization'8 on the band splittings in the
conduction-band portion of the band structure. Heine"
has recently examined in considerable detail the formal
status of such interpolation schemes.

The modiGcations to be expected in the Ni band
structure in passing from the paramagnetic to the ferro-
magnetic state have been previously discussed in some
detail by Ehrenreich, Philipp, and Olechna, ' and by

"G. S. Krinchik and R. D. Nuralieva, Zh. Eksperim. i Teor.
Fiz. 36, 1022 (1959) LEnglish transl. : Soviet Phys. —JETP 9,
724 (1959)7; G. S. Krinchik and G. M. Nurmukhavmedov,
Zh. Eksperim. i Teor. Fiz. 48, 34 (1965) (English transl. : Soviet
Phys. —JETP 21)22 (1965)];G. S. Krinchik, in Proceedsrtgs of the
International Conference onilIagnetism, Nottingham, England, 1964
(Institute of Physics and the Physical Society, London, 1965),
p. 114.

2' J. A. Rayne and W. R. G. Kemp, Phil. Mag. 1, 918 (1956).
"H. A. Mook and C. G. Shull, J. Appl. Phys. 37, 1034 (1966);

H. A. Mook, Ph.D. thesis, Harvard, 1965 (unpublished). See
Division of Engineering and Applied Physics, Harvard University,
Technical Report No. ARPA-17 (unpublished).

'4A. J. Freeman, N. A. Blum, S. Foner, R. B. Frankel, and
E. J. McNiff, Jr., J. Appl. Phys. 3?, 1338 (1966)."C. Herring, R. M. Bozorth, A. E. Clark, and T. R. McGuire,
J. Appl. Phys. 37, 1340 (1966).

"L.Hodges and H. Ehrenreich, Phys. Letters 16, 203 (1965).
The conclusions in this letter differ in some respects from those
of the present paper, for example in the presence of holes in the
majority d band in the earlier publication and their absence here,
due to the fact that the parameters characterizing the interpola-
tion scheme had not been adjusted optimally.

27 F. Mueller, Phys. Rev. 148, 636 (1966). We are grateful to
Dr. Mueller and Professor J. C. Phillips for an unpublished
report of this paper.

"We shall often refer to the conduction electrons as "s elec-
trons, " in reference to the atomic states from which they derive
in the noble metals, even though in the solid these electrons con-
tain admixtures corresponding to higher angular momenta.

"V. Heine, Phys. Rev. 151, 561 (1966). We are grateful to
Professor Heine for an unpublished report of this paper.

'0 H. Ehrenreich, H. R. Philipp, and D. J. Olechna, Phys. Rev.
131, 2469 (1963).
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Phillips and Mattheis. ""However, the conclusions of
this work were based on estimates and speculations, and
accordingly have limited reliability. These matters will
be discussed and comparison will be made with the
results of the present calculations in the appropriate
places in this paper. Such a comparison is of interest
since the present work, while still containing important
approximations and oversimplifications, represents the
first time that a reasonably realistic model for Ni, con-
taining most features of the paramagnetic band struc-
ture, is calculated out in all detail for the metal in its
ferromagnetic state.

Since the present paper is fairly lengthy, it may be
useful to summarize the contents of the various sections.
Section II presents a general discussion of the inter-
polation scheme and the various pieces of the under-
lying Hamiltonian necessary to describe band, ferro-
magnetic, and spin-orbit properties. The present scheme
may be characterized roughly as one that treats the
conduction bands in a free-electron-like approximation
as suggested by Harrison" for Al, the d bands in the
tight-binding approximation as in Fletcher's'4 treat-
ment, but with the overlap integrals given by adjustable
parameters, " and the hybridization integrals as
k-dependent functions involving further parameters.
Section IIA describes the interpolation scheme in its
simplest form, as well as its application to Cu and
paramagnetic Ni. Section IIB discusses the inclusion
of spin-orbit effects which have previously been dis-
cussed only in the absence of hybridization between
conduction and d bands. " Section IIC discusses a
simple but probably fairly realistic model Hamil-
tonian, ' " " together with some modifications, and its
application to the present work.

Section III is devoted to the question of the validity
of the wave functions obtained by such interpolation
schemes. Ni occupies a somewhat unique position in this
respect since the magnetic properties are determined by
states near the top of the d bands, where atomic func-
tions serve as an adequate basis for tight-binding wave
functions. ~ '~ However, such interpolation schemes even
provide reasonable (although perhaps not quantita-
tively valid) results deeper in the d bands. This is
illustrated by a calculation of the charge density in Cu
and by comparison with results obtained from x-ray ex-
periments, "as well as theoretical results of Arlinghaus. "

"J.C. Phillips and L. F. Mattheiss, Phys. Rev. Letters 11, 556
(1963)."J.C. Phillips, Phys. Rev. 133, A1020 (1964).

3' W. A. Harrison, Phys. Rev. 118, 1182 (1960)."G. C. Fletcher, Proc. Phys. Soc. (London) A65, 192 (1952)."J.C. Slater and G. Koster, Phys. Rev. 94, 1498 (1954).' J. Friedel, P. Lenglart, and G. Leman, J. Phys. Chem. Solids
25, 781 (1964);P. Lenglart, G. Leman, and J. P. Lelieur, ibid. 27,
377 (1966).

"The usefulness of this point of view has been previously
suggested by R. Nathans, S. J. Pickart, and H. A. Alperin, J.
Phys. Soc. Japan 17, Suppl. B-III, 7 (1962).' B.W. Batterman, D. R. Chipman, and J.J. DeMarco, Phys.
Rev. 122, 68 (1961);L. D. Jennings, D. R. Chipman, and J. J.
DeMarco, ibid. 135, A1612 (1964).

ss F. J. Arlinghaus, Ph.D. thesis, MIT, 1963 (unpublished).

Section IV discusses some implications of the pseudo-
potential band structures for paramagnetic materials.
In particular, we consider the inQuence of s-d hybridiza-
tion and of spin-orbit eBects on the density of states
throughout the entire s-d complex. As a result, it is
possible to examine the inhuence of spin-orbit coupling
on the density of states at the Fermi surface for the Ni,
Pd, Pt sequence and the question of why only Ni is
ferromagnetic. ' While we do not explicitly discuss the
cohesive energy in this paper, it should be noted that
this section is pertinent to the role of s-d hybridization
in the binding of the solid. This e6ect has been suggested
by Mott' to be of possible importance.

Section V deals with the band structure of ferromag-
netic Ni and the parameters such as the magneton
number, band splittings, and spin-polarization eBects
characterizing this state. In this connection, it is neces-
sary to discuss some experimental results which are
necessary to fit the two extra pseudopotential coeK-
cients that differentiate between the paramagnetic and
ferromagnetic band structures. These parameters, the
effective d-d polarity and s-d exchange energies, appear
in the model Coulomb Hamiltonian that must be ap-
pended to the band Hamiltonian in considerations of the
ferromagnetic state. This section also deals with the
density of states and its implications for a recent con-
troversy concerning high-6eld susceptibility results. '4"

Finally, Sec. VI presents a purely band-theoretic
description of the magnetic form factor of Ni," and
compares the results with the recent experiments of
Mook and Shull. ~' The spin density depends crucially
on the wave functions, which ordinarily might not be
expected to be as reliable as energy eigenvalues. How-
ever, since this density is determined largely by the
unpaired electrons near the top of the d bands, one
might, in this instance, expect reasonably accurate
results if reliable atomic wave functions, such as the
unrestricted atomic Hartree-Fock functions of Watson
and Freeman, 4' are used as the basis for the Slater-
Koster35 interpolation scheme. Since the conduction-
band functions and the wave functions in other regions
of the d bands also turn out to be reliable in a semi-
quantitative sense, it is possible to estimate the
conduction-band polarization and the contribution to
the spin density of the paired electrons in the remainder
of the d band, whose existence depends on the fact that
the wave functions corresponding to the two spin
directions differ. 4' The present interpretation of the
experimental results divers from that of Mook and
ShulP' in that consistency with the s-d exchange
Hamiltonian used here and other experimental informa-
tion demands that the conduction-band spin density be

J. Friedel, J. Phys. Radium 16, 829 (1955)."A preliminary account of this work appears in L. Hodges,
N. D. Lang, H. Ehrenreich, and A. J. Freeman, J.Appl. Phys. 37,
1449 (1966).

4'R. E. Watson and A. J. Freeman, Phys. Rev. 120, 1125
(1960); 120, 1134 (1960).

4' The possible importance of this effect was suggested to us by
A. J. Freeman (see Ref. 41).
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Xp(g)X I X

I'zG. 1. Energy
bands of an fcc tran-
sition metal along
the $100$ direction.
The heavy bands all
have 6& symmetry
and hybridize with
each other. Panels
(a) and (b) show
d and conduction
bands, respectively,
before hybridization,
and panel (c) shows
the hybridized bands.

bands. The second panel shows the lowest conduction
bands before hybridization with the d bands. The last
panel illustrates the actual bands when hybridization
effects are included. The heavily drawn bands all have
the same 6& symmetry and therefore hybridize.

Since the present interpolation scheme will be used
to determine the band structure of ferromagnetic Ni,
whose features depend essentially on the inclusion of
electron correlation effects, it is necessary to consider
an approximation to the full many-electron Hamil-
tonian more general than that of the usual one-elec-
tron Hartree-Fock scheme. We shall consider the
Hamiltonian

Ifband++so+IIcorr y (2 &)

parallel to that of the d electrons near the cell origin
and antiparallel near the boundary. ~ The admixture of
T~, and E, orbitals giving rise to the observed asphe-
ricity of the spin density also differs from that deduced
in the rather simpler analysis of Ref. 23. The agreement
between theory and experiment, however, is substan-
tially as good as that obtained in Ref. 23 except for the
three lowest rejections. It is likely that an explanation
of this discrepancy requires the use of first-principles
unrestricted Hartree-Fock band wave functions for
both d and conduction bands, since these points are
importantly influenced by the contribution of paired
electrons as well as that of certain s-d overlap and
orthogonalization terms that are neglected in the
present calculation.

in which the first term, to be discussed in Sec. IIA,
gives the results of ordinary nonrelativistic band theory,
the second, to be discussed in Sec. IIB, yields the
e6ects of the spin-orbit interaction, and the third
includes correlation effects in the approximation to be
described in Sec. IIC.

The eigenvalue equation corresponding to H&,„z is

Ht„„dBt,„(r)=E„(k)B~„(r). (2.2)

The Bloch eigenfunctions B~ (r) are written as linear
combinations of LCAO's bt,„(r) and OPW's bt, K(r):

Bt,„(r)=P„a»(k)bj,„(r)++Ku„K(k)bt, K(r) . (2.3)

The LCAO's are

II. INTERPOLATION SCHEMES

The interpolation scheme for the transition metals
which will be discussed in the present section is based.
on the following ideas. First-principles calculations
have shown that except for important hybridization
effects, the d bands closely resemble those obtained in
the tight-binding approximation, whereas the conduc-
tion bands are similar to those resulting from nearly-
free-electron calculations. Accordingly, we shall repre-
sent the unhybridized d bands in terms of linear com-
binations of atomic orbitals" (LCAO), as in Fletcher's
calculations for Ni, '4 and the conduction bands in terms
of a four-OPW (orthogonalized-plane-wave) approxi-
mation, as in Harrison's calculations for Al." EQects
resulting from the hybridization of the conduction
and d basis functions which are used here must be
included separately.

These effects are illustrated in Fig. 1, which shows
the paramagnetic energy bands of a typical fcc iron-

group transition metal in the [100j direction. (These
results actually correspond quantitatively to those for
Cu.) The first panel shows the energy bands arising
from the atomic d levels in the absence of conduction

«A. J. Freeman and R. E. Watson, in Proceedengs of the Second
International Conference on the Mossbaner Effect, Sactay, France,
1961, edited by A. H. Schoen and D. M. J. Compton (John
Wiley tk Sons, Inc. , New York, 1962), p. 117.

(rjk+K, d)=bt, K(r)
=x —'t'[(r

~
k+ K)

—P„(r'~ kts)(kts
~
k+ K)), (2.5)

where the K are reciprocal lattice vectors and the
normalization factor is given by

&~K= & —Zo ~
(kts(k+K) ('.

The wave functions

(r
~
k+ K)= (Xv.)

—'"e'&"+"&'

(2.6)

(2.7)

are plane waves and v, is the volume of the unit cell. The
present scheme will use as basis functions the LCAO's
defined in Eq. (2.4) and the plane waves given by
Eq. (2.7) instead of the OPW's that are given in Eq.
(2.5). Orthogonalization to core and d functions, which
should in principle be included, will therefore not be
considered explicitly here. It will be seen, nevertheless,
that orthogonalization eGects are taken into account
approximately in the parametrized matrix elements of

(r(ktt)=bt, „(r)=1V '"Pt e' 'q (r—'Rt),
(t =&" 5) (24)

where the q„(r—Rt) are atomic d orbitals centered at
the site Rt, and X is the number of atoms in the solid.
The OP%'s have the form
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A. Interyo1ation Scheme: Cu and Paramagnetic Ni

As already noted, the basis set used in the present
interpolation scheme consists of four OPW's (labeled
by K) representing the conduction bands in a nearly-
free-electron approximation, and five LCAO's (indexed
by @=1, ~, 5) representing the 3d bands in a tight-
binding approximation.

The appropriate OPW's for the 1/48 of the Brillouin
zone in which k„&k,&k,&0 are formed from the plane
waves (r

~
k+ K), where Ki ——(0,0,0), K2 ——(22r/a) (0,2,0),

K2= (22r/a) (1,1,1), and K4= (22r/a) (1,1,1).
The LCAO's are given by Eq. (2.4). The atomic

orbitals have the form

+1(r) (15/42r)1/2' fT2g(r)/r2

~2(r) = (»/4~)'"Xs f"'(r)/"
222(r) = (15/42r)'12sx fT'a(r)/r'

v. (r) = (15/16 )'"(*'—X')f '(r)/r'
(2.9)

the Hamiltonian. The eigenvector coeKcients obtained
in this scheme may then be identified directly with the
a coefficients in Eq. (2.3). These points are discussed
further in Sec. III.

The matrix elements of Hb, „d will be expressed as
k-dependent terms multiplied by parameters repre-
senting various spatial integrals. These parameters are
not actually determined from first principles, but are
fit to give paramagnetic bands in agreement with the
results of calculations done, for example, by the APW
or Green's function methods. The correlation effects
important in connection with ferromagnetism give rise
to the Coulomb energy charge that occurs when passing
between the paramagnetic and ferromagnetic states.
Instead of Eq. (2.1), it will therefore be more useful to
consider

(Hband+Hcorr )
+H„+(H„„r'"' H„„,v'"'),—(2.8)

where the effective-band Hamiltonian Hb»d' =Bb»d
+H„„'"'will be assumed to include correlation effects
associated with the paramagnetic state in some fashion.
In practice, band calculations do not include these
sects, but in view of their agreement with experiment,
it is unlikely that the inclusion of correlation e6ects
would produce major alterations in the quasiparticle
energies. In the present paper the Coulomb interaction
vrill be included in the manner proposed by Gutzwiller, "
Hubbard '4 and Kanamori. "

The spin-orbit interaction has been separated here
from the other relativistic effects, which are not ex-
plicitly included, because it produces splittings in the
band structure. The Darwin and mass-velocity terms
produce only shifts and distortions in the band struc-
ture, and may therefore be regarded as being incor-
porated in IIb,„d, at least in a qualitative way.

and satisfy [(p/2222)+U(r))42(r)=E„, ;,&p(r). Here
U(r) is the atomic potential and the fv(r) are the
normalized radial functions of the isolated atom:
Jo"[rf"(r)]'dr=1. As usual in the Slater-Koster inter-
polation scheme, "we shall neglect the nonorthogonality
of the atomic orbitals associated with different sites.

The 18X18 matrix representing Hb, „d may be
written schematically as

[Hband]

st-st st-dt

s t'-d $ d t'-d t'

s$-s J. s$-d1

s J,-d l d l-d l

(2.10)

where s-s, d-d, and s-d refer, respectively, to the OPW,
LCAO, and hybridization blocks. The energy eigen-
values are given by the solution of the secular equation

det~ (kvrr~ p'/2224+V(r) ~kv'tr)

E(kva'lkv'o)
I
=0, (2.11)

where v includes the d and conduction band indices p
and K. The presence of the factor (kvo ~kv'o) indicates
that the basis functions are not necessarily mutually
orthogonal. This term appears most significantly in the
hybridization block. In the paramagnetic case, the t'-g
and 1-1 blocks are identical, and only a 9&&9 matrix
need be considered in the actual calculations.

In Eq. (2.10), the matrix elements H» corresponding
to the d-d block are given by

H„„,= (k,
~
p2/2m+ V(r)

~
k„').

If the crystal potential is written as a superposition of
atomic potentials centered about sites R4,

V(r) =+4 U(r —R4), (2.12)

we may use Eq. (2.4) to obtain

H- = [Eo+~(&.4+&.2)3~-

+P e '" R& q„*(r'R1) (V—U) 4(vr)—d r,S(2.i3)

where J'&p„~(r)[p2/2224+V(r) jy„(r)d2r=EO for @=1,2,3
and ED+6 for p=4, 5. The energies Eo and E2+6 are
associated, respectively, with T» (p = 1,2,3) and
E, (p=4,5) orbitals. 6 corresponds to the crystal-ffeld
splitting of the d bands at the point I'. This procedure
corresponds to Fletcher's approach, in which only
terms corresponding to nearest-neighbor interactions
were retained and the matrix elements B» merc cx-
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pressed in terms of six integrals Al, ,A6 having the
form

pl* z——,'a, y —2a, s V—U pl x,y, s d'r, etc.

In the spirit of the Slater-Koster interpolation
scheme, " these integrals are taken to be adjustable
parameters, rather than being calculated from a model
potential as in Fletcher's work. "In addition, Ep and 6

are assumed adjustable. It should be noted that the
actual splitting between F12 and F25' is far larger than
6 because of the ligand-field effects arising from the A;.
In fact, in Fletcher's work, 6 was assumed to vanish.
The present d-band interpolation scheme is useful
because it has been shown to be applicable to a reason-
able range of band widths.

The matrix elements HKK corresponding to the s-s
block have the form

p+~lk/2
V200F020

LH»»if=
111 ill

.V111P111

V200F020

p+ ~k+K, (

V111F020F111

VulF 020Frrl

Vill~111

V111F020F111

P+llik+Kli2

V111~111

V111F020Flll

V200F111F111

P+n(k+K4i2.

(2 14)

r(000)
X(080)
I.(444)
E(660)
g (480)
U(282)

~020

where Fppp, which appears in all terms of the matrix
containing only a single Ii, is unity and has been sup-
pressed. With the exception of the appearance of the
factors Ii, to be discussed below, this matrix is the same
as that used in Harrison's treatment33 of the conduction
bands of Al. The diagonal matrix elements correspond
to a band having a simple parabolic form; P is a con-
stant fixing the zero of energy. The real crystal potential,
as well as orthogonalization effects, are represented by
a pseudopotential V2, (r) =p» V»e'»'. In the transition
metals, the first two Fourier coefficients, V111 and Vgpp,

have values which are larger than in Al, corresponding
to the fact that the splittings at the zone faces are
larger. Mueller" has shown that these splittings arise
from the d-function admixture into the conduction-
band wave functions resulting from orthogonalization
effects. Our parametrization of the problem differs from
that of Ref. 27 in that the large conduction-band
splittings are incorporated directly in the parameters

V111, V2()p. The relation of our scheme to that of
Mueller is established in Sec. III.

Because of the larger VK relative to the polyvalent
metals, it is necessary to ensure the occurrence of
properly symmetrized combinations of OPW's along
symmetry directions. Accordingly, one modifies the
OPW matrix elements for the case of the fcc lattice by
introducing symmetrizing factors F020(k), FIll(k), and
F-, —,l(k). The omission of these factors would result in
small but undesirable energy splittings and shifts of
the order of the average deviation of the interpolated
bands from those of first-principles calculations. The J's

Tp&z,E f. values of the symmetrizing factors at symmetry points.

should have the values given in Table I at symmetry
points, and should vary smoothly in between.

According to Eq. (2.11), the off-diagonal elements of
the secular matrix between PW's and LCAO's are

(H —s)»„=(k+ K
~
p2/2222+ v(r)

~ kp)
—E(k+ K

~
kp). (2.15)

It is necessary to make several approximations to reduce
these matrix elements to an easily parametrized form.
Expressing V(r) in terms of atomic potentials $Eq.
(2.12)j, and ~kp) in terms of LCAO's LEq. (2.4)j, we
obtain, using (2.7),

(H—E)»„=(0,) '~' e '&"+»&'g U(r Rl)02—„(r)d'r
lM

—(F.—F. )(0 )
—'~' e-*~ 2+»~'

0„2( r) dr2. (2.16)

The first term Inay be written in a simpler parametrized
form if it is assumed that the main contribution to the
integral comes from the region (near a cell boundary)
of maximum overlap between potential and wave
function, where U should be relatively slowly varying.
Hence, +1„0U(r Rl) in—Eq. (2.16) will be approxi-
mated by a constant U. In the second term, it will be
assumed that E can be replaced by an average value E.
It should be recalled that this term would have been
unnecessary if properly d-orthogonalized conduction-
band wave functions had been used. The replacement
of E by E is equivalent to the use of an approximately
orthogonal basis and is found to be entirely satisfactory
if the range of energies under consideration is not too
large. Equation (2.16) then simplifies considerably:

(H—Z)»„.——(U E+F.„)(21,)-'i'— .

X e '&2+»"y„(r)d2r (2.17).

By expanding the exponential factor in spherical har-
monics ans spherical Bessel functions, and by noting
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00

Xr

that only the term /=2 contributes to the integral, we

may reduce the radial part to the parametrized form
Jp j p(kr)r'f(r)dr ~ j&(kB&), where the integral has been
evaluated on the assumption that r'f(r) is strongly
peaked at B~. The constant factors proportional to
(U E+F-,&) are —combined into another adjustable
constant 82. The 6nal parametrized result including
the symmetrizing factors Fx(k) (with Fppp—= 1) is

(&—&)x,=&pjp(lk+Kl&t)
-(k+K)„(1+K)„-

F (k),
Jk+Ki'

(i,p, v) = (1,x,y), (2,y,s), (3,s,x),
(&—&)«=&pjp(lk+Kl&t)

(2.18)
(k+K) '—(k+ K) '

&( Fx(k),
2/k+ K f'

(&—&)xp=&p jp(~k+K~&t)
-3(k+ K),'

X-,'K3 —1 Fx(k).
fk+K['

While these approximations would not be expected to
yield reliable results if the parameters 8& and 82
appearing in the preceding equations were calculated
from erst principles, they do lead to a reasonable
representation of the band structure provided that they
are regarded as adjustable.

Equations (2.18) are a severely approximated version
of the original Eqs. (2.15). However, they contain all
the essential physical ingredients associated with hy-
bridization and nonorthogonality, at least in an approx-
imate way, and will be seen to yield excellent results.

The parameters appearing in our scheme are chosen
by fitting the pseudopotential bands at symmetry

points to accurately calculated bands. The parameters
A~, , A6, Eo, and 6 are evaluated from pure d levels
at F, I., X, and E, where the Hamiltonian matrix is
very simple. The parameter P is the energy of the lowest-
lying pure conduction level at F&. The remaining
parameters n, V~~~, and V200 are fitted to points suIIi-
ciently high in the conduction bands that hybridization
with d levels no longer plays a significant role. 8& and 82
are chosen to give the correct hybridization at L and X:
of course, other symmetry points may be used instead.
We have actually used the same value of B~ for both
Cu and Ni. This simplified form of the hybridization is
found to give very good results at all points of the
Brillouin zone.

Figure 2 shows the agreement between the pseudo-
potential interpolation scheme and APW calculations
for Cu (Burdick') and Ni (Hanus'). The excellence of
the fit is characterized by the following deviations from
the APW bands calculated at 89 points in 1/48 of the
Brillouin zone in Cu and 28 points in Ni. The average,
root-mean-square, and maximum deviations are respec-
tively 0.09, 0.11, and 0.37 eV for Cu and 0.09, 0.13,
and 0.42 eV for Ni.

Calculations with this interpolation scheme can be
carried out rapidly on a computer: less than a minute
of IBM 7094 time is required to calculate the matrix
elements, eigenvalues, and eigenvectors at 89 points in
the Brillouin zone, as well as the density of states, using
routine matrix diagonalization methods.

B. Spin-Orbit sects
The spin-orbit interaction can be written in the

Hartree approximation as

H„= (It/4m'c')o VV & p,
where V is the crystal potential. The principal qualita-
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tive effect of this interaction is to produce additional
splittings in the d bands. The remaining effects are
purely quantitative. They result in shifts and distortions
of the bands which, in the context of the present inter-
polation scheme, can be assumed to be incorporated in
the parameters discussed in Sec. IIA. Accordingly, it
is reasonable to include in the matrix representation of
H„only elements between d functions, and to neglect
matrix elements between two conduction-band func-
tions, and between conduction-band and d functions.
In effect, therefore, spin-orbit-split d bands are hybrid-
ized with the conduction bands of Sec. IIA. The
preceding approximation has the convenience that the
elements of the matrix for H„worked out by Friedel,
Lenglart, and Leman" for d bands in the tight-binding
approximation can be immediately used.

If the crystal potential is written as a superposition
of atomic potentials as in Eq. (2.12), then the spin-orbit
interaction among d electrons can be written is second-
quantized notation as

P„=P c;„,tc;„, (po tg(r)L Sjp'o'), (2.19)

where $(r) = (Ii'/2@Pc'r)d U/dr, only intra-atomic terms
are retained, and U(r) is taken to be spherically sym-
metric. Here ~iso), ~

p, 'o') refer to orbitals centered about
the origin. The matrix elements (po.

~ $(r) L S
~

p'o'') are
proportional to the spin-orbit parameter l = Jj&"Lr f(r)j'
X $(r)dr, where f(r) is defined in Eq. (2.9). In connec-
tion with the present interpolation scheme, i is properly
regarded as another adjustable constant, not necessarily
equal to the atomic value.

The 18X18 matrix that replaces that of Eq. (2.10)
can be written schematically as

0 0 0

0 dt'-dt' 0 d f-d J,

C. Correlation Effects

The pseudopotential method developed in Sec. II.A
can be used to infer fairly realistically features of the
band structure of magnetic materials like Ni. As we
shall see from the particular example to be considered
here, such calculations always involve a self-consistency
condition, since the spin polarization of a given electron
will depend in some manner on that of all the other
electrons. While self-consistency procedures have, until
the present time, been prohibitive for first-principles
band calculations as complicated as those encountered
in the 3d metals, they are quite feasible in connection
with pseudopotential techniques. In addition, the
motivation for embarking upon erst-principles calcu-
lations is less compelling, since the Hamiltonian to be
considered in connection with the magnetic properties
should in principle contain the full Coulomb interaction.
Tractable interaction terms, of course, require gross
simplification.

One particularly simple version of the interaction
Hamiltonian, a generalization of that originally pro-
posed by Gutzwiller, "Hubbard, "and Kanamori, "and
recently discussed in detail by Herring, ' has the form

&corr= U " g '+iytiiip4+ U g riipariip'n'
4/l $0'0'

P +P

—J""Q n;„,n;„, J' "P e;„,I;—x„(2.21)

where 0,0' are spin indices. The first term describes the
intra-atomic Coulomb repulsion between two anti-
parallel d electrons in the same orbital p, on the same
atom at site i, and the second term describes the
Coulomb repulsion between d electrons in different
orbitals on the same atom.

I IJbandj+
0 0 0

(2.20) U"-"= y„*(ri)p„*(r2)e'~ ri —r2~ 'q„(r2) y„.(ri)d'rid'r2

0 dl di' 0 did'
where the right-hand term represents the effects of
spin-orbit coupling in our approximation.

In the present applications of this formalism, we
shall examine the effects of spin-orbit interactions on
purely nonrelativistic band structures instead of fitting
the entire Hamiltonian Hb, „d+H„ to a first-principles
calculation including spin-orbit splitting. While realizing
that the approximation may be quantitatively inade-
quate, we shall regard the parameter f to be given by
its atomic value, determined from spectroscopic data,
instead of by the best possible fit to a band calculation.
In this connection it should be noted that even though
the magnitude of the spin-orbit interaction is deter-
mined near the core where the potential is atomic-like,
the effects of the solid are not negligible.

and U'~, correspondingly defined, are the respective
polarity energies. It should be noted that Eq. (2.21)
assumes the same value of U' independently of the
relative electron spins in the two orbitals. The third
and fourth terms correspond, respectively, to exchange
interactions among d orbitals and between d and s
orbitals. We neglect the magnetic effects of s-s exchange
interactions and assume the polarization of the con-
duction electrons to arise purely from the magnetization
of the d electrons via a Hund's-rule coupling (J'-d).

Since we are interested in the application of this
Hamiltonian to the problem of ferromagnetism, we
shall retain only those terms which produce an energy
change when passing between the paramagnetic and
ferromagnetic states. We shall perform the separation
indicated in Eq. (2.8), assuming the band Hamiltonian
to include paramagnetic correlation effects, and con-
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sidering the correlation Hamiltonian to be given byH„„'"'—H„„". We can effect further simplification
with the help of Herring's estimates of the parameters
appearing in Eq. (2.21). He finds Ud d =5 eV, U'd d=3
eV, J~ ~=1 eV. Thus J~ is seen to be rather smaller
than U'~~. We accordingly neglect this term, even
though Herring has pointed out that since its contribu-
tion to the magnetization energy is of the order of
EO„where O~. is the Curie temperature, it may be
crucial to the appearance of ferromagnetism in Ni.
Within the context of an interpolation scheme in which
the effective polarity and exchange energies are con-
sidered to be adjustable parameters (see below), rather
than being calculated from first principles, such an
approach is justihed, since the physical effect of the
terms in U and J is actually the same: Both result
in a decrease of energy when passing from the para-
magnetic to the ferromagnetic state.

Actually, due to correlations among itinerant elec-
trons, the real polarity energy U ~ is reduced to an
effective polarity energy U,q ~. This effect owes its
existence to the fact that electrons have a choice of
either going onto sites that already contain an anti-
parallel-spin electron in the same orbital, or avoiding
such sites. The latter choice implies that part of the
crystal volume is unavailable to the electrons and
results in an increase of the kinetic energy. As shown

by Kanamori" and Herring, ' a consequence of this
fact is that U,g can never exceed the band width,
even though U may be very large. A similar re-
duction of the exchange energy J' to an effective
value J,g' ~ will also occur. The calculation of the effec-
tive polarity and exchange energies has been carried
out by Kanamori using an adaptation of the Brueckner-
Goldstone method, in which the interaction is replaced
by a sum of ladder diagrams. This method is expected
to be valid when the potential is short-ranged or the
density of particles is low, i.e., when uk p(&1, where a is
the range of the potential and kg is the Fermi wave
number. If we consider the simplest model of Ni, in
which one assumes equal numbers of holes in the d
band near X5 and electrons in the conduction band,
equal to 0.6 per atom, then eked is not small if a is
taken to be the Thomas-Fermi length which is deter-
mined by the screening due to the conduction electrons.
However, kp is reduced due to the fact that the top of
the d band (X~) consists of three-fold-degenerate T2,
orbitals. Even under these conditions, uk' =0.4.
Accordingly, this treatment of strong correlations may
not be quantitatively valid. However, in view of the
fact that U,g ~ and J,~'~ represent adjustable param-
eters, our resultant effective Hamiltonian may be
considered to be an adequate starting point.

While Kanamori considered in detail only the case of
a single nondegenerate band, Herring generalized his
treatment to include three-fold degeneracy, correspond-
ing to the holes in the d bands near the X5 level.
Herring's treatment may be easily generalized further

to apply to the present more complicated situation.
Similar results are obtained: When U' )&J, the
terms involving these quantities make a negligible
contribution to H„„"'"—H„„"'since the term in-
volving U' is independent of the relative spins of the
electrons in the two orbitals involved, and there is
almost no preferential alignment provided by the ex-
change interaction because of its small magnitude. The
only signi6cant terms remainin in 8„„,then, are those
involving U,«and J,ff' .

Within the context of Herring's treatment, the
assumed k independence of Udd and J' implies that
U,g and J,g'~ are also constant. While such an
assumption may be physically reasonable for U,z, it
is rather crude for J,g'~, as we shall discuss later in
Sec. V.

One further approximation is required in order to
obtain a tractable expression. After replacing the strong
interactions by weaker effective interactions with the
help of t-matrix techniques, it is reasonable to treat
this residual interaction in terms of the Hartree-Fock
approximation. The effective interaction Hamiltonian
then becomes

B'corr= Ueir Zipr +'l4lrt &+ia,—e) (+'ll, —)
—~. "Z'.*. ' .L& '")""'—( '")""'1 (222)

The form of Eq. (2.22) assumes that the magnetization
of conduction electrons is determined by d electrons,
and that the effect of the conduction-electron polariza-
tion on d electrons is negligible compared to that of
the d electrons on each other. In considerations in-
volving only ferromagnetic ordering, it is suflicient
to consider only the spatially homogeneous expectation
value'4 &e;„,)= (e„,)=1V ' P„~,

~
a„„,(k) ~

', in terms
of the a coeKcients defined in Eq. (2.3).

The Hamiltonian (2.22) may then be transformed
into k space to give

Bcorr Ueff Zklre +kae[&+y —e) &Na e)—
—J.B"E.K,.N. K.L&~")""'—&~")""'j (2 23)

B„„hasdiagonal form, and modifies the band Hamil-
tonian LEq. (2.10)j in the following manner. The
diagonal conduction-band components of spin 0. and
diagonal d components of orbital p and spin 0- are
altered by the addition of the energies

and

s-d p L&+
)ferro (+ )para)

U d-dD+ )ferro
&+ )para)

respectively. Since the d wave functions in a cubic 6eld
decompose into Ta, (p, =1,2,3) and E, (p=4, 5) orbitals,
we find &ei,)=&e2,)=&n8,) and &e4,)=&eg,). Thus at
points of the Brillouin zone where the wave functions
have pure T2, (e g , Wi', X.q,.Xa, F2a') or E, (e g , Xa, . .
I'im, K4) symmetry, the d part of the Hamiltonian
matrix is diagonal and the splitting among such levels
is rigid. However, because the population of T2, and E,
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levels is affected differently in going from the para-
magnetic to the ferromagnetic state, the form of H„„
in Kq. (2.23) predicts that the splitting of pure T&, and
E, levels should differ. At general points of the Brillouin
zone, where the wave function involves a k-dependent
linear combination of both types of orbitals, the split-
ting will therefore also be k dependent. This behavior
contrasts with previously used, simpler, model Hamil-
tonians which assumed the d-band splitting to be rigid.
Et should be emphasized that further k dependence
would be introduced if U«d were properly regarded
as k dependent and if the d bands were described in an
approximation that went beyond that used here.

As already pointed out, U«and J«' are treated
as adjustable parameters in the present interpolation
scheme, and are chosen in a manner to be discussed
later to fit experimental data such as the magneton
number. The general procedure for obtaining a ferro-
magnetic electron band structure, then, is the following.
One begins by fitting to a band calculation for the para-
magnetic state and thereby fixes all parameters except
U«and J«', which are specifically associated with
the ferromagnetic state. In passing to the ferromagnetic
state the parameters characterizing the paramagnetic
band structures are not adjusted further, or at most
adjusted slightly. The introduction of H„„involves a
self-consistency condition: The band structure appro-
priate to a given U«and J«' must yield the same
values of (m„)"""—(m„) "' as those used in the input.
In order to obtain agreement with the magneton num-
ber and related physical quantities, it is perhaps
simplest to obtain self-consistent solutions of the
problem for several U«and J«' and then by inter-
polation to determine the values most nearly consistent
with experimental observations.

III. SIGNIFICANCE OF INTERPOLATION ENERGY
BANDS AND WAVE FUNCTIONS

Interpolation schemes such as that described in
Sec. II represent electronic energy bands in terms of a
few adjustable parameters. Once the energy eigenvalues
have been obtained from the solution of the secular
equation (2.11), it is a simple matter to evaluate the
eigenvector coefficients. In order to obtain the pseudo-
potential wave functions for the solid, these coeKcients
must be associated with the proper basis functions.

In Sec. II.A, the parametrized form of the Hamil-
tonian matrix was derived using a nonorthogonal basis
composed of LCAO's (Eq. (2.4)j and plane waves
$Eq. (2.7)). However, with the help of the approxima-
tions to be discussed below, one can show that the use
of an orthogonal basis of LCAO's and OPW's (Eq.
(2.5)j leads to exactly the same parametrized form of
the Harniltonian matrix, where, indeed, the new
parameters are differently defined. However, in view of
the fact that their numerical values are chosen to
reproduce the actual band structure, this difference is

without significance in the context of an interpolation
scheme. The adjustable parameters in fact implicitly
include effects associated with an orthogonal basis, and
in particular, the large conduction-band orthogonaliza-
tion shifts discussed by Mueller. "By the same argu-
ment, the eigenvector coeKcients will also be seen to be
associated, to a good approximation, with OPW's and
LCAO's.

These points may be justified by considering ex-
plicitly the Hamiltonian in the context of the basis set
of OPW's and LCAO's. This basis is orthogonal except
for a slight nonorthogonality of the OPW's among
themselves, which may be neglected. The various
matrix elements of the Hamiltonian may be computed
using the procedures employed in Sec. IIA. The d-d
matrix elements are identical to those of Eq. (2.13).
The s-d hybridization matrix elements are identical to
those of Eq. (2.18) if the parameter 82 is reinterpreted
to be proportional to U rather than to U E+E,~—

Significant changes, however, occur in the s-s block.
The diagonal matrix elements replacing those in Eq.
(2.14) do not have a simple parabolic form, nor are the
o6-diagonal elements simply equal to the pseudo-
potential parameters V»& and V200. All elements in the
s-s block. now include complicated terms involving
normalization factors such as those in Eq. (2.6),
orthogonality integrals of the form (kp

~
k+ K), hybrid-

ization integrals between plane waves and LCAO's
similar to those in Eq. (2.18), and matrix elements
similar to those appearing in Kq. (2.13). A natural
approximation to make at this point is to neglect the
k dependence of these terms and to group them together
into new constants. The resulting matrix is then iden-
tical to that of Sec. IIA, which was derived using the
nonorthogonal basis. This approximation is the same
as that employed by Harrison, " who also found it
unnecessary to include explicit core orthogonalization
in his 4-OPW interpolation scheme for Al. In fact,
however, orthogonality efI'ects are neither neglected in
Harrison's work nor in the present calculations, since
the parameters n, V~~~, and V200 include these effects in
an approximate way. Since the d bands are, in the case
of the transition metals, not part of the core, the explicit
neglect of s-d orthogonalization may be viewed as a
much more serious approximation. However, in view
of the excellent results achieved by the present inter-
polation scheme, it is clear that the simplified treatment
of these terms is entirely adequate. The interpolation
scheme of Mueller" differs essentially from the present
one only in the retention of these complicated terms,
since the d-d and s-d blocks in his scheme are very
similar to those of the present work.

In order to make these points more explicit, let us
consider the special case of the conduction bands at
L2' and L~. The L~' wave function is automatically
orthogonal to all of the d-band LCAO's and does not
hybridize with any of them. The energy of the L& level,
however, does include shifts due to orthogonalization
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and hybridization, as Mueller'~ has pointed out. If we
represent these energy shifts by Ei,yb and E«tq, the
energies of the L& and L2' levels may be written as

10
NSITY

&(Lt) =0+48~ +Vt tt'+&brb+&oru„
E(Ls') =P+48n' —Vt tt',

(3.1)

TENTIAL

in terms of parameters o.' and V~~~' characteristic of an
interpolation scheme, such as Mueller's, which retains
orthogonalization terms. Equations (3.1) may be used
to fit the parameters n' and V~i~'. In the present
simplified scheme, however, the appropriate equations
are

@(Ll) 0+48&+ Vlll+@byb 1

E(I.s') =P+48a —Vttt,
(3.2)

which may also be fit by an appropriate choice of o,

and Vttr. Explicit comparison of Eqs. (3.1) and (3.2)
shows that the unprimed parameters are larger than
the primed ones, and hence that they include orthog-
onalization effects approximately. An argument similar
to the one made here for L applies to other points in the
Brillouin zone as well. As a result, the parameters n,
Vi~~, and Vgoo have different values at different points
in k space. As already pointed out, this k dependence is
relatively unimportant if attention is restricted to a
finite energy range. A single set of values of these
parameters has indeed been found to yield energy bands
of Cu and Ni in good agreement with first-principles
calculations for a range of energies extending from the
bottom of the conduction band to several volts above
the Fermi level. The preceding line of argument may
be immediately extended to the eigenvector coefficients
a„K(k) and a„„(k), which, accordingly, may be associ-
ated with the true conduction and d-band wave func-
tions, respectively. However, it is still necessary to
verify in some detail that these lead to physically
reasonable results by examining the actual spatial de-
pendence of the Bloch functions of Eq. (2.3).

In the spirit of the present interpolation scheme, one
would suppose that if the pseudopotential wave func-
tions agreed with the wave functions obtained from
first-principles calculations at a representative set of
points in the Brillouin zone, then they would be signifi-
cant throughout most of the zone. It should be noted,
of course, that the physical significance of these wave
functions would certainly be no greater than that of
the results from first principles, which are often of
doubtful validity.

In the noble and transition metals, APW calculations
have indicated that the wave functions near the top of
the d bands are well represented by I CAO's constructed
from atomic functions. v At lower d-band energies,
however, the deviations from atomic character become
relatively pronounced, since the APW wave functions
are more spread out over the unit cell. The basis func-
tions used in connection with the present pseudo-
potential interpolation scheme therefore insure that

0
0.0 1.0

r (o.u.)

~ ~
~ ~
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FIG. 3. The radial charge density in Cu computed, respectively,
from APW calculations by Arlinghaus (Ref. 39), the atomic calc-
ulations of Herman and Skillman (Ref. 45), and the present
pseudopotential scheme. 8, is half the nearest-neighbor distance,
or the radius of the APW sphere. (a.u. =atomic units).

the d components of the wave functions are reasonably
good near the top of the d bands. At lower d-band
energies, one would hope that the parametrized hybrid-
ization effects with conduction-band wave functions
might correspond in some reasonable manner to the
delocalization of the d functions and their deviation
from atomic character. It should be emphasized that
the full description of this effect would almost certainly
require a variation of f(r) in Eq. (2.9) with d-band
energy. We shall not, however, consider this energy
dependence of f(r), since the neutron-diffraction results
for which the pseudopotential wave functions will be
used most extensively are determined by electrons near
the top of the d band.

In fact, however, it appears that even the crude wave
functions obtained from Eq. (2.3) are adequate to give
a reasonable representation of the total charge density
in the solid. The results for Cu may be considered in
this connection. Arlinghaus" has calculated the radial
charge density and x-ray form factor in Cu using the
wave functions obtained from an APW calculation of
the band structure. The x-ray form factor calculated in
this way agrees with experiment much better than the
atomic form factor, because of the spreading out of the
copper valence-electron charge density in passing from
the atom to the solid.

The charge density calculated in Ref. 39 is compared
in Fig. 3 with the charge density obtained from the
present interpolation scheme using the atomic 3d func-
tions of Herman and Skillman4' to determine f(r). The
agreement between the two sits of results is seen to be
quite good. The largest discrepancy occurs in the outer
parts of the unit cell where the d functions near the
bottom of the bands make the dominant contribution.
As expected, the present interpolation scheme does not
represent the delocalized functions as well as it does the
wave functions associated with the top of the d-band
complex. The figure also shows the atomic charge
density computed from the atomic 3d and 4s functions

4~ F. Herman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall, Inc. , Englewood Cliffs, New Jersey, 1963).
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of Herman and Skillman. While qualitatively similar
to the "band" charge density, the atomic density is
seen to be somewhat less disuse. The good agreement
between the two calculated total charge densities
provides some confidence in the validity of the neutron-
dift'raction calculations of Sec. VI, in which the net
spin density, and hence the wave functions, is needed
to calculate the magnetic form factor. This is true
particularly in view of the already mentioned fact that
the net spin density is determined largely by electrons
near the top of the d band, rather than by electrons
throughout the entire band structure which must be
considered in connection with the total charge density.

IV. HYBRIDIZATION) SPIN-ORBIT EFFECTS,
DENSITY OF STATES, AND INFINITESIMAL

FERROMAGNETISM IN Ni, Pd, Pt

One of the quantities that is most important in
determining the physical properties of a metal is the
density of states at the Fermi level, ri(E&). The elec-
tronic specific heat, the Pauli spin susceptibility, the
transport properties, and the presence or absence of
ferromagnetism, all depend on its value. This section
will discuss the effects of the spin-orbit interaction and
of hybridization of the conduction-band and d functions
on rI(EF), and will examine the relation of calculated
values of rI(Ep) for the Ni, Pd, Pt sequence to spe-
cihc-heat data, and to the criterion for infinitesimal
ferromagnetism.

Figure 4 shows the density of states of paramagnetic
Ni calculated for 16 384 points in the Brillouin zone.
The solid curves refer to the unhybridized d and
conduction bands and the dashed curve to the hybrid-
ized bands. The differences due to hybridization are
quite significant; several large peaks appear to have
shifted or disappeared completely. This behavior may
readily be explained by reference to the diagram to the
left, which shows the energy bands along the line from

0.65- t', = 0.015 Ry
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FIG. 5. Band structures corresponding to pseudopotentcal
parameters for paramagnetic Ni and spin-orbit parameters of
atomic Pd (top) and atomic Pt (bottom).

A (222) to U(282) and the approximate density-of-states
curves for a narrow cylinder along this direction. The
solid curves refer to the unhybridized bands. It will be
noted, in particular, that there is a large peak at 0.53
Ry associated with a Oat band at that energy. The
hybridized bands include the dashed bands and the
light solid bands (which do not hybridize with the
conduction band). The large peak in the density of
states at 0.53 Ry has been greatly reduced due to the
hybridization between the Rat band and the conduction
band. It will also be noted that other peaks in the un-
hybridized density of states have changed in magnitude,
and that hybridization has contributed new peaks at
0.30 and 0.33 Ry. Similar hybridization eBects are also
seen in the total density-of-states curve in the main
diagram. It is to be expected on the basis of the large
changes observed that hybridization between d and
conduction bands may have a significant eGect on the
cohesive energy in the noble and transition metals.
Mott' has suggested that this hybridization might be
sufhcient to account for the discrepancy between the
observed cohesive energy of the noble metals and the
contribution of the s electrons calculated by the
Wigner-Seitz method.

Hybridization also affects the relative numbers of d
and conduction electrons in the solid. In the hybridized
bands of paramagnetic Ni, the Fermi level is raised
0.12 eV relative to the Fermi level of the unhybridized
bands, and the approximate number of d electrons per
atom is reduced from 8.95 to 8.82, while the number of
conduction electrons per atom is increased from 1.05 to
1.18. It is to be noted that there are fewer than 9 d
electrons per atom in solid Ni, rather than the 9.4 d
electrons usually assumed. This results from the fact
that the bottom of the conduction band in Hanus' APW
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FIG. 6. Densities of states versus energy, in vicinity of Fermi
level, showing how g (Ei ) decreases as the spin-orbit parameter is
increased. Xr~+ (X~ for f'=0) marks the top of the d band.

4'R. Braunstein and E. 0. Kane, J. Phys. Chem. Solids 23,
1423 (1962).

47 J.R. Anderson and A. V. Gold, Phys. Rev. 139,A1459 (1965).

calculations' is situated well below all the pure d bands,
with the result that the first conduction band is approxi-
mately half full (=1 conduction electron per atom)
at the Fermi level. There would be fewer conduction
electrons and correspondingly more d electrons if the
bottom of the conduction band were relatively higher.
This is actually the case in the calculations of Yamashita
et ul. ,

' in which the I'& level is situated 0.05 Ry below
the I'25' level, compared to 0.45 Ry below in Hanus'
calculations. ' In Cu, the numbers of d and conduction
electrons per atom are, respectively, 10 and 1 before
hybridization, and 9.73 and 1.27 after hybridization.
This reduction is due to the mixing of d wave functions
into the upper unfilled conduction bands.

In order to study the effect of spin-orbit splitting on
rt(Er), it is necessary first to examine its influence on
the band structure. The latter was calculated for
)=0.013 Ry (atomic Pd), 0.031 Ry (atomic Pt), and
0.061 Ry (twice atomic Pt value), "while the pseudo-
potential parameters of Sec. IIA were kept at values
appropriate for paramagnetic Ni. This procedure
permits the isolation of the effects of the spin-orbit
interaction from those resulting from the widening and
distortion of the bands in the descending Ni, Pd, Pt
sequence.

Since the magnitude of f is determined by d U/dr near
the nucleus, it is not unreasonable to assume atomic
values. Studies on semiconductors, 4' as well as on Pb,"
indicate, however, that f may be larger in the solid,
and it is for this reason that a computation for t'= 2l t pt
was done. A calculation for l =f„N; (0.0075 Ry) was
not carried out because of the negligible effect of such
a small splitting on rt (Er).

The results for the case l' =0 are contained in Fig. 2;
those corresponding to the atomic spin-orbit splitting of
Pd and Pt are presented in Fig. 5. The most important
effect of spin-orbit splitting is the removal of de-
generacy, as at Xs and I ss. Note that as f' is increased,

rL

~ 52
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FIG. 7. Density of states at Fermi level
versus spin-orbit parameter,

the uppermost band along I.-I' moves up, and its
crossing with the next lower band moves toward I,
ultimately occurring along W-l, where the bands
hybridize. The spreading apart of the bands in the
vicinity of the Fermi level as f is increased from zero
can be expected to result in a decrease of the density
of states in this region.

When f=0, the upper d band is seen to be perfectly
Rat between 8 ~' and X5 according to the present inter-
polation scheme. However, the introduction of spin-
orbit coupling alters this behavior by raising one of the
levels at X relative to that at lV. This portion of the
band, nevertheless, remains relatively Bat and therefore
a large resulting contribution to the density of states
can be expected in a narrow energy range both with
and without spin-orbit coupling.

The curves of Fig. 6 illustrate the change in the
density of states in the vicinity of the Fermi level as t'

is increased. The curve for l =f,„pdis very similar to
that for t' =0, (Fig. 4) and is not shown. Note that as t
increases, the peak at the Fermi level broadens out
toward higher energies and becomes lower. In addition,
the Fermi level shifts away from the highest part of
the peak. These effects combine to reduce rt(Er) with
increasing t This b.ehavior, as deduced from the present
calculation, is summarized in Fig. 7, which shows the
dependence of rl(Er) on t'

It should be pointed out that peaks such as those
shown in Fig. 6 can result from relatively large regions
in the Brillouin zone. The region giving rise to the peak
at Ep in the density-of-states curve corresponding to
t'= 0 is shown in Fig. 8; note that this peak is less than
0.5-eV wide compared to a d-band width of about 4 eV.
It is in large part the presence of the critical line
between Xs and Wt', for which

~
VsE~ =0 when )=0,

that causes this narrow peak to arise from such a sub-
stantial region. Even with the introduction of spin-orbit
coupling,

~
VqE~ remains approximately zero for this

line.
Table II lists the computed values of rt(Er), and

experimental values of the electronic specific heat
coefficient y, expressed in terms of an rl(Er) through
the relation y=-'ss'E'rt(Ep), where E is the Boltzmann
constant. A comparison of these two sets of g is some-
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the paramagnetic system will be unstable to ferro-
magnetic ordering if its energy is lowered by reversing
an infinitesimal number of spins be. If the J,q' term
and the small conduction-electron contribution to the
magnetization are neglected, then the change in para-
magnetic band energy per particle is (bn)'/g, (E&),
where g is the density of states for a single spin. The
change in average correlation energy per particle is—U,ri~ d P„(8N„)', which implies that infinitesimal
ferromagnetism occurs when

4-.OI 4 L~~ Xx&L. &X,W, .

FIG. 8. Cross sections indicating regions in Brillouin zone
responsible for large narrow peak in density of states near Fermi
level for paramagnetic Ni. This peak is cross-hatched in plot of
density of states versus energy (inset). Critical points required by
symmetry in the energy range shown are marked.

TAmz II. Comparison of calculated values of q(EJ) with those
derived from electronic-speci6c-heat data (Ref. 1).

1 (Ry)

0 (= at. Ni)
0.013(at. Pd)
0.031(at. Pt)
0.061(2)(at. Pt)

q (Es) (states/atom/Ry)
calc. expt.

57 L80$
56 54
48 39
40

Material

Paramagnetic Ni
Pd
Pt

' This estimate is discussed in the text.

what questionable because of the unknown contribution
of dressing effects resulting from electron-phonon and
electron-electron interactions. However, if one assumes,
again on less than firm grounds, that the proportion of
the experimental g contributed by dressing eRects is
roughly the same in each of the three cases, the quali-
tative features of the numbers in Table II may be
examined. In Table II, an approximate value for pp
was obtained by multiplying p&„„N; by the calculated
ratio of t1(Ep) for paramagnetic and ferromagnetic Ni
(see Sec. V). It is seen that an increase of i' from zero
to f t pt reduces the calculated p (E&) by only 16%%u~,

whereas the g(E&) derived from pp„ is down by 50 jo
from that for paramagnetic Ni. The relative discrepancy
between the two reductions is even greater for Pd. It is
clear too from the table that even if f were substan-
tially larger in the solid, spin-orbit coupling alone would
be insuKcient to account for the observed reductions
in t)(Ep).

Another question of interest is whether the calculated
reductions of z(E&) in the Ni, Pd, Pt sequence can
account for the absence of ferromagnetism in Pd and
Pt, and its presence in Ni. ' The criterion for infini-
tesimal ferromagnetism is easily derived by noting that

The computations for paramagnetic Ni give
P„(8e„)'/(8n)'=0.25, and from the results of Sec. V,
U ff

——0.195 Ry. Using these values, Eq. (4.1) indi-
cates that there will be infinitesimal ferromagnetism for
an i1 (Ep) in excess of 41 states/atom/Ry. The influence
of spin-orbit coupling on i1(Ep) alone thus appears
insuKcient to explain the absence of ferromagnetism
in Pd and Pt. An additional effect of importance is the
probable reduction of U«by spin-orbit coupling. '
Another, and perhaps more significant, effect is the
reduction of g(E&) by widening of the bands in the
descending Ni, Pd, Pt sequence. The net effect, how-
ever, may be reduced somewhat by a corresponding
increase of Ueq . That this widening occurs has been
shown by the recent APW calculations for Pd by
Freeman, Furdyna, and Dimmock" and for Pt by
Mackintosh. "

V. FERROMAGNETIC Ni

Since all interpolation schemes rely heavily on ex-
perimental data in the adjustment of parameters, it is
necessary, in the present applications to ferromagnetic
Ni, to consider the relevant experimental data before
discussing the calculated band structure and its physical
consequences.

In Sec. IIC we have outlined the procedure for ob-
taining a ferromagnetic band structure, which involves
fixing all parameters except Ue~ d and Jeg' to a
reliable first-principles band calculation for the para-
magnetic state, and then determining Ue~ and Jeg'
self-consistently using experimental data relating to
the ferromagnetic state. As will be seen, U,~d d is deter-
mined largely by the requirement that the magneton
number of ferromagnetic Ni should equal 0.55. The
parameter J,z', which has a very slight effect on the
magneton number, is fixed by knowledge of the band
structure near the point I., as determined from experi-
ments relating to Fermi surfaces and the ferromagnetic
Kerr effect (FKE). However, as we shall show, J,a' d is
expected to be strongly lr dependent and even to change

' A. J. Freeman, A. M. Furdyna, and J.O. Dimmock, J.Appl.
Phys. 37, 1256 (1966).

4' A. R. Mackintosh, Bull. Am. Phys. Soc. 11, 215 (1966).
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sign somewhere inside the Brillouin zone. The experi-
mental information therefore only determines J,ff' in
the outer parts of the zone. The pseudopotential method
is ineffectual in describing the band structure in the
vicinity of F& because of the lack of experimental data
concerning band splittings in this region. More detailed
information can only be obtained from unrestricted
first-principles band calculations appropriate to the
ferromagnetic state.

Although one might hope that only the parameters
U ff and J,ff' d need be fixed in passing from the
paramagnetic to the ferromagnetic band structure, it
will in fact be necessary to make slight changes in
several of the parameters characterizing the para-
magnetic state in order to optimize agreement with
experiment. These changes correspond to fine adjust-
ments and are no larger than the differences between
the results of different 6rst-principles calculations for
the same metal.

A. Relevant Experimental Information

The saturation magnetization of ferromagnetic Ni
is 0.606pg per atom. Since the spectroscopic splitting
factor g is equal to 2.2, the spin and orbital moments
must contribute, respectively, 0.551 and 0.055pg per
atom. The band structure of ferromagnetic Ni should
then have an excess of 0.55 electrons of one spin, or
approximately 5.275 majority-spin electrons and 4.725
minority-spin electrons.

The spatial distribution of the magnetization has
been determined by Mook and ShulP' by a Fourier
inversion of the magnetic form factor obtained from
their neutron-diffraction experiments. The net spin
density along the I 100$ direction is shown in Fig. 9.
The large hump near the nucleus is due primarily to d
electrons. The net-spin-density curve crosses zero at
approximately the shell radius of atomic Ni++, ' and
subsequently the spin density is negative and almost
constant. This behavior is most easily reconciled with
an apparent conduction-band spin density polarized
oppositely to that of the d electrons. Mook and Shul12'

have analyzed their experimental form factor on this
basis, assuming that the conduction electrons may be
represented by plane waves whose polarization is con-
stant throughout the unit cell and opposite to that of
the d electrons. Good agreement with experiment was
obtained by using an atomic form factor to represent
the d contribution and by assuming that the net reverse
polarization of the conduction electrons amounts to
19%of the magneton number. They have also obtained
the correct asymmetry of the form factor at large
reflections by assuming the distribution of the magnetic
electrons to correspond to 81% in Ts, orbitals and 19%
in E, orbitals.

"L.Pauling, The 1Vature of the Chemical Bord (Cornell Univer-
sity Press, Ithaca, New York, l960), p. 518.

PP.3-
/A EXPERIMENTAL SPIN DENSITY

IN NICKEL

(MOOK 8 SHULL)

0.8

0.4

There are two essential difhculties with this explana-
tion, however. First, the presence of a reverse polariza-
tion of the conduction electrons is inconsistent with the
s-d exchange coupling discussed in Sec. IIC. Second,
as we shall discuss below, it is far easier to explain the
results of Fermi surface and magneto-optical experi-
ments on the basis of a band structure, consistent with
a positive conduction-electron polarization in the outer
parts of the Brillouin zone (or the inner regions of the
unit cell), in which the minority-spin conduction bands
at the Fermi level are higher in energy than those of
the majority spins.

A possible answer to these difficulties may be con-
nected with the importance of the fact that the wave
functions corresponding to spin 1 and $ may differ
appreciably. In an unrestricted Hartree-Fock calcula-
tion for atomic Fe in the 3d'4s' configuration, Freeman
and Watson44 found that the 4s spin density, although
integrating to zero, is essentially positive in the region
near the nucleus where the dominant d-electron polari-
zation occurs, and is negative for larger value of r. A
similar effect may very well occur for the conduction
electrons in the ferromagnetic solid, leading to the kind
of spin distribution shown in Fig. 9, in which the
conduction-electron polarization is positive near the
nucleus and negative in the outer parts of the unit cell,
the net polarization being small but positive. Therefore,
in k space the minority-spin conduction bands would
be expected to be higher in energy than the majority-
spin bands in the outer parts of the Brillouin zone, but
lower near k=0. As already pointed out, there is at
present no experimental information pertinent to the
behavior near k=0. Such effects can only be incorpo-
rated into the present pseudopotential method by
regarding J,s' d to be k dependent instead of constant.

The interpretation of the neutron-diffraction data
which emerges from the present work, and which wi11.

be discussed in Sec. VI, differs from that of Mook and
Shull. "We shall show that there is a small positive net
conduction-electron polarization predicted by the
present ferromagnetic band structure. The d-electron

g g I g g I g g g I y g I g g g
DISTANCE ~LONG [IOO]

04 08 I P I 8 DIRECTION IN A

FIG. 9. The experimental spin density in Ni along the L100$
direction in Bohr magnetons per A.' as determined by Mook and
Shull (Ref. 23).
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contribution, obtained from unrestricted atomic wave
functions, will also permit an estimate of the contribu-
tion of the paired electrons. According to the present
picture, the observed asymmetry of the magnetic form
factor at large reflections requires that 86%%uo and 14%
of the uncompensated majority spin electrons be,
respectively, in Tao and Eo orbitals, rather than 81%
and 19% as in the analysis of Ref. 23.

Recent Fermi-surface experiments' have also shed
some light on the band structure of ferromagnetic Ni
by imposing several conditions concerning the topology
of the Fermi surface. One surface must be multiply
connected as in Cu, with necks protruding in the $111j
directions. The neck radius measured by de Haas-van
Alphen experiments is 0.09 A '. The other surfaces must
be such as to yield a high-field Hall coeS.cient of exactly
unity. In terms of the type of parameter-fitting charac-
terizing the present work, the actual information ob-
tained from these experiments is rather minimal. Any
reasonable band structure agrees with the high-field
Hall-coeKcient measurements. The existence of necks
indicates that the L2 level for the majority spins is
situated just below the Fermi level. Slight shifts in the
overlap of the d and conduction bands, corresponding
to minute changes in two of the parameters (Ep and P),
seriously affect the size and even the existence of necks
at L. However, much larger changes would be necessary
if we had started with a paramagnetic band structure
having a smaller s-d separation, such as that of
Yamashita et al. ' %hen more complete Fermi-surface
experiments are available, a more satisfactory fit may
be possible using the approach of Gold" and Anderson. 4'

The important information about the electronic
structure of ferromagnetic metals to be gained from a
study of the FKE has been stressed by Ehrenreich,
Philipp, and Olechna, " Phillips, " and Cooper and
Khrenreich. ""The experimentally observed structure
in the FKE in Ni can be attributed to optical transi-
tions involving d and conduction bands for minority
spins near L. This interpretation fixes the approximate
locations of the L3 and L2' levels for minority spins at
0.24 eV above the Fermi level. " '4 These levels can be
placed correctly by a proper choice of J,z' and by a
slight adjustment in one of the pseudopotential param-

"A.V. Gold, Phil. Trans. Roy. Soc. (London) A251, 85 (1958)."B.R. Cooper and H. Ehrenreich, Solid State Commun. 2,
171 (1964); B. R. Cooper, Phys. Rev. 139, A1504 (1965); B. R.
Cooper, H. Ehrenreich, and L. Hodges, in Proceedings of the Inter-
national Conference on Magnetisrg, Xottingharl, England, 1964
(Institute of Physics and the Physical Society, London, 1965),
p. 110.

'3 H. Ehrenreich, in Proceedings of the International Colloquium
on Optical Properties and Electronic Structure of Metals and Alloys,
Paris, 1965 (North-Holland Publishing Company, Amsterdam,
1966).

~4 A similar model was proposed by G. S. Krinchik Lin Proceed
ings of the International Colloquium on Optical Properties and
Electronic Structure of Metals and Alloys, Paris, 1965 (North-
Holland Publishing Company, Amsterdam, 1966)g, but contra-
dicts that discussed in another publication: G. S. Krinchik and
E. S. Banin, Zh. Eksperim. i Teor. Fiz. 49, 470 (1965) LEnglish
transl. : Soviet Phys. —JETP 22, 331 (1966)7.

eters. An alternative model of the band structure due
to Phillips" has been shown" "to be inconsistent with
the FKE without modification.

B. Band Structure and Its Implications

In our self-consistent calculations of the ferrornag-
netic band structure of Ni, we have used the values

off =2.65 eV and J,g' ——0.6 eV. A detailed calcula-
tion indicates that the magneton number v correspond-
ing to these values is 0.58, of which approximately
97.5% is due to d-electron polarization and the other
2.5% to conduction-electron polarization. Since o is a
little larger than the experimental value of 0.55, U,ff
should be slightly smaller, close to 2.5 eV.

As mentioned earlier, it was necessary to alter several
of the paramagnetic parameters determined in Sec. IIA
very slightly in order to optimize agreement between
the ferromagnetic band structure and experiment. The
positioning of the L3 level for minority spins approxi-
mately 0.24 eV above the Fermi level, as required by
the interpretation of the FKE," necessitates a slight
raising of the level from its position in Hanus para-
magnetic bands. The small energy increase of less than
0.2 eV is easily produced in the context of the present
interpolation scheme by an increase in the magnitude
of A3 or A6 or both parameters. For simplicity we have
adjusted only A3, increasing the value obtained from
Hanus' bands by 30%. This is not unreasonable, since
some of the parameters determined from different first-
principles calculations, such as those of Burdick4 and
Segall for Cu, differ by more than this. This raising of
the L3 level does not affect the position of the Fermi
level appreciably, since the contribution of the sur-
rounding region to the density of states is small. "
Accordingly, the FKE plays an unimportant role in
the determination of the gross features of the band
structure. It nevertheless is sensitively related to the
details of the Fermi surface.

As mentioned in Sec. VA and discussed more fully
in Sec. VI, the asymmetry of the magnetic form factor
requires 14% of the uncompensated majority-spin
electrons to be in E, orbitals. The unadjusted pseudo-
potential parameters determined from Hanus's' bands
result in too few E, electrons near the Fermi surface.
This situation may be remedied in several ways. In the
absence of more experimental information concerning
the region near the Fermi surface, it is not clear which
of the parameters should be altered. Accordingly, we
have adopted the simplest alternative of increasing the
value of the crystal-field parameter 6 by 0.3 eV. This
corresponds to increasing the F»—F»' energy difference

by 0.3 eV, a change which is of the same order as the

"Phillips' statement (see Ref. 32) to the effect that such an
adjustment was inconsistent with the correct value of the
magneton number was apparently based on the supposition that
the entire band structure would be shifted by 0.2 eV. This is
clearly not required.
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corresponding difference in Segall's' (0.98 eV) and
Mattheiss's' (0.54 eV) calculations for Cu.

In addition, the value of the parameter P has been
increased by 0.3 eV, corresponding to a raising of the
F~ level at the bottom of the conduction band. This
change again is very small compared to di6erences
among various band calculations. Snow, Waber, and
Switendick" have described the origin of these differ-
ences in the relative positions of the conduction and
d bands in terms of the atomic-electronic configuration
assumed in constructing the crystal potential. Thus
Hanus' may not have employed the optimum atomic
configuration in his calculations. Wakoh and
Vamashita' have also discussed this problem and
pointed out that while Hanus obtained a reasonable
separation, his potential violated the condition of
charge neutrality in the unit cell. Another reason for
the adjustments may be connected with the necessity
of using a more realistic version of the Coulomb inter-
action than that discussed in Sec. IIC. However, the
fact that only relatively small changes in the values
of three parameters (As, 6, and P) are required in order
to adjust Hanus' calculations implies that they repre-
sent a reasonably realistic version of the expected
paramagnetic band structure.

The self-consistently calculated electronic energy
bands of ferromagnetic Ni are plotted along several
symmetry lines in Fig. 10. A cursory inspection of
Fig. 10 indicates the d-band splittings to be essentially
rigid, as has been previously supposed. In fact, how-
ever, the present effective Coulomb Hamiltonian does
lead to some k dependence in the splitting which may
be increased even further when more realistic versions
of this interaction are considered in band calculations.
The origin of this k dependence was discussed in Sec.
IIC and will now be recapitulated.

The Bloch eigenfunctions of the full Hamiltonian are
linear combinations of three types of basis functions:
OPW's, and LCAO's having T&, and E, symmetry. The
k dependence of the exchange splitting then arises from
the fact that each type of basis function is characterized
by its own splitting when the ferromagnetic interaction
)see Eq. (2.23)] is taken into account. The exchange
splittings of pure T2, and E, levels are, respectively,
0.42 and 0.10 eV in the present self-consistent calcu-
lations. The average splitting of the d bands is 0.29 eV,
but is a little larger (0.37 eV) in the neighborhood of
the Fermi surface because of the preponderance of T2,
orbitals. The exchange splitting of the conduction levels
is 0.36 eV near the zone faces and is unknown in the
interior of the Brillouin zone.

It may be of interest to compare these exchange
splittings with other recent estimates. It is now clear
that the value given by Ehrenreich, Philipp, and
Olechna' was too large, since it resulted from a simple

5'E. C. Snow, J. T. %aber, and A. C. Switendick, J. Appl.
Phys. 37, 1342 (1966).
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FIG. 10. Calculated ferromagnetic band structure of Ni along
selected symmetry lines. The dashed lines suggest the possible
lowering of the minority-spin conduction bands near the center of
the zone relative to those of the majority spins due to a reversal
in sign of the eifective s-d exchange energy (see text).

superposition of Cu and Ni bands for majority and
minority spins, respectively. However, as emphasized
in their paper, the Fermi surfaces obtained were likely
to be consistent with experiment provided the majority
d bands were filled. It will be seen that the Fermi sur-
faces of the present work are topologically equivalent to
them. The exchange splitting of the d bands given by
Phillips" (0.6—0.8 eV) is also significantly larger than
that of the present calculations, presumably due to the
fact that this result is based on relatively rough numer-
ical estimates as well as on an interpretation of the
FEE with which we disagree. ' Herring has empirically
estimated the exchange splitting to be 0.25 eV in two
diferent ways, and stated that a value in excess of
about 0.35—0.40 eV could be accounted for only on the
basis of a large electron-phonon interaction. In making
these comparisons, it should be emphasized that the
present U, fg"-", proportional to the exchange splitting,
de'ers in definition from that used by Herring": It is
necessary to multiply the value that he gives by three.
In terms of our definition, his estimate of U,gd d=1.25
eV is smaller than ours (U,s~ =2.5 eV) by a factor of
two. However, a strong electron-phonon interaction
would inhuence the magnitude of U,g in the same
manner as the exchange splitting. Some information
concerning this interaction can frequently be obtained

'7 The reasons for doubting certain features of Phillips' inter-
pretation of the FKE were discussed in Refs. 52 and S3.' This may be seen most directly by a comparison of the
criterion for ferromagnetism of Eq. (4.1) with that of Herring,
who has assumed that there are only holes in the d band of Ni
which exist in the states near X~ composed of linear combinations
of the three 72, orbitais. Thus, L g„(be„)'/(be)'7= ,'Herring's- .
criterion is that U.«e (Er))1, where q (Es) is the density of states
at the Fermi level for a single spin. Accordingly, the equation
Ueff —3Ueff " relates Herring's U, ff to the quantity U, ff of the
present work„
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FIG. 11. Selected cross sections of the majority- and minority-
spin Fermi surfaces for ferromagnetic Ni. The 6ve d bands and
lowest conduction band have been labeled 1, ~, 6 in order of
increasing energy. The existence of possible small majority-spin
hole pockets is discussed in the text.

from an experimental value for the electronic specific
heat. "We shall later make an estimate of this quantity
for Ni which shows that the results of the present
calculation account for 3 of the experimentally observed
value. If we assume the difference to be accounted for
by the electron-phonon interaction (a fact not yet
established theoretically), then the d-band width
assumed by Herring should be increased by 50%%u~ and
his new estimate of U,q would correspond to U,~d "——1.8
eU, in better agreement with the present calculation.
Our results also agree well with the value of 0.4 eV at
the top of the d band obtained by Hubbard, ' and with
Wohlfarth's" summary value of (0.35+0.05) eV.

It should be emphasized that the value of the
parameter J,~' cannot be fixed with precision because
the exact positions of the majority and minority spin
1.2' levels relative to the Fermi level are not established

by the FEE and Fermi experiments discussed in
Sec. VA. J,tt' is also presumably k-dependent, as
discussed above. Indeed, the reverse spin polarization
in the outer parts of the unit cell obtained from neutron-
diffraction experiments suggests that an unrestricted
band calculation would show the bottom of the conduc-
tion band to be lower for minority than for majority
spins. This possibility has been suggested qualitatively
by the use of dashed lines to denote the band structure
near k=0 in Fig. 10.

Table III shows the distribution of majority and
minority spin electrons among d and conduction levels
and their respective contributions to the magneton
number. We shall make use of these values in Sec. VI
to compute the neutron magnetic form factor. It should

be noted that there are only about 4.7 majority-spin
d electrons, not the 5.0 usually assumed. This reduction
results from the mixing of d wave functions into the
unfilled majority-spin conduction bands. The reason
for the relatively large number of conduction-band
electrons has already been discussed in Sec. IV.

Figure 11 shows selected cross sections of the Fermi
surfaces obtained from the ferromagnetic band struc-
ture of Fig. 10.The majority spins have a single electron
surface with necks protruding along the L111$ direc-
tions. The minimum neck radius of =0.07 A ' falls
within the range of experimental values reported by
Joseph and Thorsen. ' The minority spins have two
electron surfaces, plus hole pockets in two lower bands.
There are majority-spin energy levels at I and 8" that
are very near the Fermi level, as may be seen in Fig. 10.
The exact location of these levels with respect to the
Fermi level cannot be precisely ascertained, since only
very small changes in the pseudopotential parameters
are necessary to place these levels slightly above or
below the Fermi energy. It is, therefore, uncertain
whether or not there are hole pockets in the majority-
spin bands. For the same reason, the hole pockets in
the minority-spin bands may be displaced somewhat
from the positions shown in Fig. 11. Until a more de-
tailed experimental mapping of the Fermi surface is
available, it is not possible to fix the exact shapes of
the various surfaces.

The calculated density-of-states curves for ferro-
magnetic Xi are shown in Fig. 12. The contributions for
each spin are shifted by about 0.3 eV and resemble,
but are not identical with, those corresponding to
paramagnetic Ni shown in Fig. 4. The differences in
shapes arise from the k dependence of the exchange
splitting. The large peak near the top of the d-band
complex is somewhat higher than that for the para-
magnetic state because of the adjustment made in the
value of h. The approximate densities of states per
atom at the Fermi level are 22.6 states/Ry for the
minority-spin electrons and 4.5 states/Ry for the
majority-spin electrons, resulting in a total of 27.1
states/Ry. This value corresponds to an electronic
specific heat of 1.12X 10 ' cal/mole deg', which is about
—', of the experimental value" of 1.68)&10 ' cal/mole
deg'. Because the electron-phonon and electron-electron
interactions are known to inAuence the electronic
specific heat significantly, " this sort of discrepancy is
not surprising. The implication of the electron-phonon

TABLE III. Distribution of majority- and minority-spin
electrons in ferromagnetic Ni.

"A. M. Clogston, Phys. Rev. 136, AS (1964); N. W. Ashcroft
and J. W. Wilkins, Phys. Letters 14, 285 (1965); W. A. Harrison
(Ref. 19).' J. Hubbard, Proc. Phys, Soc. (London) 84, 455 (1964).

K. P. Wohlfarth, in ProceeChrtgs of the INtermatt'owat Coeferertce
on Magnetism, Sottingham, I'ngland, 1964 (Institute of Physics
and the Physical Society, London, 1965l, p. 51.

n(T2g)
n (+g)
total d
n(s)
total

Majority

2.82
1.88
4.71
0.58
5.29

Minority

2.34
1,80
4.14
0.57
4.71

Difference

0.49
0.08
0.57
0.01
0,58
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interaction on the magnitude of U,g has already been
discussed.

The present calculations may be used to predict the
high-field band susceptibility X& at T=O'K. In the
present theory, the usual formula for the susceptibility
per atom in the collective electron theory of ferro-
magnetism" is replaced by

pg 1 1 1

Xd 4 rit (Ev) r)g (E,v)
s ~«& Zv +std&

VI. MAGNETIC FORM FACTOR OF Ni

This section is devoted to a discussion of the neutron
magnetic form factor in band-theoretic terms and its
calculation for Ni using the ferromagnetic band struc-
ture of Sec. V. A formal treatment of this problem
along band-theoretic lines for a simplihed model has
been previously given by Izuyama, Kim, and Kubo. "
However, to our knowledge, no attempt at numerical
application involving a realistic band structure has been
made previously.

The neutron magnetic form factor f(x) is de6ned as
the ratio of the magnetic scattering amplitude for a
given scattering vector x to that for x=0. It may be
written as a sum of three contributions:

—-,'J«r' d(n, t —n, t'+n, g
—n, g'),

where rjt (Ev) and r)q(Ev) are the densities of states per
atom of t and J, spins, respectively. In order to de6ne
the quantities n„and 8„, we note that in applying a
large magnetic field to a ferromagnet, the populations
of the orbitals po. will change by amounts 6e„,. In terms
of this change, 8„=Ious„,/on I, where bts=be, t++„8n„t

8e,—& P„—he„& Simil.arly, 8„=I&4,/bnI. On the
basis of the present calculations, a value for X~ of
0.8X10 ' emu/cm' is predicted for Ni. This is consider-
ably smaller than the value of 4X 10 ' emu/cm'
estimated by Herring et al. ,

"but is not negligible as
Freeman et al. have suggested. '4 The smallness of X~ is
due to the low density of states of majority-spin elec-
trons. It should be noted, as pointed out earlier in con-
nection with the description of the Fermi surfaces, that
there may be hole pockets in the majority-spin bands.
The presence of these holes would increase the value
ri(Ev) for majority-spin electrons, although this increase
would not be very large if the hole pockets were small.
Such an e6ect would increase the claculated value of X~.

f,v;„(0)= 1. The core itself has a net spin of zero
I

which
is seen to imply that f„„,(0) =Og, but the slight differ-
ence due to exchange effects in the radial distributions
for up and down spins causes some scattering by the
core, which leads to a small, but nonvanishing f„„.
This term has been discussed by Watson and Freeman. "
The orbital magnetic moment gives rise to a form factor
f„b for which f„b(0)=1. This quantity has been
discussed by Blume. "

The term f,v;„(x), which makes the dominant contri-
bution to the total form factor, is given by ft (x)—f& (x),
where

f.(x)= (Sv)-' e'"'p. (r)dsr, (6.2)

and v is the magneton number. If p, (r) is the periodic
electron density of spin o., then f, (st) vanishes unless x
is a reciprocal lattice vector.

The spin density can be found from

(6.3)

f.(x)= (1Vv)
—' P.g.„. d'r e'"'

X{Pxx a.x.*(k)a.x.(k)

X(k+ K, o. ; core+dj r)(r I k+ K', o; core+d)

+2 Re Px„a„x.~(k)a„„.(k)

X(k+K, o; core+dIr)(rIkpo. )

+P„„a.„.*(k)a„„.(k)(kpo. I r)(r I
kp'~)), (6.4)

where Bl,„,(r) are the Bloch functions which are given
approximately by Eq. (2.3). The adequacy of the func-
tions (2.3) for calculations of the charge density has
already been discussed in Sec. III. However, in order
to make the following treatment formally correct, let
us begin with the rigorously correct Bloch functions,
whose conduction-band portion contains explicit orthog-
onalization both to d and core functions, and postpone
approximations until later. To denote this more ex-
tended orthogonalization, we replace the symbol "d"
in the OPW (r I

k+ K; a.,d) by "core+d."
Substituting Eqs. (2.3) and (6.3) into (6.2), we

obtain"

which can be written schematically as
f(x) = (2/g) f v,„(x)+L(g—2)/gjf„b(sr)+ f„„(~), (6.1)

where g is the spectroscopic splitting factor. Further,
f,v;„ is the form factor for the spin magnetic moment of
electrons outside the core, normalized so that

"E.P. Wohlfarth, Phys. Letters 3, 17 (1962).
+ T. Izuyama, D. J. Kim, and R. Kuho, J. Phys. Soc. Japan

18, 1025 (1963).

f OPW-OPW+f OPW-d+. f d-d (6.5)

6 M. Blume, Phys. Rev. 124, 96 (1961}.
65 It should be noted that in Eq. (6.4) and later equations, the

sums on 1 extend over all occupied states in the Brillouin zone.
Thus the sums over K and K' must be taken to range over the 15
different reciprocal lattice vectors appropriate to the OPW's in
all parts of the zone, not just the four values included in Sec. IIA
for the 1/48 of the zone in which the calculations frere carried out.
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The first term of Eq. (6.5) becomes, upon use of the explicit expression for the OPW's, Eq. (2.5),

f. ' ' (x)=(&r) 'Z-~.«Exx o'-x.*(k)(s-x"(k)(&~x&~x) '"
X{(k+ K, O'

I k+ K'+x, o')—p, [(k+K, o
I
kro)(k'ro

I k+ K'+sr, a)+ (k+ K—x, o
I
kro )(kro

I
k+ K', o')j

+g„(k+K, o
I
kro')(kro'I e'"'I kr'o')(kr'o'I @+K',o')), (6.6)

f f PW-PW+ f d-d (6.8)

In the preceding treatment, the PW terms have been
treated as though they were really part of a complete
OPW conduction-band wave function. As emphasized
in Sec. III, however, the a„K, can be regarded as con-
taining at least some of the features resulting from the d
and core function orthogonalization because the pseudo-
potential parameters were determined to make the
energy eigenvalues conform to the actual band struc-
ture. Thus some part of the contribution from terms
that were apparently entirely neglected above is un-

where the index r refers to core and d functions and
K),x is defined in Eq. (2.6).This term may be estimated
relatively roughly since the total contribution of
f,opwopw to f,o(„ is not very great, the coefficients

a„K,*a„K,being small for the energy region of interest.
In addition, if the matrix elements in this equation were
the same for both spins, the coefficient of these terms in
the exPression for f,n;„would be a„xf*a„x.f —a„xf,*(s„xi,
which is particularly small, since there is little polariza-
tion of the conduction band. We note that all but the
first term in Eq. (6.6) may be neglected since the re-
maining ones involve two factors of the orthogonaliza-
tion form (k+Klkr) and thus are expected to contri-
bute little.

As may be seen from Eq. (2.6), the normalization
factor (X),xX),x.) '(' is relatively close to unity, even
when core terms are included. It will be assumed to
have this va1ue here. The pure conduction-band part of
f, is then approximately given by the plane-wave (PW)
components:

f opw-opw(x) f pw-pw(x)

= (1V )-' P„„,.Px a„.*(k)a. .(k)6, , (6.7)

The second term in Eq. (6.5), fP Pw d, can be analyzed
in a manner similar to that used for f,opw opw All of.
its component terms are found to include one factor of
the small coefficient a K and one factor of the relatively
small integral (k+Klkr), as opposed to two of such
factors in each of the omitted terms of f,opw opw. While
the cross term f,o~w, therefore, should not be large,
the justification for neglecting it is not nearly so clear
as that for the omitted terms of f,oPw o w. It might be
mentioned, however, that the portion of this term which
is expected to be dominant is zero at x= 0, and drops
off rapidly for large x, while a very rough estimate
indicates that it has its maximum eGect in the vicinity
of the 6rst nonzero value of x.

In light of the previous approximations, Eq. (6.5)
becomes

f"(~)=f(.)"(~)+f(.)"(~) (6.11)

"R.J. Weiss and A. J. Freeman, J. Phys. Chem. Solids 10,
147 (1959).

'7 It should be noted that Kq. (6.10) contains a small incon-
sistency. The quantities (jo) and (j4) depend on o through the
radial atomic functions f~(r) when they are obtained from an
unrestricted Hartree-Pock atomic calculation. As a result, there
should also be slight differences between the parameters Eo, 6,
A&, , A, for t and J, spins which presumably affect the o„„,lk)
Jut little, and have accordingly been neglected„

doubtedly present in our numerical results, and the
approximations, accordingly, especial1y concerning

f opw d, may not be as severe as they seem. In this
connection, however, one should bear in mind again
that the predominant contribution to the magnetic form
factor arises from f,d d which can be calculated without
these difhculties. It should also be mentioned that for
very 1arge values of x, neglect of the core orthogonali-
zation will not be valid. The contribution of these
terms, though probably not large, drops oB more slowly
than that of the other terms as x increases, and hence
will be relatively more important.

In order to simplify f,d d further, we note that sym-
metry arguments show that Q„),„,a „,*(k)a„„,(k) =0
for p, &fi'. Hence the second term in Eq. (6.8) can be
written

f."'(x)= (1Vr)-' Q„),.„g„la„„,(k) I'

x(kfio
I
e*"'Ikpo). (6.9)

With the notation (j„)„I"= fs"[rf& (r)$'j „(((r)dsr, this
term can be put in the form":

f"(~) = (A") '{L(js).""—A(hk~)(&4).""j
x p.» ...p„=i'

I
(s.„.(k) I'

+[(j ) "+-'A (hk~)(j )
x z.....&„=' Io.„.(k) I &, (6.1o)

where

A (h8) = (h'+k'+l') '[h'+k'+l' 3(h'k'+h'P+—k'l')].

Here h, k, l are the Miller indices of the scattering plane.
The terms involving (js)„comprise the spherical part of
the form factor, while those involving (j4)„, which
depend on the direction of x, comprise the aspherical
part '~

In terms of the occupation numbers

fs(Ts,o) =E-' P„),.„P„=isIu.„.(k) I'

~(&go)=& '2:-Z,=4s l~;.(k)l'

of electrons of spin 0 in T2, and E, orbitals, respectively,
the d part of the form factor may be written as
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where it is convenient to write the spherical contribution
in the form

fc &
'(&) = v 'C~(2's t) —~(Ts &)1(jo)

+.-I (~, )- (~. )3(~)."
+

+ 'L ( ~ )1Hjo)."'—(jo). "3 ( )

and the aspherical contribution in the form

fi.)~ d(x) = v '—A (h—kl) fe(Ts,t) n(T—s,&))(j4)„~rot

+ s v
—'A (hkt)Le(&, t) —e(E,l)](j4)pot

—v
—'A (hkl) e(Ts,p) L(g4), rsgt —(j4).rr gl j
+!-'A(hkI) (~, )L(~ )."-(j)."l. (6.»)

In Eqs. (6.12) and (6.13) the majority and minority
spins have been represented by f and 1, respectively.
The contributions of unpaired majority-spin electrons
are given by the 6rst two terms in each of the Eqs. (6.12)
and (6.13), and the remaining terms represent the con-
tributions of paired electrons. As stated previously, it
is reasonable to expect the contribution of unpaired d
electrons to be dominant; however, the contribution of
the paired electrons is not negligible, as we shall show.

The magnetic form factor has been calculated from
Eq. (6.1) and compared in Fig. 13 with the experimental
results of Mook and Shull. "The normalized core polari-
zation form factor f„„(x) is that of Watson and
Freeman. 4' The orbital contribution ((g—2)/g) f„b(sr)
has been computed using results given by Blume. "The
calculation of f~ ~(x) from Eqs. (6.11)—(6.13) has been
carried out using the occupation numbers given in
Table III and values of (js)„& and (j4)„& comPuted
from unrestricted Hartree-Fock atomic functions for a
spin-polarized Ni++ ion in a cubic 6eld. ' The Ni++ re-
sults constitute a better choice than corresponding ones
for Ni+, whose 3d' configuration more nearly approxi-
mates that present in the crystal, since the Ni++ wave
functions better approximate the contracted wave
functions near the top of the d band.

The contribution of the paired electrons, as computed
from the last two terms in Eq. (6.12), is indicated by
the solid curve in Fig. 13.Although in principle there is
an aspherical contribution from these electrons, as
indicated by the last two terms in Eq. (6.13), its
magnitude is actually never larger than 0.001 and may
be neglected. The unrestricted Hartree-Fock atomic
functions of Watson and Freeman, ~ which form the
basis functions for the present calculations, are con-
tracted for majority (l) spins relative to minority (l)
spins. Thus the majority-spin form factor is expanded
relative to that of the minority spins and the difference
(je),»—(js)„&~ is positive, except at large reflections,
where it is small in any case. In our calculations, there-
fore, the paired electrons make a positive contribution
to the spherical part of the form factor, as may be seen
from Eq. (6.12).
"A. J. Freeman (private communication).
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The agreement of the calculated form factor with
experiment as shown in Fig. 13 is good except at the
three lowest reflections. At large reflections, the main
contribution arises from f&,&

. The fraction of un-
paired majority-spin electrons in E, orbitals must be
close to 14% if such good agreement is to be obtained,
so long as the net conduction-electron polarization is
not too large. This point was discussed in Sec. V, where
it was shown that this fraction depends sensitively on
the band structure and should be regarded as input
information. Accordingly, the present calculation of
the magnetic form factor is somewhat circular in that
the parameter 6 has been adjusted in Sec. VB to secure
agreement with its aspherical part. However, this very
fact again emphasizes in very specific terms how
neutron-diffraction results may be used directly in
connection with band (in contrast to pseudo-atomic)
representations of the electronic energy levels of solids
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FzG. 13. Comparison of calculated magnetic form factor of Ni
with experimental results of Mook and Shull (Ref. 23). Solid line
indicates contribution of paired electrons obtained from un-
restricted Hartree-Fock atomic wave functions of watson and
Freeman (Ref. 42).
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FzG. 12. Densities of states for minority- and majority-spin
electrons in ferromagnetic Ni. The lower parts of the conduction
bands are only shown schematically because the exact relative
positions of the F& levels corresponding to majority and minority
spins are uncertain.
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to obtain extremely fine adjustments of the d-band
complex.

There are several reasons why discrepancies may be
expected to occur between the calculated and measured
values of the form factor. One reason is that unrestricted
conduction-band wave functions have not been used in
the present work. It was pointed out in Sec. V.A that
the spin density of the conduction electrons may be
expected to vary spatially, and even change sign,
presumably giving rise to the negative spin density in
the outer parts of the unit cell indicated in Fig. 9.
Another reason is that it is difficult to obtain a good
estimate of the contribution arising from paired elec-
trons. This contribution depends crucially on the exact
form of the unrestricted d-band wave functions over
the whole range of d-band energies. Since LCAO's are

good only near the top of the d-band complex, it is not
really correct to use them throughout the d bands, as
we have done in calculating the form factor shown in

Fig. 13. It will be noted from Fig. 13 that the contribu-
tion of paired electrons is most important at the lower

reflections, where the discrepancies between the calcu-
lated and measured form factors are largest. In addition,
it should be remembered that there are several terms in
the form factor that have been neglected but which may
contribute appreciably. In particular, the OPW-d terms,
as mentioned above, appear to be largest in the vicinity
of the first few reflections, although their magnitude
has not been estimated.

/)Vote added iri, Proof. Further light has recently been
shed on the Fermi surface of ferromagnetic Xi by the
independent de Haas —van Alphen studies of Tsui and

Stark" and of Stone and Gold. ' Their data has con-
firmed the existence of the necks at L 6rst observed by
Joseph and Thorsen. ' The new oscillations found by
these experimenters" ~' have been interpreted in terms
of hole pockets at X arising from the position of the
X5 level. These pockets are shaped like fluted ellipsoids,
as would be expected from the present band structure.
However, their dimensions are roughly 15 j~ greater
than those which may be read off Fig. 11, implying that
the X5 level in Fig. 10 is approximately 0.003 Ry too
low. No (conclusive) evidence has been found in the
de Haas-van Alphen data for hole pockets at X arising
from the X2 level. The absence of these pockets would

imply that X2 is below the Fermi level, or roughly
0.005 Ry below its position in the present calculations;
this would require some minor adjustments in the
parameters of the interpolation scheme. There does not
appear to be any conclusive evidence regarding the
presence or absence of minority hole pockets at L,
(although Tsui and Stark" have reported data points
which might correspond to them). We are grateful to
A. V. Gold and D. R. Stone for discussing their results
with us prior to publication, and to Dr. G. Weisz for
helpful comments. j
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