
PHYSICAL REVIEW VOLUME 152, NUMBER 1 2 DECEMBER 1966
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The properties of a photon counter functioning by stimulated emission —rather than by absorption —of
photons in an external Geld are examined. A possible scheme for such a quantum counter is described, and it
is shown that correlation measurements performed with a number of quantum counters correspond to anti-
normally ordered products of Geld operators. These correlations, unlike the normally ordered ones, are
always positive deGnite and depend explicitly on the number of radiation modes per unit volume to which
the counter is coupled. It is shown that the antinormally ordered correlations carry useful information about
the Geld only when the average photon occupation number per mode is large. A general expression for the
probability that the quantum counter registers n counts in a certain time interval is derived and is shown
to be related in an interesting way to the corresponding expression for the photoelectric detector. The
variance of the probability distribution is evaluated for some simple states of the Geld.

1. INTRODUCTION
' "N the quantum theory of optical coherence the con-
~ - Gguration space creation and annihilation operators
At(x) and A(x) are used a great deal. Of all functions of
these operators, the normally ordered ones have hitherto
played a preferred role. The justification for this pre-
ferred role rests on the fact that measurements of the
6eld are normally carried out with photo-electric detec-
tors, and that the rate of delayed multiple coincidence
counting of E photoelectric detectors exposed to the
field at the space-time points x'1, x~ is proportional to
the expectation value of the normally ordered product' '

1't" "&(xt . xg)
=(:At(xr) A(xt) At(xtv) A(xsr):). (1)

Here '. 0: denotes normal ordering of the operator O.
The functions Ft~ ~&(xt, ~,xsr) therefore describe cor-
relation properties of the 6eld with respect to photo-
electric measurements. Some properties of both the
alternating operator products (At(xt) A(xt) At(xsr)
XA(xsr)) and of the anttnormally ordered operators
("At(xt) A(xt) ~ At(xsr) A(xtv)") ("0"stands for anti-
normal ordering of the operator 0) have also been
examined, ' ' but the physical signi6cance of the latter
has not so far become very clear. This is the problem we
shall examine in the following.

Now, in principle at least, there exists an alternative
method of measuring electromagnetic Gelds, in which
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the photo-electric detectors are replaced by atomic
counting devices whose mode of action resembles the
operation of the laser amplifier. These counters function
not by absorption but by stimulated emission of pho-
tons. For convenience we shall refer to them as quantum
counters, but their operation is somewhat diferent from
the atomic counting devices described by Bloembergen, '
Sasov et el.,"and others, which are often called quan-
tum counters. A possible form of quantum counter will

be described in outline. It will be seen that correlations
of the electromagnetic Geld which are measured with

the help of quantum counters correspond to expectation
values of antinormally ordered operators of the form

f't"»(x],xn)
=("A(x,) At(x, ) A(xrr) At(xs)"). (2)

Superficially there appears to be a certain symmetry
between the two correlations I'&~ ~& and I'&~ ~), and be-
tween the two kinds of measurement. There is however
an important asymmetry connected with the fact that
emission, unlike absorption can occur spontaneously,
or in the presence of a vacuum 6eld. As a result, quite
apart from any practical difhculties connected with the
construction, quantum counters are not useful for meas-

uring a large class of Gelds, and we shall see that this
fact is reQected in the properties of I'&N N). Moreover,
whereas the photo-electric detector can, at least in princi-

ple, respond to an unlimited band of frequencies of the
radiation Geld, the quantum counter can respond only
to frequencies determined by its own atomic-energy-
level structure. It follows that the number of radiation
modes p, of the field in a normalization volume L'
which are coupled to the quantum counter is in princi-

ple finite, and this number appears explicitly in expres-
sions for correlations in terms of antinormally ordered
operators.

We shall see that, unlike normally ordered correla-
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tions, the antinormally ordered field correlations are
always positive definite. This fact is also reQected in the
nature of the particular phase-space functional which
allows the quantum correlations to be expressed in the
same form as the classical ones. ' ' Nevertheless this
functional is not the classical probability functiona1.
In the classical limit, when the average photon occupa-
tion number per mode becomes very large, F&~ ~~ and
I'&N ~) become equal, and the results of measurements
performed with quantum counters and photodetectors
become indistinguishable. As we shall see, there is an
interesting correspondence between the probability
distributions of the counts registered by photodetectors
and quantum counters, although the distributions are
very diGerent in general.

2. MEASUREMENT OF ANTINORMALLY
ORDERED CORRELATlONS WITH

QUANTUM COUNTERS

Consider an atomic system having an energy-level
structure as indicated in Fig. g. Here "a" represents a
terminal energy level and "b" a metastable level which
is radiatively coupled to a broad energy band "c,"
corresponding to a very short-lived state. We suppose
that the atomic system will make spontaneous radiative
transitions from c to the terminal level a. It wi11 be
noted that some features of the energy-level scheme of
Fig. 1 bear a superGcial resemb1ance to the energy-
level structure of ruby as used in the laser.

Let us suppose that we have such an atomic system
prepared in the state b and located at the point x at
time t in a radiation Geld. Although the methqd of pre-
paring the state will not concern us here, we may assume
that there exists a broad energy band "d"above b, and
that the system will make nonradiative transitions from
d to b. The state b can then be prepared beforehand by
the usual method of optical pumping from the ground
state to the level d. We suppose moreover that the in-
terval (E& E,)/Ac, defi—ned by the energy levels

Eq and E„ is of the same order as the wave num-
ber of a typical mode of the external Geld, and that
E,—E,&Eg—E,.

Under the inQuence of the external Geld the system
may be induced to make a stimulated transition to the
energy level c with the emission of a photon, and, since
level c is very short lived, it will decay spontaneously
from c to u with the further emission of a photon. Since
E,—E, is always greater than E~—E„the latter photon
is clearly distinguishable from the former, and a neigh-

boring transparent photodetector with a sufficiently
high photoelectric threshold will register the second
photon alone. The combination of the photodetector
with a large number of such atomic systems evidently
acts as a quantum counter for the external Geld, func-
tioning by the stimulated emission of radiation. We note
that the photodetector here plays an auxiliary role only,

&'h&'AiV, Y C

Frc. i. Energy level scheme for a quantum counter. The counter
responds to frequencies within the interval (E&—E. ; )/h to
ling

—E, ,)/h.

and that the external Geld is actually "measured" by
means of the Grst induced transition.

Just as A(x, t) is the operator corresponding to the
photoelectric measurement of the Geld at the space time
point (x,t), so the "observable" which most nearly cor-
responds to a measurement of the Geld with the quan-
tum counter is the photon creation operator At(x, t)
defined, by

At(x, t) = (1/I t ) g dq, ,teq, ,*expl —i(k x—ckt)j. (3)
fh, e]

Here L' is the normalization volume, d~, ,~ is the crea-
tion operator for a photon of wave vector, spin mode
k, s, sq, , is the unit polarization vector, and the symbol

l k,s] denotes the set of all modes of the field to which
the quantum counter responds. If E" and E' are the
upper and lower bounds of E~—E„ then Ack is con-
strained to lie between E" and E'. There may also be
constraints on the polarization s determined by the
induced dipole moments of the atomic system making
up the quantum counter, although these constraints
disappear if the counter contains a large number of
randomly oriented atomic systems. For simplicity we
assume from here on that all the occupied modes of the
external radiation Gelds in which we are interested are
modes to which the counter responds.

Now consider a quantum counter which is allowed to
interact with a radiation Geld in a state represented by
the density operator p at the space-time point x. H

p has a diagonal representation in terms of a complete
set of states lsi) in the form

p=Z p(») I»)(»l

and
l sm) is any possible final state of the field, then the

probability that a count will be registered at x is pro-
portional to

Q Q p(si) l
(s2 l

At(x)
l
si) l

',
SQ Sg

where the sum is taken over the complete set of all
possible final states ls2). By expanding the square we
find, by an argument similar to that given by Glauber, '



440 L. MAN DEL

that

2 Z p(»&l&»IA'(x) I»&l'=2 2 p(»&&»IA(x) I»&. &»IA'(*) I»&
8Q 8$ 8$

=g p(si)&srlA(x) At(x)l»)=Tr[pA(x) At(x)j. (5)
81

Jh.

Thus the antinormally ordered operator A(x) At(x) here plays the role of an intensity operator with respect to
measurements carried out with the quantum counter, just as At(x) A(x) behaves as an intensity operator with re-
spect to photoelectric measurements, when the sum in (3) is taken over all modes of the 6eld to which the quantum
counter responds.

In a similar way it may be seen that the joint probability that counts will be registered by E quantum counters
at the space-time points x~, x2, ~,x~ is proportional to

Q Q p(s, )l(s, lA (x,) "A (x~)ls,)Is=++ p(s,)(s, lA(x,)" A(xN)ls, ) &sslAt(x, ) At(x„)ls,)
8Q 8]. 8$ 8Q

=P p(sq) &srl "A(xq) At(xq) A(xsr) At(@sr)"
I sr) =Tr[p"A(xr) At(xr) A(x~) At(xsr) "j. (6)

81

Evidently these antinormally ordered correlations will

bear a similar relation to measurements with quantum
counters, as do the more familiar normally ordered
correlations to photoelectric measurements.

The expressions in (5) and (6) are proportional to the
differential counting probabilities. The constants of
proportionality depend on the matrix elements for the
atomic transition and the density of atomic states. When
the Geld is in the form of quasimonochromatic plane
waves incident normally on the detector, as is usually
the case in practice, it may be shown by an argument
similar to that used in connection with the photoelec-
tric detector, "'3 that the expectation value of the
number of counts n registered by the quantum counter
of sensitive surface area S in a time interval from t to
t+ 7 is given by

where p, is the number of modes of the set [k,sj. With
the help of this relation we can express Eq. (7) in the
form

&n)=nc (At(x t') A(x, t'))+—dsxdt'

and, since the external Geld is in the form of plane waves,
this may also be written

&e)=n (At(x, t') A(x, t'))+—d'x,
I-'

(9)

where the volume 'U of integration is in the form of a
cylinder whose base is the sensitive surface S of the
quantum counter and whose height is cT. It is con-
venient to introduce the operator

t+T

&rs) =nc (A(x, t') At(x, t'))dsxdt'.
S t

(7)
8g, (= At(x, t) A(x, t)d'x, (10)

o. is a dimensionless parameter involving the properties
of the quantum counter, which we may regard as a
measure of the quantum efhciency of the process. The
calculation leading to Eq. (7) is a standard calculation
based on perturbation theory, with the usual electro-
magnetic interaction Hamiltonian, and will not be
given here.

We can express this result in another form by in-
troducing the commutator of A(x, t) and At(x, t). From
Eq. (3) and its Hermitian conjugate, together with the
well known commutation rules obeyed by the dj...
operators, we Gnd

[A(x,t), At(x, t)j=—P (ek, ' e+,.e)
L,~ [k,8]

=p/L',

~L. Mandel, E. C. G. Sudarshan, and E. Wolf, Proc. Phys.
.Soc. (London) 84, 435 (1964).

~' P. L. Kelley and W. H. Kleiner, Phys. Rev. 136, A316 (1964l,

which has recently been shown'4 to play the role of a
photon-number operator in conGguration space, pro-
vided the linear dimensions of 'U are all large compared
with the wavelengths of all modes of the set [k,sj.
This condition is almost always satished in practice
and, with the help of Eq. (10), we can express (9) in the
simple form

(I)=n&"tip, ,"&.

I or comparison we note that the expectation value of
the number of counts registered in the same time by a
photoelectric detector having, the same geometry is of
the form n(t1g, ~). We see from Eq. (9) that the rate of
counting of the quantum counter is expected to exceed
that of the photodetector. The difference depends on
the number of modes of the field p'0/Ls corresponding to
the volume '0, and will be recognized as due to spon-

"L.Mandel, Phys. Rev, 144, 1071 (1966).



CORRELATIONS AND QUANTUM COUNTERS

SI 6+

0!gc ("A(x1,t1) ~

&&At(x1,t1) A(xN, IN). At(xN, IN)")

taneous transitions'5 of the atomic system shown in
Fig. I from energy level b to level c. The rate of counting
due to spontaneous transitions may be extremely high,
unless the counting surface is very small and the opti-
cal bandwidth Av centered on frequency v0 to which the
counter responds is very small also. The ratio (II1/L')
is of order 8&r& 01hv/c'. These extra counts are of course
und, esirable from the point of view of a measurement of
the Geld. , but they are inevitable in a counter function-
ing by emission I'RtheI' than by Rbsorption of photons.
As can be seen from Kq. (9), the counts due to spon-
taneous emission persist even in a vacuum Geld.

Corresponding to Kq. (6), it can be shown that the
correlation of the numbers of counts e~, n~, , ts~
registered by S separate quantum counters in time
intervals f1 to f1+T1, t1 to t1+T1, etc., is given by

and. moving the "8g~,t~" operator repeatedly to the
right, we can express the Eth order antinormal products
of the 8g, t operators in terms of ordinary products.
However, in order to make the transformation we need
to know the commutator of "Ru, &" or 811,& and A(x, t').

The properties of 6g, & have recently been examined in
some detaH, '4 and it has been shown that, with the pre-
viously mentioned restriction on the linear dimensions of
'U, the commutator

g dg, ,eg, , exp[i(k. x—ckt)jI S~2 fk a]

where the function

U[x Of =1 if x lies within the volume "U,

=0 otherwise.

In particular, if (x,t) and (U, f ) are disjoint in the sense
that U[x—ck(t—t')/k; "Uj=0 in Eq. (15) for all modes
of the field, then

)(d $1 ' 'd SNdf1' ' 'de. (12) [A(x,t),811,, j=0. (16)

3. ANTINORMALLY ORDERED
CORRELATIONS OF ng, g

%e shall now examine the antinormally ordered cor-
relations of the type appearing in Eq. (13), and express
them in terms of moments of the 8g, t operators. By
writing Eq. (13) in the form

("&11,& &11N.&N")

=E" Z (A;,(x1,11)

' ' '+iN &(XN 1&~N 1) ~'ON, tN +&-N 1(X—N 1&—~N 1)-—-
~ .A;,t(x1,t1))d'x1' d'xN 1 (14)

'~See, for example, %. H. Louisell, EeAuboe end Poise iN
Quantum E/ectromcs (MeGravv-Hill Book Company, Ine. , New
York, 1964), p. 189.

For disjoint space-time regions, such that all events
registered by any one counter have a space-like separa-
tion from all events registered by any other counter,
this may Rlso be wI'ltten

(N1 NN)=a1 .nN("8u, , &, 611„,&„"), (13)

where the volumes 'U~, 'U2, ~ 'U~ are defined as for Eq.
(10). Thus, correlation measurements carried out with
disjoint quantum counters are expressible in terms of
antinormally ordered products of the ng, t operators,
just as similar measurements with photoelectric detec-
tors are expressible in terms of the corresponding nor-
mally ordered products. However, when the disjointness
condition is not satisfied, the correlation Eq. (12) can-
not be expressed in such a simple form as Eq. (13).

On the other hand, when (x,f) is conjoint with (U,t'),
in the sense that U[x—ck(t—t')/k; 'Uj=1 in Eq. (14)
for all modes of the Geld, then

[A(x,t),1411,, ) A(x, t) . (17)

For photo-electric detectors illuminated normally by a
plane wave radiation Geld, the disjointness condition
has been shown to apply whenever the detectors are
located side by side. '4 However the same is not true for
quantum counters, since the spontaneous emission may
generate photons in modes which were previously un-
occupied. Only if the diGerent counters are separated
suSciently so that the diBerent measurements do not
influence each other does Kq. (16) apply. Equation (17)
has no immediate relevance to the quantum counter,
since the correlation (12) is not expressible in the form
(13) when the regions are not disjoint.

We can now make of Eqs. (8) and (16) together with
their Hermitian conjugates to move the
operator in Kq. (14) repeatedly to the right. We then
Gnd

= ("811,, &, 611N, ,&„,"(AuN&„+(p'UN/L, ')j), (18)

when the disjointness condition applies. Since Eq. (18)
holds for any state of the Geld, it can be regarded as a
recurrence relation between the operators themselves,
and repeated application of the relation then leads to

when the disjointness condition applies. This equation
may be compared with the corresponding equation for



normally ordered products of the 6g, & operators, '

{:au,„.au„, , )={au,,„"6u„,, ). (20)

Although, as we have pointed out, the correlations
(12) are not expressible in the form (13) in general, it is
nevertheless of some interest to examine the nature of
Eq. (14) when all the regions (Qt, tt), , ('UN, 1~) coin-
cide. We can again move the "A, ~" operator repeatedly
to the right, this time with the help of the commutator
(1/) for conjoint regions. We then find that

{"'P,P') ={"6,P "'L6, +Q'0/L, ')+Z—1j) (21)

and this may again be regarded as a recurrence relation
between the operators. &Repeated application of the
recurrence relation then leads to

('%g, ,"")=((Bg,,+ )(6g, ,+ +1)

pU
~ ~ 8g g S—1 22

I8

This may be compared with the corresponding relation
for normally ordered operators"

{:Su,P:)={8g,((Rg, )—1) (8g, (—X+1)). (23)

It will be noted that successive factors in Eq. (23) are
decreased by unity, whereas the ones in Eq. (22) are
increased by unity. The difference may be regarded as a
reflection of the fact that normally ordered correlations
correspond to photon absorptions, whereas antinor-
mally ordered correlations correspond to photon
exQlsslons.

A number of interesting properties of the antinor-
mally ordered. correlations can be seen by inspection of
Eq. (19). Since the 8u, , operators are non-negative
definite, '4 and since each of the factors on the right-
hand side of Eq. (19) contains a positive number, it
follows that these antinorma11y ordered correlations are
always positive definite. This property is to be compared
with the property of the normally ordered correlations
given by (20), which vanish for states having fewer
than Ephotons. The difference can again be understood
in terms of the behavior of the quantum counter, for
the spontaneous emission ensures that the results of
counting correlation measurements will always be
positive.

Examination of Eq. {19)also shows that, if the num-
bers p'U/J. ' are very large, the correlations may be-
come very insensitive to the state of the 6eM. Let us
suppose that the di6erent volumes 'U~, 'U2, etc., are com-
parable, and that (6u, ,,) m for anyi. Now p'0/I. ' will
normally be a large number, and it is clear from inspec-
tion of Eq. (19) that the correlations are very insensitive
to the state of the field. when m((y'U/I-', for the field
is then too weak to produce many stimulated transitions
of the atomic system in the quantum counter. The

counts registered, by the quantum counter will be very
largely due to spontaneous emission, which is inde-
pendent of the external~6eld. Under these conditions
it is clear that measurements of the field Inade with the
quantum counter will be almost useless. Since ns is the
mean number of photons localized in the volume 'U,
and p'0/L ls tl1e number of modes associated wtth the
volume 'U, the ratio

nz/(pv/I. ')= 8 (24)

is a measure of the average photon occupation number
per mode or of the degeneracy parameter. ' For nonde-
generate 6elds, such as those from familiar thermal
sources, 8 is always much less than unity '" and the
quantum counter will not be a useful measuring device.
For laser beams, on the other hand, 8 may become very
large and this objection is no longer valid. However, for
suKciently large values of 8 and moderate values of E,
it will be seen from Eqs. (19) and (20) Lalso (22), (23)j,
that the difference between normally ordered and anti-
normally ordered correlations ceases to be important,
since the role of spontaneous emission then becomes
unimportant. The state of the 6eld then approaches the
classical limit and both photoelectric detectors and
quantum counters will give similar results.

4. GENERATORS FOR ANTINORMALLY
ORDERED OPERATORS

If Eq. (22) holds for all X, it may be used to obtain
the generating function for the antinormally ordered
products of @~,, Thus

{"exp(&1u,(x)")

ix"
1+Q {cf@ +f&)

=&+ z {(8u,+ )(&a. + +&)

i Rug+ +X—1
i

L,e

(25)

Actually, since the validity of Eq. (22) rests on the
assumption that the linear dimensions of 'U are large
compared with the wavelength of any Geld mode con-
tributing to 8&,&, the validity and the convergence of the
foregoing series when E tends to in6nity ought to be
investigated. It seems reasonable to suppose that Eq.
(25) holds for sufficiently small values of x, but we will
not go into the questloQ of convergence here. By puttlQg

"L.Mendel, J. Opt. Sec. Am. 51, /K (1961).
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(( )) introduced in Eq. (32).Thus the expectation value
of an antinormally ordered product of Geld operators is
expressible in a classical form. Nevertheless, it is easy
to see that the functional p((vq, ,)) is not the probability
distribution arising in the classical description of the
Geld. Thus, consider a Geld in the vacuum state, for
which p= l(0))((0) I. For this field

rough idea how this convergence comes about by noting
that, from (34) and (3/)

p((». ))

f»~l m'

(35)

which is a multivariate Gaussian distribution with

((lv~, , l'))=1, and is certainly not the classical en-
semble distribution for the vacuum.

Equation (32) is to be compared with the cor-
responding relation for normally ordered operators, '

(:R(Si,ti, Ti) &(S~,t~, T~):)

X g —exp( —I v~, .—v~, .'I') d'{»,.')

Now, if we are dealing with a highly degenerate Geld
near the classical limit, p((v|...'})will be very small or
zero for all {v~,,') except those for which lv|...'I'))1.
In view of the sharply peaked form of the function
exp( —I v|...—vl. ..'I'), the principal contributions to the
integral will come from values vk„' in the neighborhood
of vl, ,„and, if p((v~, ,'}) is a sufliciently smooth func-
tion, we can write

&({ . ))U U d'( ..}, (36) p({ . ))=4({,.)). (39)

0. THE PROBABILITY DISTRIBUTION
OF QUANTUM COUNTS

But, even when this equality is not valid, the nor-
mally ordered and antinormally ordered correlations

where P((v~, ,)) is the generalized functional that wiU tend to coincide in the classical. limit.
appears in the "diagonal" representation of the density
operator p in terms of coherent states, ' ' '

As has been emphasized, ' ""the functional p(v~, ),
which is also normalized to unity, is a generalized
weighting functional, which coincides with the classical
ensemble distribution whenever it is positive deGnite.
On the other hand, P((v~, ,}) may be negative and
highly singular.

The difference between the distributions p{v~,,) and

P((vz, ,})may appear puzzling, but some aspects of the
difference can be understood by reference to Eqs. (32)
and (36)."As we have shown, the antinormally ordered
correlations given by Eq. (32) are always positive
deGnite, while the normally ordered ones given by Eq.
(36) may vanish for certain states of the field. Since the
U(S;,t;,T;) are all positive quantities, Eq. (32) can
always be satisGed by a positive definite weighting
functional, while Eq. (36) clearly cannot.

In the classical limit, when the average photon
occupation number 8 per mode tends to inGnity, we have
seen that the normally ordered and antinormally
ordered correlations tend to equality, and from Eqs.
(32) and (36), we would expect the functionals p({vj...})
and. Q((v|...)) to tend to equality also. We can get a

'7 E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963).
'8 L. Mandel and E. Wolf, Phys. Rev. 149, 1033 (1966).
"For a discussion of the relationship see Refs. 7 and 8.

We will now calculate the probability p(e; t, t+T)
that m counts will be registered in the time interval t to
t+T when the quantum counter is exposed. to a plane
beam of quasi-rrionochromatic light to which the quan-
tum counter can respond. The statistical approach will
be similar to one adopted previously in the calculation of
p(e; t, t+ T) for a photoelectric detector, ' and we shall
see that there is an interesting correspondence between
the two results.

We divide the time interval t to t+ T into T/v T equal
intervals 8T, which are short compared with the recipro-
cal frequency spread Av over which the counter re-
sponds, but still long compared with a typical period of
the light. We label the intervals i=1, 2 T/vT, so
that the ith interval extends from t, ', bT to t;+ ', hT.—--
From Eqs. (6) and (12) the joint probability that n
counts will be registered in the i~th, i2th, „and
i„th interval is

&.(t;„ t;„)=("acJ(t;,)bT" nd'(t;„)ST"), (40)

where the operator J(t) stands for

Z(t) = At(x, t) A(x, t)a2z
S

(41)

20 See, for example, L. Mandel, in Progress in Optics, edited by
E. Wolf (North Holland Publishing Company, Amsterdam,
1963), Vol. 2, p. 181.



and S is the sensitive surface of the quantum counter. It
is implicit in this formula that the population of excited
atoms is not signi6cantly depleted by successive
counts.

Now let P (t;„ t;„;t;„,) denote the joint p«bability
that counts will be registered in the ilth, i2th, ~ and
i th time intervals, but not in the i~~th time interval.
Then from the unitarity condition for probabilities we
must have

P„(t;„," t;„;t;„„)
+P„+,(h.;„",t,„,t;„„)=P„(h;„",h;„), (42)

so that, from Eq. (40),

P (t;„ t;„;t;„,) =("ncaa(t;,)8T ncaa(t;„)

X8TP1 ncJ(h—;„,)8Tj"). (43)

Similarly, if P„(t,„~ t;„;t;„+„t;„+,) denotes the joint
probability that counts will be registered in the i&th,
imth, and i„th time intervals, but not in the i~lth
and i +2th intervals, then

P.(h;„"h;„; t;„„,t;„„)+P~I(h;„"t;„,t,„„;t;„„)
=P.(t;„" t;„;t;„„), (44)

and from (40) and (43)

P„(t;„ t;„;t;„„,t;„„)=("nd'(t;, )8T" ncaa(t;„)8T

XD—nc j(t;„„)8T)L1—ncaa(t;„„)8T)"). (45)

3y proceeding in this manner we readily see that the
probability of obtaining n counts in the time intervals
labeled by i~, im, ,i, but no counts in any of the other
(T/8T —s) time llltcrvals, ls

S=j.
except S=i1, ~ ~ if'

Fj"t'hT

L1—nc&(t,)8Tj by II L1—ncaa(t, )8Tj

1I1 Eq. (4'7). Molcovcl, 'by cx'paIldlng thc pl'o(lllct lt may
be shown"

II ['1—ncaa(t. )8Tj~ cxpL —P ncaa«, )8Tj

—+ exp—
t+T

ncaa'(h')(tt' (4g)

for suQiciently short 8T, provided any particular order-
ing of the operators is preserved in the expansion.
Similarly,

under normal circumstances, we may regard the case
~T~ 10 sec as a vely good appl oxlmatlon to the llmltq
provided the intensity is not excessively high, with
nc(/(t)}8T«1 for 8T 10 '4 sec, and provided the
rate of counting due to spontaneous transitions is
not excessive, with ncS8T(hI/L') =Smn8TSvo'Dv/c'«1
for 8T 10 '4 sec. The last condition would be satis6ed
if the response bandwidth hv of the quantum counter
were limited to about 10" counts/sec and the surface
area S to about 10 ' cm', with n& j.. These numbers
give some idea of the rate of spontaneous counting.

Now if e is not too large, and if the foregoing restric-
tions hold, we may replace the product

P (t,» ~ t;„;no other)

=(-II ~:~«;,)8Tj L1—ncaa(t, )8Tj").

FjbT T/8F n t+T

Q II t( c~(h;,)8Tj~ ncaa(h')Ch' (49)
its=1 t'~1

s=l
except s =i&, ~ ~ i

when bT is very small. By introducing (48) and (49)

(46)
into (47), we finally arrive a,t

S=i
except S =ii, ~ iw

f1—ncaa(h, )8'"). (47)

Acfllally, flic 1'clafloll (40) arid subsequent cqllatloIls Rl'c

valid only when the time intervals bT are much longer
than a typical period of the light, so that strictly speak-
ing, we are not entitled to proceed to the mathematical
limit 8T—+ 0, However, since typical periods of a light
beam are shorter than $0 14 sec which js far beyond the
limit of resolution of available detectors, it is clear that,

The rcqu'rcd p«ba»»ty P(N' t, t+T) can now be
ob«ined from (46) by summing over all possible time
intervals i~, i2, ,in in which the counts can occur,
dividing by the number of permutations of the equal
intervals, and proceeding to the limit 8T —+ 0. Thus:

2'jbT TjbT n

~(;t, h+T)= h —Z Z ("IIL ~(t;,)8Tj
O gI iy~1 its=1 r 1

t+T

P(»' h, h+T) =— ncaa(t')Ch'

t+T PP

acf(t')df ). (50)

Since the operator on the right of Eq. (50) is in anti-
normal order, we may make use of the result embodied
in Eq. (32), which holds for any antinormally ordered,
product. Thus we replace the A(x, t) and Af(x, t) opera-
tors by their eigenvalues (corresponding to right and
left eigenstates, respectively) and average with respect
to thc wclglltlIlg fllllctlollal p({ag, })glvcll by Eq. (34).
%e then obtain

P(.; h, t+T) =(1/ .)«~"--}},

V*(x,t') V(x,t')d'xdh', (52)
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V*(x,t') V(x,t')d'xdt'

and «g({v&,,})))stands for the average of g({va,,)) where (P(W) is the probability density of W defined by
evaluated with respect to p({vs,,)).

Equation (51) has a very close formal similarity to
the well-known expression for the probability distribu-
tion p'(n; t, t+T) of the number of counts registered by
a photo-electric detector ' ' """

&&p({», ))d'{». ). (5g)

p'(n; t, ty T) = (1/n!)(W"e-~), (53)

which holds under rather less restrictive conditions
than Eq. (51), where (g({v&,,))) stand for the average
of g({vs,,)) calculated with respect to g({vs,,)) as
weighting functional. Because of the formal similarity
of the probability distributions (51) and (53), a number
of relations between the moments of e and of 8', which
are already well known in connection with Eq. (53), can
be written down at once. Thus

(n)-= &(W)),

&(A )')-=( )-+«(AW)')),

&expiex) = ((expW(e" —1))),

(55)

(56)

where the symbol ( )„denotes the statistical average
over the ensemble of ts with respect to p(e;t, t+T)
given by Eq. (51). Since the weighting functional

p({va,,)) is positive definite, (&(AW)'))&~0, and the
Quctuations of e will exceed or equal those corresponding
to a Poisson distribution for all states of the Geld. This
is not necessarily the case for a photoelectric detector.

By Fourier inversion of Eq. (56), with the substitution
(e'~—1)=iy, we obtain"

7. SOME EXAMPLES OF ((An)')„FOR
A QUANTUM COUNTER

Let us consider a radiation Geld in a coherent state
~ {v&,,')). Let the field be in the form of plane waves
incident normally on the quantum counter, such that
all nonzero values of vk, ,' correspond to modes to which
the quantum counter is sensitive. In this case we Gnd
from Eq. (34) that

P({» })=II -«p( —I»..—», 'I')
fk, e}

(59)

For simplicity we suppose that the counting interval T
is short compared with the reciprocal frequency spread
of all modes of the set Lk,s). It then follows from Eqs.
(52) and (29) that

However, the formal similarity of Eqs. (51) and
(53) and of the relations derived from them should
not obscure the fact that the counting distributions
P(ts; t, t+T) and p'(n; t, t+T) will in general be very
different. Since the explicit evaluation of P(n; t, t+T)
from Eq. (51) tends to be somewhat involved even for
simple states of the Geld, we will illustrate some proper-
ties of the quantum counter by calculating the variance
of the number of counts from Eq. (55).

&(W) = &(1+6)").exp( —iXW)ds (57)
so that

W=ncT V*(x,t) V(x,t)de,
S

(60)

—exp( —iv, ,—v„,,'i') V*(x t) V(x,t)d'xd'{va, ,)
(k, a}

S

—exp( —~v~, ~') [V*(x,t)+V'"(xt)) $V(xt)+V'(x, t))d'*d'{v,.),
(»8} X'

(61)

where

V'(x, t) = g va, ,'aq, , expLi(k x—ckt))
L3/2 [k,s]

(62)

is the complex wave amplitude corresponding to the coherent state
~
{va,,'}).The weighting functional under the

integral in Eq. (61) will be recognized as the form of P({v&„))given by Eq. (34) for the vacuum field. If we denote
the "vacuum expectation" with respect to this functional by '(( ))' we can write (61) in the abbreviated form

((W))=acT '&(LV*(x,t)+V'a(x, t)) Dr(x, t)+V'(x, t))))sdsg

=-»L'«l(,t)))'+I'(;t)),
"Compare E. Wolf and C. L. Mehta, Phys. Rev. Letters 13, 705 (1964).

(63)



~here x is any point on the surface 5, and
V*(x,t) V(x,t)

—=I(x,t)

V"(x,t) V'(x, t)—=I'(x,t).

In the derivation of (63) we have made use of the fact that ~((V(x,t)))0 vanishes and that both 0((I(x,t)))0 and I'(x, t)
are constant over the surface S. By expanding V(x,t) according to Eq. (29) we find

1
((W))=acST —g P '((», ,*»,, ))'e~, ,*.sq, , exp{iC(k' —k) x—c(k' —k)t7}+I'(x,t)I 3 (k, ej [k', tt'j

=ncST —Q '((~», ,
~
'))'+I'(x, t)

L3 fk, 8]

=ncSTC(ti/L')+I'(x, t)7.

Similarly we 6nd that

((W')) = (AT)»((CV*(x,t)+V'*(x,t)7 CV(x, t)+V'(x, t)7

= (ncT)'

XCV~(x', t)+V'~(x', t)7 CV(x', t)+V'(x', t)7))'d'xd'x'

'((I(x,t)I(x', t)))'d'xd'x'+S'I" (x,t)+2S'(p/L')I'(x, t)

CV'*(x,t) '((U(x, t)V*(x',t)))' V'(x', t)1C.c.7d'xd'x' . (66)

The two integrals in this expression are evaluated in the Appendix. We 6nally obtain

p2 2p 2pPhv 2ti 4I'(x, t)hv
((W')) = (acTS)' —+—+ +I"(x,t)+—I'(x,t)+I' I ' I.'cS I.3 cS

where P is a constant having the order of magnitude unity, and d v is the optical bandwidth corresponding to the
set of modes Ck,s7 to which the counter responds. Hence

2p, phv
(((hW)')) = (ncTS)' —+2P +4I'(x,t)—

J.' I.'cS cS
and from (54) and (55),

((»)') = (ncTS) (1+2ncTS/L'+—2PnThi )+I'(x,t) (1+4nThy)
Ja

(69)

Since The« 1 by hypothesis, and ITS«I.3, we 6nally arrive at

((»)')-= (~cTS)C(t /L')+I'(x, t)7
= (e)„.

It is interesting to note that this is the same formula as that holding for the counts registered by a photo-electric
detector which is located in a similar coherent 6eld.

As a second example we consider a radiation 6eld from a thermal source in the form of an unpolarized, plane beam
falling normally on the quantum counter. For such a field p({»,,})has already been shown to be of the form' 9

p({».})=& exp
i& ~ ~(&+q~..) - &+g~.. -

where q~„ is the average photon occupation number of the k,s mode of the incident Geld. This result also follows
directly from Eq. (38) when the well-known Gaussian form of p({»,,})is substituted. Once again we suppose that
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qz, , is nonzero only for the modes belonging to the set Lk,s] to which the quantum counter responds, and that the
counting interval T is suKciently short that T«1/Lb.

It follows from (71), (52), and (29) that

(&W))=ncT ((V*(x,t) V(x,t)»d'x

ACT

(&»,*»...»e~,* e~. , exp(iL(k' —k) x—c(k' —k)t]}d'x
8

=nc TS(p /L')(1+8), (72)

where we have put g p. ..~ ttz, ,=p8. The parameter b plays the role of a degeneracy parameter and is a measure of the
average photon occupation number per mode.

Similarly we Gnd that

&(V~(x,t) V(x,t)V*(x',t) V(x', t)))d'xd'x'

(ncT)'
'pg QI i 'pg s I @gals ss gg ' gg

I6 [g tt] [ r zr] [ Ir zri] [ III ziil]

)& (equi zn*'egiii ziti) exp(i$(k' —k) x+ (k"'—k") x'—c(k' —k+k"' —0")t]}d'xd'x'

and with the help of (71), that

(ncTS)'
&Ã')) = 2 Z ((I». I '&)((I»."I '&)I6 [g tt]g[gI tti]

x 1+ I
...*', . I'—

S2
expLi(k' —k) (x—x')]d'xd'x' + Q « I»,, I4»

k, s]

(ncTS)'
Z (1+g~,.)(1+q~,") 1+I»„*e~,. I'—

[k,s] [k', s'] S'
exp(i(k' —k) (x—x') }d'gd'x' (73)

'The double summation in the last equation is evaluated in the Appendix. With the help of the result obtained
there and Eq. (72) we 6nd

&((A~)'))= cTS(p/L') [2 TL&(p+p'8)+ cTS(tl/L') 8'], — (74)

where p and p' are constants of order of magnitude unity. Frozn Kq. (55) together with (72) and (74) we 6nally
arrive at

((Ae) ') =ITS(p/L') L(1+5)+2nTDv(P+P'"e)+ ~2ncTS(p/L') c'] (75)

Since aThv(&1, the second term within the square brackets is always small compared with the 6rst and can be
neglected.

Two limiting forms of Eq. (75) are of interest. When the incident light beam is nondegenerate and 8«1, the first
term within the square brackets in Eq. (75) becomes the dominant term, and in view of (72) and (54),

&(he)'&„= &e& . (76)

In the degenerate limit 8))1, the last term within the square brackets in Kq. (75) becomes important, and we have

((Ae)')„=uc T(pS/L') hL1+ i~a.c T(pS/ ')L8]

= &N).L1+k&~&-]. (77)



This formula is exactly the same as that obeyed by the counts registered by a photoelectric detector which is illumi-
nated by a plane beam of unpolarized thermal light. '""Once again we note that the formulas for quantum coun-
ters and photoelectric detectors tend to coincide in the classical limit.

8. CONCLUSIONS

Ke have seen that a photon counting device functioning by the stimulated emission —rather than absorption —of
photons is feasible in principle, and that correlations measured with a number of such counters correspond to ex-
pectation values of antinormally ordered complex Geld operators. Ke have expressed the antinormally ordered cor-
relations in a form which shows clearly that they furnish a useful description of the field only when the average
photon occupation number per mode is greater than unity. %hen this is not so, measurements carried out with the
quantum counter are dominated by spontaneous emission. Ke have derived expressions for the Quctuations of the
counts registered by a quantum counter, and shown that these expressions have a formal similarity to corresponding
expressions for a photoelectric detector. The results of measurements performed with a quantum counter and with a
photoelectric detector have been shown to coincide in the classical limit of an intense Geld. The discussion show's

that the quantum counter in practice has disadvantages over the photodetector as a tool for the investigation of
fields. The analysis was undertaken mainly with a view to understanding the di8erences in behavior.

APPENDIX: EVALUATION OF TERMS IN EQS. (66) AND ('73)

We shall now evaluate some of the terms in Eq. (66).Remembering that V'(x, f) is constant over the surface 5, we
find with the help of the expansion (29b),

l
V'*(x,t) '«V(x, t)V (x',t)))' V'(x', t)+c.c.7d'xd'g'

exp{iL(ki x—k2 x') —c(ki—km)t7}d'xd'x'+c. c.

expLik (x—x')7d'xdx',

(A1)

where we have made use of the fact that

(A2)

I (x,t) is the instantaneous light intensity of the incident beam at any point x on the surface of the quantum coun-
ter, eo is the unit vector in the direction of V'(x, t) deined by eo V'(x, t)/l V'(x, t) l,——and I» l„are the perpendicular
linear dimensions of the surface S. Since I„ l„will normally be very large compared with a typical wavelength cor-
responding to the set Lk,s7, it follows from the form of Eq. (A1) that

l
k l, l k„l(& l

k
l

for all terms of the summation
which contr1bute slgniGcantly to the sum. Hence

(A3)

and the vector k may be taken to point approximately in the same (or opposite) direction as the incident beam. It
then follows that

P l
so* eg„ l

'= l.
N

"H. Hurwitz, J. Opt. Soc. Am. 35, 525 (1945).
~' E. Wolf, Proc. Phys. Soc. (London) 76, 424 (1960).
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With the help of (A4) and the rule

we can now rewrite (A1) in the form

and, in view of (A3)

1—p-+
L i&I (2»r) 3

Do

2S' sin~k, l, ' sin~k„ly '

(2»r) ik] gkzlz ~kvlv

2S' (2»r)' 4»rhv
I'(x, t)

(2»r)' l.l„c
=4SI'(x,t) Av/c, (A5)

where d p is the optical bandwidth to which the quantum counter responds.
Consider now the first integral in Eq. (66). Again with the help of the expansion (29b) we find

e.=- '((I(x,t)I(x',t)))'d'xd'x'

1
~~1» &1 ~~2» ~2~~3» tr3 ~~4» ~4 kl

» sl ~~2» tt2

[kl»&l] [&2,s2] [&3 ~31 [&4 tt4]

X(»z, z»* e», »4) expLi(k~ —ki) x+(k4 —k3) x'—c(kg ki+k4 k3)t)d'xd'x'

2 '((l»». il I»», "I )&' S'+I "1 z» &»z»lI f&1» 81] [&2» 82]

exp(i(k, -k,) (x- x'))d'xd'x'

S2

[k1,e1]g [R2,e2]

sin~(kq* —ki*)l, ' sin~(k»v —krv)l„' 2Ss
x 1+I",„,* ",..I' + Z '((I» I'&)'

-', (k,*—k,*)l. ,'(k p kiv)lv-—
sin~(kq* —ki')l ' sin-', (4v —kiv)lv,

—',(k& —ki*)t, —',(kp —kiv)l„
(A6)

where we have again made use of (A2) together with

'((I » .I
'&)'= 2 (A7)

To evaluate the double summation vre first note that, from geometry,

Z Z I e», z»
' e~z, z» I

' = 1+c»'A», kz»
al s2

where O», i,» is the angle between ki and k~. Since the factors involving sine functions ensure that kg =ki* and

kiev= krv, it follows, when the allowed range LS of k belonging to
I k) is small, that

k z +k z to within Qz kz+/(kz)2+2k+k)1/2 (A9)

The factor (1+cos'Hi„,i,z) is therefore approximately equal to 2 or 2(1—Lkz/k)'). By putting k»—ki ——g, and con-



verting one summation to an integral, vie can verite approximately

S2
ki i81 ~k2i8Q

L f&i 81] [&s ~H

sin-', (k2*—ki )E,-' sin-,'(k2v —kiv)lv-'

—,'(k2*—ki )l. ,'(k2v——kiv}lv

S2 sin-,'( t, ' sin-,'gvl
(1+c»'ei„,i„) d'Pk'

(2mI.)' t ii 24 t. kHv

S' (2s)'
Q 2 2rMp

(27rI.)' t ] t.tv
=2PtiShv/cI. I, (Aio)

where p is a number of order of magnitude unity. We shall not evaluate p explicitly since the term involving p is
negligible compared with other terms in Eq. (66). With the help of Eq. (A10), Eq. (A6) becomes

p,
' 2p p Av

Qi=S' + +—2P-
L' L' L' gS

(Aii)

and from (66), (A5), and (A11) we finally arrive at

2ti 2Ptihv 2ti
((W'})= (ncTS)' —+—+ +I"(x,t)+—I'(x,t)+4I'(x, t)—

L' L' L'cS L' cS
(A12)

Consider now the double summation in Eq. (73), which we may write in the form

(ncTS)'((lf"))=, & & (1+V~, )(1+v~ .. )
f&X,~il t&a, ~mj

sini2(k2~ —ki*)l, ' sin-', (k2v —kiv)lv '
+ Z Z ( &tx,ei ' &its, 82 ( + Z Z 'gkt81iIkgti, ,

ou ~d t», ~ii 2(ku —ki )lv ~(kmv —kiv)lv pu, nl 0 al

sin~k *l ' sin~k &1

+2 7 Zgi, ;,*,
f», st f&sl ~kg l ~k24„

(ncTS)' L 3 sin —,'k l 2 sin~~k&l„2
ti'(1+ h)'+ Tp+-', (tib)'+ 2tib — d'k

J6 2~ )~) —,'k l. —,'k l„
(A13)

sin-,'k*l, ' sinxikvlv (2s)'
d'k = P'rD

l,ly[g] 2k l~ — - gk ly

where we have made use of the fact that the incident beam is plane, so that qi...vanishes unless k points in the
s-direction, and that the light is unpolarized, so that qg, „=ql, ,„.The term T2 is the same as that which eras evaluated
in Eq. (A10), apart from a constant factor.

The value of the integral in Eq. (A13) is readily estimated. Since k has to lie within a range 6k= 2s hv/c, and since
k~ and kv are very small if the integrand is not to vanish, we have, as in the derivation of (A10),

= (2s)'p'hv/cS, (A14)

where P' is a number having order of magnitude unity. With the help of (A14) and (A10), (A13) becomes

p ip' @dan p hv
((W'))= (nc TS)' (1+5)'+ P+2P— +2P'—— ——

L' 2L' L'cS L' cS
(A15)

and from (72) and (A15),

(((~~)'))=- »(/~')C2» (P+P'6)+l(./I')- »~'j. (A16)


