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We use a nonequilibrium form of the Green s-function formulation of the 3CS theory of superconductivity
to investigate the circumstances under which differential equations in space and time, i.e., "time-dependent
Ginzburg-Landau equations, "give a valid description of the space and time variation of the order param-
eter + in superconductors. We Gnd that if the variations are sufBciently slow, time-dependent Ginzburg-
Landau equations exist near absolute zero and near the transition temperature. In the former case the
equation has wave-like character, and in the latter case it is of diffusion type, with the restriction that either
the characteristic frequency of the time variation of 4 is greater than the gap frequency or the ratio of the
Fermi velocity to the product of the characteristic wavelength and frequency of the space-time variation
of + is greater than unity. Under all other circumstances and at general temperatures, there are no dif-
ferential equations to describe the variations of O'. We discuss also the influence of slowly varying time-
dependent 6elds and derive the dependence of charge and current densities on the variations of %. Local
electrodynamics are assumed. The necessary modi6cations for the case of dilute superconducting alloys are
described. Applications are made to the questions of collective modes, nucleation, and London s theory
near absolute zero.

to the nonequilibrium situation in order to discuss the
time variation of the order parameter by means of
time-dependent GL equations. These would be differen-
tial equations in space and time relating the variations
of the order parameter to space and time-varying fields
and the charge and current densities. In the case of a
pure superconductor, we find time-dependent GL
equations only when T is near absolute zero and when
T is near T,. In the former case, the equation for the
order parameter is wave-like and in the latter case it is
of diffusion-type.

In a recent note, Stephen and SuhP addressed them-
selves to the same question and used a formulation
which is in many respects similar to the one with which
we begin our discussion. We differ with them in our
methods of analysis and we defer relevant remarks to
the concluding Sec. VII of this paper.

We mention two limitations to our development here.
Firstly, we take the thermal excitations (normal fiuid)
in the superconductor to be always at rest and in
equilibrium with the local value of the energy-gap
parameter and the external fields. This presupposes
that the characteristic time for interaction between the
heat bath (lattice vibrations) and the thermal excita-
tions is short compared to the characteristic time for
normal to superQuid conversion. Secondly, in anticipa-
tion of the case of the charged superconductor where

density Quctuations are suppressed due to the long-

range nature of the Coulomb ia, teraction, we do not,
even in the neutral case, solve simultaneously for the
motion of the order parameter and the motion of the
density. That is, we take the variation of the order
parameter to be the sole driving term. More detailed
remarks on these points will be made at appropriate
places in the text.

We devote the greater part of the paper to the neutral
pure superconductor. In the charged case, we restrict

I. INTRODUCTION

'HE phenomenological theory of Ginzburg and
Landau' (GL) describes the equilibrium proper-

ties of a superconductor in a spatially varying magnetic
field. The GL equations are differential equations
which relate the spatial variation of the order parameter
+ to the vector potential and the current.

Gor'kov' ' was able to show that the GL equations
are a consequence of the microscopic theory of super-
conductivity' ' when the temperature T is close to the
transition temperature T,. The order parameter of the
GL' theory is identihed with the energy-gap function of
the microscopic BCS theory. Subsequently, the ideas of
Gor'kov were extended to lower temperatures by
others' ' and corresponding GL equations were derived
from the microscopic theory. A common feature of all
this work is the requirement that the order parameter
and vector potential vary slowly over distances of the
order of the coherence length and that the electro-
dynamics be local (London limit).

In this paper, we investigate the question of whether
or not it is possible to extend the Gor'kov formulation
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ourselves to the London limit and give only the leading
terms in the external fields. We discuss brieQy the e8ect
of impurities on some of the results. In Sec. II, we

develop the formalism for treating the nonequilibrium
case and apply it to the situation that the order param-
eter has su%.ciently small time an, d space variations.
In Sec. III, we use the formalism to extend the Gor'kov
expansion procedure' when the order parameter varies
slowly to the case of time as well as space variations and
we derive time-dependent GL equations. In, Sec. IV,
we show that the expansion procedure of Sec. III is
valid only at T=O and we derive the correct time-
dependent GL equation near T, by analyzing the wave
number and frequency-dependent response to space and
time variations of the order parameter. Section V is
devoted to the charge and current expressions and the
inQuence of external electromagnetic fields. The modi-
fications required for dilute alloys are discussed in
Sec. VI. In the concluding Sec. VII, we discuss the
results and their applications.

II. NONEQUILIBRIUM EQUATIONS

Our general purpose is to derive equations for the
order parameter %(r,t). This quantity is proportional to
the local self-consistent pair field or energy-gap function
A(r, t) and we shall restrict ourselves to cases where the
space and time variations of 6 are small and occur only
over distances greater than the coherence length $o and
over times greater than fi/kT, . We begin by deriving in-

tegral equations relating the energy gaps at diferent
space-time points. The procedure is an extension to the
nonequilibrium, time-dependent case of previously used
methods' ' which were based on Gor'kov's original
derivation' of the equilibrium GL equations for temper-
atures near T,. We employ Green's function, methods"
throughout and restrict ourvelves to the BCS model
of superconductivity.

In the equilibrium case, one gets the energy gap from
a calculation of the quasiparticle self-energy" by means
of equilibrium thermal Green's functions. In the present
case, when time-varying fields and interactions are
present, we construct nonequilibrium one-particle
Green's functions as follows. We imagine that in the
distant past (t= —~), the system is in thermodynamic
equilibrium with Hamiltonian JI and chemical potential
p. We let time-dependent interactions occur which we
describe by the Hamiltonian H'(t) which includes
external time-dependent fields and the time-dependent
energy gap through the self-consistent pair pote', tial as
described below. We work in the interaction representa-
tion for H+H' so that states develop in time according
to the time-development operator U:

U(t, t') = T exp i H'(4—)d4, (2.1)

' L. P. KadanoB and G. Baym, Qgantgm Statistical 3IIechanics
(W. A. Benjamin, Inc. , New York& 1962).

~ Reference 3, Sec. 343.

&(1)=6'(1)4'(1)4 (1)4 (1)
=-A(1)~&(1)~t(1)-~*(1)~(1)~(1),

where g is the coupling constant (g(0 for an attractive
interaction) and A is the (constant) self-consistent
pair potential or energy gap which is to be evaluated in
a self-consistent manner. by using the above form of the
Hamiltonian to generate the equations of motion for
the equilibrium G and F and then solving for 6 from the
solution for F:A(1)=—igF (1,1)= const. The equations
of motion can be written as integral equations and 6
is then found in the form

A(1) =ig d'r, dt2Go(2, 1)G(2,1)A(2), (2.4)

where GD denotes the normal-state Green's function
(g=0).

In the nonequilibrium case, the pair potential varies
with time but the Green's functions defined in Kqs.
(2.2) and (2.3) satisfy formally the same equations of
motion as in the equilibrium situation. However,
because the boundary conditions are different, the
corresponding integral equations are different. Io, fact,
the integral equations are manifestly causal. That is,
the gap function at time t~, for example, is determined
only by values of the gap function at earlier times.
In this way, one can, write down causal integral equa-
tions for G and F in the nonequilibrium case. From the
latter, one obtains the integral equation, for the gap
function which corresponds to Kq. (2.4).

A(1) =ig d'rq dh2[Ge~(2, 1)G~(2,1)

—Ge~(2, 1)G~(2,1)]A(2), (2.5)

where the symbol T is the usual time-ordering operator.
The single-particle Green's function is then, defined as

G(1 2) = —i(PV (1)4'(2)))
i Tr—e ~« ~"&I'$U( ~, —i,)P(1)U(t„i,)

&&pi(2)U(i2, —~)jLTre &« "~&j ' (2.2)

F(1,2) =«T~(1)~(2))). (2.3)

In Eq. (2.3), we have defined the "anomalous" Green's
function. ' The electron field operators it, p are in the
interaction representation. The space-time point r~, ti
is denoted by the symbol 1.Time-dependent properties
of the system are determined by the Green's functions
G and F which are thermal averages over the equili-
brium gram, d canonical ensemble at t= —~. For
example, the order parameter at r~, tj is proportional
to F(1,1).

In the equilibrium case one can proceed to find the
energy gap by adopting a simple form for that part
of the Hamiltonian density which gives the super-
conducting interaction, which, following Gor'kov, ' we
take to be local in space and time:
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where

G~(2, 1)= —i(Q (2)P(1))), G~(2, 1)=i((gt(1)P(2))).

The two terms of Eq. (2.5) describe separately the
electron and hole contributions to A(1). If 6 is taken as
constant in time, Eqs. (2.4) and (2.5) are equivalent.

The boundary conditions of the nonequilibrium case
are nicely kept track of in a scheme devised by KadanoQ
and Baym. "Following them, w'e go over to new Green's
functions defined in the imaginary time domain in the
usual manner of the Matsubara technique by replacing
t by —i7." In the present case, however, v. is dined
between ro and rp+P. The new Green's functions are
given by

g(1,2) = Tre e&—" )T['ll(ro+p r) lip(1)'Lt( rri2)

&&Pt(2)e(r»r, )1/Tre-e "-~", (2.6)

F(1,2) =Tre e& & )TL'1t(ro+p, ri)f(1) tt(ri, r&)

&&tp(2)%. (r»ro)]/Tre e&~ &+), (2.7)

where the time-ordering operator T orders decreasing
values of 7-—ro from left to right, the time development
operator 'll, is given by

It is then possible to expand 8 in a Fourier series whose
coeScients, as in the usual technique, are just the
corresponding Green's functions g(ru ) having discrete
frequencies ko = vari(2m+1) /P. If one calculates quanti-
ties like g(~„), then analytic continuation of s=us„ to
the real axis in the usual manner gives G(~), the
Fourier transform of the original G(t) given in Eq. (2.2).

It is easily verified, that the functions g, 5: satisfy the
usual equations of motion (Gor'kov equations') with
time-dependent external fields, if they are present,
included. Thus, in matrix form, the equations of
motion are

Li A(1) ( g(1,2) $(1,2)

—LV (1) L,+ kF" (1,2) —g (2,1)

1 0
= 5 (1,2), (2.10)

0 —1

where Li+= +8/Br)+ (V+ieA/c)'/2m+ p, p is the
chemical potential and we restrict ourselves here to the
case where there is only a transverse vector potential
acting. The general case will be discussed in Sec. V.
The energy gap h(1) may be obtained from the anom-
alous Green's function f by the relation

a(1)= —gS(1,1+). (2.11)

(rp+p) ri r2) ro) (2 g)

and the r dependence of operators (II'pP, P) in the new
interaction representation is given by

p(r) e(H pN) rpe (Ir )1)r) I'— — —
(2 9)

As in the equilibrium case, analytic continuation of
the new Green's functions gives the actual Green's
functions. In the present case, the rule is to let all
r ~it and rp + i ~. For example, g(r) continued
in this manner is just the causal G(t) defined in Eq.
(2.2). In performing the continuation [in Eq. (2.6),
sayj, it is necessary to write

lt(ro+P ri) tt(ro+P ro) tt(ro r ) +

e( i +p—, —i ~) Lr(—,t ),
where the last factor is the ordinary time-development
operator of Eq. (2.1) obtained from'tt(ri ~ iti, r2 ~ it2)
=U(ti, ti). The other factor, tt(—i~+p, i ~), is-
from its de6nition equal to unity if one takes into
account an "adiabatic switching" parameter p ~ 0+ by
means of which we insure H'(t= —~)=0. That is, we
include a factor exp))! t! in the definition, of H'(t).

Now, b(1,2) satisfies periodicity properties similar to
those of the thermal Green's functions in the usual
(equilibrium) Matsubara technique. " In the present
case,"we have

It should be pointed out that the energy gap function
of Eqs. (2.10) and (2.11) is not in fact the actual gap
function. The latter is given by the expression

—ge """$(1,1+).

This can be veri6ed by comparison of the analytic con-
tinuation of 5 )Eq. (2.7)] and the actual Ii of Eq. (2.3).

We solve the equations of motion by iteration on the
slow variation of the energy-gap function in the
following manner (we exclude here the external field

to which we shall return in Sec. V): Imagine a super-
conductor with a constant gap parameter (not neces-
sarily the equilibrium one) 6&. We call this the local
gap. The corresponding local Green's functions g), Pi
solve the equations of motion, Eq. (2.10), with 6
replaced by 6&. It is easily veriied that the solution of
the equations of motion for a superconductor whose gap
function varies in an arbitrary manner is given by the
following integral equations

g(1,2) = g, (1,2)— d3 b)(1,3)86(3)&t(3,2)

d3 P) (1,3)RV (3)g (3,2), (2.12)

5'&(1,2) = Sit(1,2)+ d3 g)(3,1)RV(3)g(3,2)

"Reference 10, Chap. 8.
"Reference 3, Chap. 3.

d3 P)t (1,3)t)h (3)5'i (3,2), (2.13)
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where 8d, (3)=h(3)—A~ is the deviation of the actual gap function at the space-time point 3 from the
constant local value A~.

We assume the varations 8A to be small and iterate the integral equations. For example, the energy gap at
point 1 requires knowledge of 5 (1,1) which is given, to second order in 8A, by the following expression:

St(1,1)= 5'P(1,1)+ d3 g((3,1)8&~(3)g((3,1)— d3 FP(1,3)56(3)PP(3,1)

d3d4[g( (3,1)Sent (3)g E (3,4)8&(4)5'p (4,1)+g( (3,1)hat (3)%(3,4)5&t (4)g E (4,1)

+O'P (1,3)8h (3)g( (4,3)Sent (4)g((4, 1)—5')~ (1,3)8A (3)O'P (3,4)86 (4)5'(t (4,1)]. (2.14)

In the causal perturbation theory which we are using,
as remarked above, all interactions B'(r) [including the
pair potential or energy gap d, (r)j include an adiabatic
switching parameter g —+ 0+ so we have to include, for
example, the factor exp( —igra) in 5A(3). We recall
also that the time integrations all run between 70 and
rp+P and that ro —+ —i~ at the end.

The next step is to set A~=h(1). Then we may
evaluate the right-hand side of Eq. (2.14), for example,
in terms of h(1) by either Taylor series expansion of
A(3) about h~=A(1) (Sec. III) or by Fourier analysis
(Sec. IV). As we shall see, the procedures will be valid
only if the variations in 6 are suKciently slow.

III. TAYLOR SERIES METHOD

The original derivation, valid near T„of the GL
equation by Gor'kov' rests on the fact that the energy
gap is slowly varying in space compared to the Green's
function. We may extend his method by taking advan-
tage of the fact that the Green's functions g~ and F~

which appear in the kernels of the integral equations
for g and P [for an example, see Eq. (2.14)g fall off
rapidly compared to what we assume are the allowed
variations in A. The spatial variation of g and 5 is
exponential fall o6 with a characteristic length given in
order of magnitude at all temperatures below the critical
temperature T, by the coherence length )o=nJ/kT,
(rIz ——Fermi velocity) while the variations in d and
electromagnetic fields occur over distances of the order
of the penetration depth X. In what follows, we assume
X))$0 so that we may expand the spatial variation of
6 in Taylor series since it will change only slightly over
&0, the distance of importance in the integrands.

In the Taylor series technique, the time variation of
6 is treated in the same manner as the space variation:
We assume that the variation of 6 is slow compared
to the times of importance in the integrands. These
times are again determined by the behavior of g~ and
F& which fall off exponentially in times of the order of
A/k T. as long as A~ is not different in order of magnitude
from the equilibrium gap.

We now have a well-de6ned method for deriving a
diGerential equation satisfied by the energy gap. In
the integrands of the integral equation for the gap

[Eq. (2.14)j, we expand h(3) in a space-time Taylor
series about the local value h~ ——h(1):

where 8, means 8/Bx~' and repeated indices are summed
from 1 to 3. We insert this expression into the integral
equation for the gap and we keep only terms involving
two derivatives. We obtain in this way the time-
dependent GL equation

At (1)= —gF(t (1,1)+2 (A,ht),

where Z(d, ht) is a nonlinear operator on 8 (1), 6&(1)
which contains space and time derivatives with coeK-
cients determined by the integrals of the integral
equation, Eq. (2.14), after the series substitution of
Eq. (3.1) for 6(3).There are no cross terms in involving
space and time derivatives since we kept only two
derivatives and terms with one space derivative vanish

by space inversion symmetry.
Before deriving the time-dependent GL equation at

an arbitrary temperature, we discuss the situation when
T=7,. In this case, the method is very similar to the
original Gor'kov derivation' of the time-independent
GL equation. Near T., ~ itself is small everywhere and
we modify the integral equation for 6 by taking 6& ——0.
Thus 5'~=0 and g~ is simply g„, the normal-state
Green's function. Then the term in Eq. (2.14) for
b, t(1) which gives rise to derivatives in the GL equation
is simply

At(1)= —
g d3 g„(3,1)5~(3)g„(3,1)exp(—i'/ra), (3.2)

where g —+0+ is the adiabatic switching parameter.
We now expand 6 (3) in Taylor series about the point 1
according to Eq. (3.1).The space parts give rise to the
usual terms of the time-independent GL equation. We
content ourselves here with the discussion of the time-
derivative terms. We may note that our procedure is
only valid when qo, the characteristic frequency of the
time variation of 6 is greater than 6 itself. Otherwise,
it is not valid to drop 6 everywhere on the right-hand
side of Eq. (2.14).
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where

—gN p(K2b, t'+K36t"),

K„= d$ tanh(P$/2) (2f+ig) ".

We assume particle-hole symmetry and evaluate the
E by residues. The result is

K„=2(P/2~i)" '(1—2 ")|.(n), (3.4)

where f is the Riemann zeta function. After the sub-
stitution r ~it, we may add the time-derivative terms
to the space derivatives of the usual GL equation.
The result is

{V'/4m —(1/c) 8/Bt+ (3/8 op) 8'/BP+ (1/6) L1—T/T,
7t (3) I

~—I'/8~'(k7' )'j)~'= o (3 5)

where e~ ——Fermi energy, b = 7l (3)e&/6s'(kT, )', c
= (8kT,/vr)b. The first time-derivative term is larger
than the second by a factor L2x'/7{'(3)](kT,/qo)))1
so that we may neglect the latter. We therefore have a
differential equation of the diffusion type to describe
the space-time variation of the order parameter near
T, when qp&A. The equation describes how the self-
consistent superconducting interaction (pair potential)
drives the order parameter towards its equilibrium
value.

Actually, Eq. (3.5) as written is not for the actual gap
parameter as discussed in the previous section below
Eq. (2.11).The time derivatives in the equation must be
altered to include the time-dependent phase involving
the chemical potential. We defer this question to the
end of this section.

We now return to the case of arbitrary temperature:
6 is not small. We must use the full integral equation of
Eq. (2.14). We treat first the space derivatives by
inserting the space part of the Taylor series LEq. (3.1)j
into the integral equation. It is convenient to make the
Fourier expansion in space and time for the Green's

The time-derivative terms arise from the following
part of Eq. (3.2):

7P+P

Z„B„'(3,1)P t'.„+-',at".,Pj
Xexp( —iqr3), (3.3)

where 5t' denotes Bht(1)/Brq. In performing the r3
integral we find that the convergence factor containing
q causes contributions exp( —ill~a) to vanish when we
let r p

—+ —i ~. The result of the rs integration is simply

—
g P~ tanh(P$/2) I At'(2$+iq) '+At" (2$+ig) '),

where we have first transformed the Green's function to
momentum space and (=p'/2m —y. Making the sub-
stitution +~~EDj'd$, where Xo is the density of
states at the Fermi surface in the normal metal, we
find the time-derivative terms to be

functions which appear on the right-hand side of the
resulting expression for «(1,1). Thus, for example,

P~(1,3)=P ' g„exp(—i&erg, )P, F~(~,y)exp(iy rq, ),
where co labels the discrete Matsubara frequency"
m (2tt+1)/P and rq3= rq rq, —rq3

——rq —r3. Then the
factors r3~' which appears on the right-hand side from
the expansion of 86(3) can be replaced by the deriva-
tives with respect to the ith component of y which in
turn are transferred to the appropriate P~t(co, p),
Pg(e, p) or 8~(co,y) by partial integration in p space.
The result of these steps is

~'(1)=—g«(1,1)=—
gP 'Z&.-{«+(~B/~p')

X (~8/~p ):l~A~'(1)3 (»'/~—p') (»'/~p )
XL-', &;&,&(1)j—(&8 /&p-, )8 (»/&p, )
XL2~'~'(1)~ ~(1)j—(~8 /~p. )~(~8/~p )

XI B,d t(1)B,ht(1)g+ (»t/Bp;) &t(»t/Bp, )
XL~'~(1)~ ~(1)3) (3 6)

where, on the right-hand side, we have dropped the
subscripts and arguments of all the Green's functions.
The notation 8 means 8~(—I, —p). No linear deriva-
tive appears because of space-inversion symmetry.

To evaluate the coefficients of the space derivatives
of 5 on the right-hand side of Eq. (3.6), we use the fact
that 8~ and P~ solve the Gor'kov equations' with the
local gap ~~ ——L(1).Thus,

8= ( +—5)/'('+ '), = ()/('+E'), ( 7)

where E= @+Ih(1) I'. It it here that we make the
assumption'4 regarding the behavior of the thermal
excitations to which we referred in the Introduction.
The distribution of thermally excited quasiparticles
as determined from 8&, for example, is given by the
Fermi distribution for energy E (which contains the
local gap) and temperature T. That is, we assume the
gap in the spectrum to be determined by the local
value of the varying pair potential and the normal Quid
to be in equilibrium at temperature T with this spec-
trum. Thus, the interaction of the normal Quid with the
phonon heat bath is taken to be faster than the rate at
which the pair potential itself varies.

The rest of the calculation is straightforward. We
introduce Eq. (3.7) into Eq. (3.6). Derivatives with
respect to p; give rise to terms proportional to p;. The
integrands are peaked near p= p~, the Fermi momen-
tum, so we may replace p,p;8,8; by ~~p&'8, 8; and P„by
EoJ'd). The final result is

(1+2P'&~) ~'(1)
=—(gs Woe~/6m) {J3V'ht(1) —-', J5(AV'ht+htV'6)

Xht(1) ——',J5(26tVA+36Vht) Vht(1)
+ (5/8) J,(t&Va&+AVht)'h&(1)), (3.8)

'4 One of us (EA} wishes to acknowledge an informative discus-
sion with L. P. Kadanoff on this point.



GI NZ BURG —LAN DAU ORDER PARAM ETER

where

Ii ——d$ tanh(PE/2)E ' (3.9)

I-=0 ' E.[~'+ lt1(1) I'] "" (3.1O)

Ij is formally divergent but may be evaluated by using
the usual cutoff of the $ integral or the fact that Ii
=—2/g1l! p when 6 is the equilibrium value of the gap
at the temperature T. Note that the coeKcients of the
derivatives depend on d (1) itself. The result, Eq. (3.8),
has been found previously by Werthamer. '

We treat the time-derivative terms by a method
parallel to that used above near T,. We consider the
case qp«A as is consistent with the Taylor series
method. We insert the time part of the Taylor series
[Eq. (3.1)$ into the integral equation of Eq. (2.14).
In the terms on the right-hand side, we use the Fourier
coeKcients

O (1, )=l{(1+&/E)-"[.—8( )j
-(1—~/E)" L .—0(- )j),

$&t(p, r) = —[At(1)/2Ej{e e'[ate —8(r)]
+e~'[n g tt( 4—.)j),—(3.11)

where ne ——(expPE+ 1) '. We perform the time integra-
tions as before, taking advantage of the convergence
factor q. The result is the time-derivative terms of the
time-dependent GL equation:

(1+-,'gSpIi) At (r, t)
= —(g7rXppp/6m) {J,V'6t ——,'J, (gV'gt+gtVpg)gt

~Jp(26tVA+36Vht) Vht+(5J, /8)
X (&tV&+hV Dt)Pht (3/2v vp') [Ipat"—
—-',I4(hht" +6th") At —~I4(26th'+3hht') 6t'

+ (SI7/8) (ht5'+hat')pht)) (3.12)
where

I„= d$ tanh(PE/2)E —" (3.13)

and, as in Eq. (3.5), we have not corrected the partial
time derivatives (denoted by primes) to include the
time dependence arising from the chemical potential.

We may simplify the GL equation in the limiting
case T —+ 0. For T=O, we find

Jp„+i——Ip„+i/2v = [(tt—1)!2" ']'/[4r (2tt —1)!)
6 ['"j,

1+-,'gSpIi ———',gSp ln
~
Dp/6(', (3.14)

where hp is the equilibrium gap at T=O. The relation
between the GL order parameter +(r,t) and the energy-
gap function A(r, t) is given, at T=O, by% = (Iq/2)'I'6/
6p where S is the total electron density. Then the
time-dependent GL equation at T=O is simply

1l!'p ln) +/%p)'
= (yp4/6mgpP

( @~

4){2@P[@tVP@t—(Vyt) j—(et)
X [q V'q —(V+)']—(3/»') (2+'[+tq't" —(+')'1

—(+t)'i~"—(q")'j)) (3 15)

where 0 p
——(1V/2)"P and vp is the Fermi velocity. We

have written the equation in a form suitable for the
inclusion of external fields as discussed in Sec. V. The
prescription for altering the derivatives in Eq. (3.15)
to include fields is given. later in Sec. VII, Eq. (7.1).
In the absence of fields, Eq. (3.15) may be written in a
more compact form which displays explicitly the
longitudinal density oscillation for a neutral super-
conductor which we discuss again in Sec. VII:

1Vp ln(4/%p)'= (4'p4/6mhpP ~%'
~

')

X[V —(3/v~ )4! /gt jln[(alt) /qjj. (3.16)

Unfortunately, the time-dependent GL equation
we have derived in this section is valid only at absolute
zero. The reason is that at finite temperatures, there is
the possibility of local conversion of the thermally
excited normal excitations to superQuid. Mathemat-
ically, the difhculty is due to the existence of a singular-
ity in the product of Green's functions which form the
kernel of the integral equation [Eq. (2.14)j for the gap
function. Let q, qp be the characteristic wave number
and frequency of the space-time variations of the order
parameter. In the Taylor series method of this section,
we calculate the time (space) variation by setting q (qp)
equal to zero and then taking the limit as qp (q) goes
to zero. In the actual situation, we have either q/qp(&&1.
Then if q/qp&1, we are calculating the time derivatives
correctly and the space derivatives incorrectly and the
reverse in the other case. In the superconductor, the
relevant ratio is vq/qp where v is the group velocity of
the thermally excited quasiparticle. If the ratio is
greater than one, local conversion, or diffusion, of
normal Quid represented by excitations of wave-
number q may occur since the Cerenkov condition
5E= v q=qp can be satisfied. At absolute zero, there
are no thermal excitations and for qp&Ap there can be
no conversion from pair dissociation either. In this case,
the ratio vq/qp is irrelevant and the T=O GL equation
we have derived in this section is correct (in the neutral
case). If the Cerenkov condition is satistied, then the
results derived in this section for the space derivatives
are valid at all temperatures, while the time-derivative
terms are incorrect. In fact, as we shall show in the
next section where we analyze the frequency and
wave-number —dependent response, a differential equa-
tion describing the time variation cannot be written in
the Cerenkov region except near T, where we again
find a diffusion equation identical to the one derived
above for the case qp)A, T=T, [Eq. (3.5)j. The
remarks we have just made apply to the space deriva-
tives at finite temperatures in the case vq/qp&1. In
the special case qp&h, T=T„however, the ratio
vq/qp is again irrelevant and the diffusion-type equation
of Eq. (3.5) is valid.

We turn now to the question of the time-dependent
phase of the order parameter. As remarked. in connection
with Eq. (3.5), we have only derived time-dependent
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equations for the gap function as defined in Eq. (2.11).
It does n,ot include the phase factor involving the
chemical potential. We may reintroduce the latter
simply by the replacements

4' ~ (8/Bt+2it3)%3&'t' —-3 (8/Bt 2it—3)3I3t. (3.17)

However, this reveals another difhculty with the
Taylor series method. As remarked above, in the
calculation of the time-derivative terms, the spatial
variation is taken to be zero. However, when there is a
spatial term involving, for example, P%' in the GI. equa-
tion T=O, then we expect the kinetic energy of the
moving pairs to be rejected in the chemical potential
which should be replaced by p, —V'/8m. In this case, the
time-derivative operators become [)/p)tp+2i(t3 Vp/—

Sm)]%'. The new chemical potential which we have
written here is that for an isolated specimen. In the
case that there is a local-pair kinetic energy so that the
chemical potential is p far away from the point in
question then the over-all constancy of the chemical
potential is maintained by a local density change in
the case of a neutral superconductor. In the charged
case, the density is almost constant and a small electro-
static potential is built up. The addition of —V'/Sm
to the chemical potential is essential for the Galilean
invariance of the T=O GL equation. With the extra
term present, 3F(r—qt/m, t)exp[i(q r—q't/4m)] is a
solution when 31 (r, t) is. This fact is connected with the
satisfying result that 31 (r, t)exp(iq r) satis6es the GL
equation at T=O if 31 (r, t) does. All the terms with q
vanish identically. This is consistent with the original
Gor'kov equations' at T=O which have the same
property and rejects the fact that for the current-
carrying case with q small, the whole Fermi surface
shifts slightly but the superconducting correlations are
unchanged (rigidity of the wave function in the London
sense, cf. Sec. U). The modification of the time deriva-
tives due to the kinetic energy of the moving pairs
which we have been discussing here appears naturally
in the correct calculation of the behavior of the order
parameter which we present in the next section.

IV. FREQUENCY AND WAVE-NUMBER
RESPONSE TO GAP VARIATIONS

In this section, we analyze in detail the conditions
under which a differential GL equation exists. The
method is simply to retain 6nite values of q, qo in the
kernels of the integral equation for the gap parameter,
Eq. (2.14) and to investigate whether expansions in
powers of q, qo are valid. For simplicity, we limit the
discussion to the linear terms [erst two terms on the
right-hand side of Eq. (2.14)] of the in.tegral equation.
It is convenient to write the equations for A&(1) and

A(1) together in matrix form:

3 (1) 3P&(1,1) 3f33K(3=,1)33(3), —(3.1)—

w'here

We take for h. (3) the variation A. (q, qp)expi(q rp —Qrp)
where iQ is a complex frequency which we afterward
continue to the real axis iQ-+ qp+irt in such a way as
to recover the adiabatic switching parameter q thereby
insuring causality. The first term on, the right-hand
of Eq. (4.1) is proportional to the integral Ii as in the
previous section [see Eqs. (3.6)—(3.9)]. With these
substitutions, the equation for h. (1) becomes

(1+-,'gXpIi)A (1)= —gh. (q, qp) exPi(q r&—qpt1)

X [L(q,qp)
—L(0,0)], (4.2)

where

L(q, qp) = d3E(3,1)exp'(q rpi —Qr») . (4.3)
—0-+qp+ i'

The matrix components of L are calculated as in the
previous section. There, the Green's functions in
momentum space have been given in Eq. (3.11) and a
typical r integral performed in Eq. (3.3). The result is

Lg3 ——Lpp ——(A p/Sq) dx dg[(1—e~—m )

=Lp3/[A (1)]'=—(3Up/Sq) dx dP

X [(1 ~~ e)n+—(3t+—e—)n ]/E+E,
where

n+= [(E+aE +qp+irt)
+ (E++E —

qp
—i3)) ']. (4.5)

In the a,bove, r3+= (exppE++1) ' and the subscripts
& indicate that the momentum argument is p&q/2.
Further, x=y q/p. We have dropped terms in the $
integrals which vanish due to particle-hole symmetry.
We shall refer to the second term (containing n+ —e )
of each component of L as the "irregular part" arising
from thermally excited quasiparticles. The first terms
are called regular parts.

It is in Eqs. (4.4) and (4.5) that the kinetic-energy
correction to the chemical potential which we mentioned
at the end of Sec. III makes itself evident. Tha, t is,
E '= $ '+

i
331(1)

i
where )~=P'/2 +mP /2 xm(t3 —q'/

8m) and t3 is the chemical potential. To handle the term
with q', imagin, e that the local value of the chemical
potential happens to be t33 ——t3+q'/Sm. Then q'/Sm
drops out of the energy, but the local gap parameter
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oscillates with tii. That is, tii replaces ti in (3.17). We
may then proceed with p& and after expanding in powers
of q, qo, we restore the actual case by the replacement
tii ~ p, —V2/8m. All we have done is to isolate that part
of the local "mechano-chemical" potential which is due
to the kinetic energy of superQuid motion i' order to
handle the space derivatives of + in a proper manner.

We now investigate the conditions under which it is
possible to expand the kernel L(q, qp) in powers of q, qp.

If the expansion exists, then the coefFicient of q" is the
coefficient of (—iV)" in the GL equation and the
coeKcient of qp is the coefficient of (28/Bt)".

Case A. T= T„qo&4
This case corresponds to the first calculation of

Sec. III which resulted in Eq. (3.5). In the present
method, we drop 6 everywhere in the kernel and find,
from Eq. (4.4),

inators in the first power of qp/vq and retrieve a first
time-derivative GL equation. It turns out to be possible
(because of the temperature dependence of the group
velocity v of the low-lying excitations) only when
T= T,. In all other cases at finite temperatures, these
irregular terms are impossible to expand and a time-
dependent GL equation cannot be derived. At absolute
zero, of course, the irregular terms are zero.

We illustrate these points by examining the imaginary
part of L. The regular terms have no imaginary part
if qo&h as may be seen from the structure of the
denominators in S+ [Eq. (4.5)j. The case qp)A has
already been treated so we only have to consider the
irregular part of L. The terms in question are

ImL, i -=—(xN0/4q) dx d((22+ —22 )

X (1 M /—E~ )b(E, E= q—,) (4.7).

Lii ——L22= (No/2q) dx d$ tanh(p$/2)

X [(2$+vpx+qp+i2t) '+ (2$+vips qp iV) '],
L» ——L2g=0.

After subtracting L(0,0) we can see that the expansion
of the kernel in q, qp is regular in the ratio v2q/qp. We
recover the Taylor series result of the previous section.
Thus:

L(q, qp)
—L(0,0)=Np[ —Kpqp+Epqp'+Epvppqp/3]

where the E integrals are defined in Eq. (3.4). Trans-
forming back to coordinate space we find

(1+pgN0Ii) At = gN pb[V'/4m—+ (3)8op)

X (8/Bt 2iI2)2 (—1/c) (8/—Bt 2iti)]At, —(4.6)

which, if we expand I~ near T„becomes the diffusion
equation given in Eq. (3.5) where the constants b, c
are defined.

Case 3. T= T„vpq&qo

This is the Cerenkov region near T,. We shall find,
as remarked at the end of Sec. III, that the diffusion

equation again obtains. We limit ourselves to the
expansion of the kernel in powers of qo since in the
Cerenkov region, as discussed earlier, the spatial
variation is described correctly by the Taylor series
method of the previous section. In each matrix compo-
nent of L, Eqs. (4.4, 5), the second term (containing
22+ 22 ) des—cribes the effect of thermally excited
quasiparticles. The energy denominators S of these
"irregular" terms, E+—E +qo, go to zero when q
and qo do thereby causing irregularities in the expansion
of the kernel. However, since the leading term of
n+—e is itself proportional to q, in the case that
~q&qo we may hope to expand these irregular des, om-

For L», the term in square brackets is replaced by
[at(1)]2/E,E .

We note immediately that for small q and the limit
(dE/dP)q/qp= vq/qp +0 the -b function in Eq. (4.7)
can never be satisfied and there is no contribution.
We therefore consider the Cerenkov region. The terms
we are discussing will be seen to give rise to the first
time derivative of the diffusion equation when A(T)/vi q

is small, that is for T=T,.
The 6 function, considered as a function of x, can

only be satisfied for f)——', (vvq —qp5') = $2 where S2= 1
+4lAl'/(vv'q' qp'). We —have assumed that vrq
)[2qoh(T)]"2, thereby restricting ourselves to the
neighborhood of T,. We perform the x integral and find

ImLii'" ——(n No/2vsq) d${(P/E) —(E+qp)

X[(E+qp)' —I
A I'3 '")[~(E+qp) —~(E)].

For L», replace the curly bracket by —[At(1)j'
XE '[(E+qp)' —

l AI '$ ' '. An analysis of the integrand
shows that for the case v~q&&d, &&qp (7=2',) we may
drop 6 and qo in the first square bracket which becomes
—28(—$) and take $2 ——22v&q. For ph«1, the second
square bracket may be expanded to the first order in

qo. In this way, we get the results

ImLii'" ——(prN 0/8) (qo/tp 7') = iN0K2qp,

ImLi2'"= ImL2i'" ——0 (LV) =0

We may expand L» in powers of q in a straightforward
manner. In the present case, v2q»A»qp, pA«1, and
the result is the same as in the preceding case A of this
section. We then find, as before,

L(q, qo) L(0,0)=No[ E2qo+—+ovF q /3j-
and the time-dependent diffusion-type GL equation is
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valid near T, in the Cerenkov region as well as when

gp& h.
Before leaving the case T=T„we should convince

ourselves that the real part of the kernel L~~ makes no
contribution to the time dependence. Aa, analysis of the
real part shows that it is at most of order qP/v~qh
and we may safely neglect it as being of higher order
than, the imaginary term of first order in qp which we are
keeping.

The conclusions of this section are as follows:

Case A. When qp&)d, the result of the Taylor series
method in the case 6~ 0 as given at the beginning of
Sec. III is valid.

Case B.When qo& vgq (Cerenkov region), the spatial
derivatives may be obtained from the regular part of
the kernel L by expansion in powers of q, or equivalently
by the Taylor series method. However, a time-depend-
ent GL equation only exists for T=T, or T=O (see
below). In the former case, the irregular part of the
kernel which arises from thermally excited quasi-
particles contributes a first time derivative and the
equation is of diffusion type and is the same as in
case A. For general temperatures, it is impossible to
expand the irregular part.

Case C. When h&qp) ~gq, the time derivatives are
obtained from the regular part of the kernel and are
the same as the result of the Taylor series method.
However, above absolute zero, the irregular term
cannot be expanded Lit behaves like (n~q/qo)'j, there
is n,o di6erential equation, even near T,. For T=O, see
below.

Case D. When T=O (kT«h), there are no thermal
excitations and the irregular part of the kernel is zero.
Then everything is given by the expansion of the
regular part and the results of the Taylor series method
at T=O are recovered.

V. CHARGE) CURRENT, AND EXTERNAL FIELDS

We now turn to the expressions for the charge and
current densities which are to be associated with the
space-time variations of the order parameter.

For clarity, we first consider the case of a neutral
superconductor. We can obtain the density and current
responses from the integral equation for the Green's
function g given by Eq. (2.12). For slow variations of
the gap, we can replace gt and g by their zeroth-order
local values SP and g~ as before. We then have, for the
deviation of g from its local value when the gap is
constant, A=A~ (we limit ourselves to terms linear
in 5A):

bg (1,2) =— d3[S((1,3)g&(3,2)bht(3)

+ Bl (1,3)&l'(3,2)~~(3)j.
From Bg, we may obtain the charge and current

responses"

&p(1)=p(1)—+=2~b(1,1'), (5 1)

j (1)= (i/2m) [(V2 —Vz) 25b (1,2)]2~q+. (5.2)

The subsequent calculations are quite similar to
Secs. III and IV. From the Taylor series method, valid
at T=O, we find

Bp= (iN,/4)I, (~to —act ),
j= —(im Non p'/6) J3 (lV Vh —

EVERY),

(5 3)

(5.4)

where I„and J„have been de6ned in Eqs. (3.13) and
(3.10). Note that at T=O, Eq. (3.14) applies for I„
and J„.

The continuity equation at T=0 is satisfied by these
expressions as may be verified by using the GL equation
at T=O given in Eq. (3.15) which relates the space
and time derivatives of h. It is to be noted that the
density involves a first time derivative since the GL
equation contains 6".If the spatially varying chemical
potential is introduced into the time derivatives of
Eqs. (3.15) and (5.3) as discussed at the end of Sec. III,
then the continuity equation still obtains provided
terms of order 7'4 are neglected ig, the GL equation,
Eq. (3.15).

When T&0, we restrict ourselves to the Cerenkov
region. Then, as before, the spatial derivatives have been
treated correctly and the expression we have given for

j remains valid LEq. (5.4)j. For the density, we use
the method of Sec. IV and we have to consider the
irregular terms in the density kernel which arise from
thermal excitations. These are proportional to

(qo/q) «dt(N+ —I-)
XLE+E (E+—E=qp

—ig)]—'. (5.5)

The notation is that of Eq. (4.4). Equation (4.7) is
the corresponding irregular term of the gap kernel. The
leading term of the real part of the expression (5.5) is
just

2qo d&E 'Brl/BE= qo(2~Jg Ig) . —

If we combine this with the contribution of the regular
term found from the Taylor series in Eq. (5.3), the
factor I3 in the latter equation becomes 2mJ3 and we

may write

Bp= (imNOJ3/2) (2th' . ddt'), — (5.6)

j= —(imNovl '/6) J8 (At V6 .hV ht) . (5.7)—
There are two remarks to be made. First of all, we

are neglecting the imaginary part of the expression
(5.5) for the irregular part of the density kernel. This

"Reference 3, Sec. 37.1; L. P. Kadanoff and P. Martin, Phys.
Rev. 124, 670 {196i).
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neglected part corresponds to a dissipative contribution
to 8p but it cannot be expressed in differential form and,
unlike the situation for the analogous real part of the
gap kernel J.ii'" Lcf. Eq. (4.4)], we have not succeeded
in demonstrating that it is smaller than the term we
keep. We may note, how'ever, that this dissipative term
is proportional to qo' as may easily be seen from the
expression (5.5). Secondly, with the approximations
used. (first order in q, qs) and the neglect of the dissipa-
tive term, the final expressions, Eqs. (5.6) and (5.7),
for bp and j do not satisfy the continuity equation
according to the time-dependent GL equation in the
Cerenkov region near T, given by Eq. (4.6). Of course,
the superfluid density p, ~

~
6 ~'Js is not conserved under

Cerenkov conditions as discussed at the end of Sec. III.
However, the original equations are consistent with
continuity. Indeed, if we write, as in Sec. IV t Eq.
(4.1)j and in this section,

A(1)= —gFi(1,1)—g d3 Ks(3,1)hA(3),

p(1) =pi+ d3 Kp(3, 1)bA(3),

j(1)= (i/2ttr) (Vs—Vi) d3 K, (1,3,2)5A(3)
2 +1

then we can prove happ(q, gp) = tl' j(g,qp).
We turn now to the case of a charged system in the

presence of external fields. As we have earlier remarked,
we restrict ourselves to the local limit. Then we may
take electromagnetic 6elds to be everywhere slowly
varying in space and time. That is, they will be essen-
tially constant in a region $s (coherence length) and
over times of the order of 1/kT. . Then we may follow
the procedure used by Gor'kov in the static case.2 ' If
A„=(A/c, —y) V A=O, and x„=(r,t), it may be
shown that

G (x,x') = expgieA „(x)(x x')„jG—'(x,x'),
F(x,x') = expgieA „(x)(x+x') „gF'(x,x'), (5.8)

where O', F' satisfy the Gor'kov equations without A„.
This form for the Green's functions evidently implies
that we should replace BA/Bx„by (8/Bx„2k'„)h-
wherever it appears in all of our previous expressions.

In addition, we have to modify the charge expression:
The prescription of Eq. (5.8) does not account for the
static local density shift due to the scalar potential p
(Thomas-Fermi term), bp= —2Xsesg. Furthermore,
the chemical potential appearing in the phase of the
order parameter is now a local one p~ which rejects the
local density change (tri=ti+5p/2$ss). Then for the
charge and current, we have

5p = (urXse Js/2) [ht (8/Bt+2ip) 6 cc $ 2Fsssp, (5..9—.)—
j=(-'.~:;.J,/6)p~ v A-, .1, (5.10)

where"
p =ti i+ey v—"/8tN,

V'= V—2ieA/c.

(5.11)

(5.12)

These same results may be derived by a perturbation
procedure and similar expressions have previously
been written down by others. ' ' 'r From Eq. (5.11) we
see that if there is a local spatial varia, tion of 6, then
it may be balanced by a scalar potential Q to make the
mechano-electrochemical potential constant throughout
an isolated specimen. Similar observations have been
made before by several people. "In the presence of the
long-range Coulomb interaction, we impose the condi-
tion bp=0, otherwise the motion of the order parameter
couples to the plasmon mode. This puts a restriction on
the motion of the order parameter through Eq. (5.9).
We shall refer to this again in Sec. VII.

If we follow the prescription above for the GL equa-
tion, Eq. (3.15), at absolute zero we find that the vector
potential disappears completely (recall, we have the
London gauge V A=O). This does not occur for the
impure case to be discussed in the next section. The
result is expected and reQects the London rigidity of
the superQuid wave function against a magnetic field.
Under these circumstances, the expression for the cur-
rent reduces simply to the London equation j= —e'AX/
mc. The application of the prescriptions of this section
to the time-dependent GL equation at T=o is made
in Sec. VII.

VI. MODIFICATIONS FOR DILUTE AI LOYS

In this section we outline the procedure necessary to
discuss the case of dilute superconducting alloys and
we apply it to the linear terms of the GL equation.
The general procedure for dealing with the case of a
dirty superconductor is well known": It is convenient
to w'ork always in the imaginary frequency domain
rather than in the time domain of the Matsubara
technique. In the pure case, the corresponding p(oi, p)
and g(oi,p) are given in Eq. (3.7). In the impure case,
the technique for averaging over the positions of
randomly placed impurities is as follows: One replaces
to and 5 by oi=tico and 2i=rfh where rf=i+1/2rh.
Here 1/2r is the decay rate from impurity scattering
in the normal state and 8= (o&s+

I
a Ix)"s. In addition,

one must include the vertex corrections due to the
impurity scattering. Our method is similar to that
used by Maki and Tsuneto. "Finally, we observe that

"In Eq. (5.11) we have included the kinetic-energy correction
to the chemical potential vrhich vre discussed at the end of Sec.III.

'7P. W. Anderson, ¹ R. Werthamer, and J. M. Luttinger,
Phys. Rev. 138, A1157 (1965).Our charge expression for 9=0 (no
kinetic-energy term) is equivalent to that of this referen. ce if in
the latter one takes full Thomas-Fermi screening. That is, one
assumes the total electrochemical potential to be constant all over.

"See, for example, Ref. 1'' and M. Stephen, Phys. Rev. 139,
A197 (1965).

"Reference 3, Sec. 39.
"K.Maki and T. Tsuneto, Progr. Theoret. Phys. (Kyoto) 28,

163 (1962).
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just as in the theory of conductivity, " the variations
in the energy gap couple with variations in density via
the impurity scattering. In the pure case we may write
our starting equations [Eqs. (2.12) and (2.13)] in
matrix form

tion, s. It is then easy to solve the integral equation for
bA. , a quantity labeled by incoming 4-momentum

p+ ——p+q/2, outgoing 4-momentum p = p —q/2 and
4 momentum transfer q:

G= G)—Gibe, (6.1)
where

S~ — 8A~ 0

where X is the corrected gap vertex and m is the density
vertex. These quantities satisfy an integral equation
similar to that of Maki and Tsuneto" which we may
write as follows

»= bx+I
~

v ~'E»,

where
~

n
~

' represents symbolically two scatterings from
the same impurity and e is the number of impurities.
We have rearranged the notation so that bh. , SX are
four-rowed column vectors and K is a 4&(4 matrix:

5h~

0
.0

'X

5A.=
7r

'

-7r r

Bi 8
p lpga

gi5:t
p&tg-

—gp
pit@

Bid
P)~$

—FiF
Bi b

Bi 8—
Fig
Bi 9'
$)Ft
Bi 8

(6.2)

Note that bX gives the uncorrected vertex part and
corresponds to bA in the pure case. There is no bare
density change; m and ~+ represent the density change
generated from 5A and 86~ in the presence of impurity
scattering.

We now have coupled integral equations for G and
6A.. We solve them by iteration. As remarked above,
we are going to limit ourselves to linear terms in 6X.
It is a straightforward matter to write the equations to
the second order in bX. In fact, the static case has
already been treated by Tewordt. "Here, we replace G
by G& everywhere in the kernels of the integral equa-

"L.Tewordt, Phys. Rev. 137, A1745 (1965).

where the Green's function g is defined by g (1,2)
=g(2, 1). ln the presence of impurity scattering, we
have to modify these expressions as described above.
G goes over to the Green's function for the alloy and
the vertex bA has to be corrected for impurity scattering
and coupling to the density. Call the corrected vertex
». Then Eq. (6.1) remains the same but with»
replaced by 8A. and Green's functions for the alloy are
used in the matrix G. The corrected vertex is given by
the matrix

where E' is given by Eq. (6.2) with g& and P& every-
where, Since we are dealing with elastic impurity
scattering, the frequency part of the 4-momentum p'
in Eq. (6.3) is the same as that of p. We neglect the
small dependence of 8A on y" and perform the integral
over y'. We then 6nd

»= (1—L) '8x

= (8n'r) ' d$'dQ'K'(P~', P ') . (6.4)

In Eq. (6.4), 50' is the element of solid angle for the
vector y'. The calculations of the matrix components of
I. is a straightforward matter and is carried out in
Appendix A where the result is displayed. By matrix
manipulation we can find 5L= (1—L) '6x. The result is

S~h (1—2I)»
[8+k —(S~h= co+co )I]» 6'I86"—

—(hi)2I86+ [8+8= (hph= (a+id )Ij5LV

i [dicopoh+ A(—v 56~]I
i [ht(o 6h+co~hbh—t]I

where or~=&o&i20, h~=[co~'+
~

A~']i". Here 0 is the
Matsubara frequency 2n.n/P associated with the
frequency component of the 4-momentum q. In the
end, iQ~ go+i' as in Sec. IV [cf. Eq. (4.3)]. The
integral I is de6ned by (see Appendix A)

I= (1/4rq) xd(8 ++8 +1/r+ivpa)

We use the result for 5A in the 2, 1 and 1,2 components
of the matrix equation for G [Eq. (6.1)] to get the
linear term of the equation for the energy gap which
is analogous to Eqs. (4.1)—(4.3) of the pure case:

p,

XbA. (iLQ) ~'D „+,„exp'(q rl go~i)), (6.5)

where the a on Fp~ inducates that we use the Green's
function in the alloy.

We observe that the first term on the right-han, d side
of Eq. (6.5) is similar to the ordinary gap in the alloy.
It is well known that nonmagnetic impurity scattering
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has no effect; therefore, its value is once again —-,'gloIj
&&At(1) [cf. Eq. (3.8)].What remains is the evaluation
of the integrals

where
J = (1/P)Q 8' "(8+1/2r) '

Comparison with Eq. (3.8) shows that the space deriva-
tive terms which are linear in the gap variation have
precisely the same form as in the pure case but with the
coeKcients J„replaced by J„.The contribution of the
second-order terms in 8h have a similar structure and
may be extracted from Ref. 21.

To discuss the time-derivative terms it is necessary
to evaluate the sum on frequencies and perform the
continuation iQ+) qs+iri This is .a delicate matter
with which we deal in Appendix B. In the pure case, we
recover the results of Sec. IV. We may anticipate the

—Ez,.'(p, p)]Q. (q,Q),

where @=p q/p. We perform the $ integral first. This
has already been done in the evaluation of the matrix
L in Appendix A. The result is

(1+-,'gX,I,)at(1)
= —(gz'lV p/2Pq)P [4zrrqrI/(1 —2I)—(zrpq/$)o& pbo, p]

&&[(1+&v oi /8 8 )hat —(Ats/h h )56], (6.6)

where, on the right-hand side, after performing the
frequency sum and continuing iQ ~ qs+irl, we interpret
q, qs as iV—and ir)/r)t just as in Sec. IV. We remark
that the effect of impurity scattering appears only in
the quantity

g, (q, 8++8 )=4zr qrI/(1 2I) — (6.7)

and that the pure case is obtained immediately with g„.
We now investigate the terms on the right-hand side

of Eq. (6.6) which can appear in the GL equation. The
various limits now involve 7- and are quite complicated.
We do not give a complete discussion here. We begin
with the space-derivative terms, proportional to q'.
For these, when e~g)qo, we may set Q=O. Then we
have the following simpli6cations

By= B ) Goy = Go
~

I= (1 /2»rq)t ani[zpqr/(2$r+1)].

To obtain the term in (»q)', we expand the q-dependent
quantity g, (q, 28) of Eq. (6.7):

g (q,2h)= (»q/h)[1 —(&rsqs/128)(8+1/2r) '].
The linear term in q is cancelled by the second term in
the square bracket of Eq. (6.6). We drop it and 6nd
for the term proportional to g'

results for the dirty case at T=O by the following
argument. In the pure case, we found that the second
time-derivative terms are found at T=O by setting

g =0 first since the irregular terms arising from thermal
excitations are not present. If we do this for the alloy,
we expect that the impurity scattering does not alter
the time-derivative terms since the scattering is elastic
This conjecture is easily verified. The relevant quantity
depending on q, r is, from Kqs. (6.6) and (6.7),

(1/2q) g. (q, h++ h-) — - »/(@++ h-)

which is independent of r as is the rest of the right-hand
side of Eq. (6.6). Therefore, for the second time-
derivative terms at T=O we have the same expression
as in the pure case. Actually, this result holds even if
q~0 if the scattering is strong enough. The discussion is
in Appendix B. The same conclusion (pure result)
obtains for the diffusion, or first time derivative, term
when qo)h near T,.

Finally, we look for the first time derivative near T,.
We must investigate the imaginary part of the right-
hand side of Kq. (6.6) which is linear in qs. We assume
the real part is small as we were able to prove in the
pure case in Sec. IV. The details of the analysis of the
imaginary part are presented in Appendix B. The
result is that in the extremely dirty limit, the same
diffusion term is obtained near T, as in the pure case
but the Cerenkov condition is relaxed since the momen-
tum is not sharp in the alloy.

We conclude that the effect of alloying on the linear
GL terms proportional to 5h, SLY appears only in the
space derivatives as given in Eq. (6.8). The time
derivative terms given in Secs. III and IV for the pure
case are unaffected.

VII. REMARKS AND CONCLUSIONS

A. Comyarison with Previous Work

The most prominent feature of superconductivity as
well as superQuidity in liquid helium is that quantum-
mechanical effects are exhibited on a macroscopic scale,
From the analysis of Aux quantization, ' for example,
we know that the order parameter 6 plays the role of a
macroscopic wave function. It is therefore reasonable to
expect the time-dependent generalization of the GL
equation to have the same form as the Schrodinger
equation, similar to the Pitaevskii equation" for the
condensate wave function in the Bose system. In fact,
Ginzburg proposed just such an equation back in 1951.'4
Our analysis has lead us to a more complicated result
even at T= 0 [see Eq. (3.16)]where one would expect a
purely wave-like behavior for A. That the derivative

"J.Bardeen, Phys. Rev. Letters 7, 162 (1961)."E. P. Gross, Nuovo Cimento 20, 454 (1961);L. P. Pitaevskii,
Zh. Eksperim. i Teor. Fiz. 40, 646 (1961) LEnglish transl. :
Soviet Phys. —JETP 15, 451 (1961)g.

'4 V. L. Ginzburg, Zh. Eksperim. i Teor. Fiz. 21, 979 (1951).
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8'/BIs appears together with sv&'8'/Bx' in Eq. (3.16) is
of course due to the fact that superconductivity involves
electrons near the Fermi surface and is not surprising if
we remember that the system possesses a phonon-like
collective mode with the dispersion relation qo' ——3v~'q'

(see below). Nevertheless, the essential features of a
quantum-mechanical vrave are retained in the expres-
sion for the phase of 6, that is for the chemical potential
vrith vrhich 6 oscillates in time. This is clear from Eqs.
(5.9) and (5.11), for example. Consequently, as we
shall see belovr, the London acceleration equation
results, not from the time-dependent GL equation, but
from the charge equation. In considering this problem,
one must bear in mind that the chemical potential and
hence the charge density are not directly related to the
magnitude of 6 but rather to its phase.

A more recent discussion of the time variation of the
GL order parameter has been made by Stephen and
Suhl' in a brief note. They discussed the problem
near T, from a point of vievr similar to that of the
present vrork. They omitted all dissipative terms and
therefore failed to obtain the diGusion equation.

The spatial part of the GL equation, generalized to
all temperatures, in the local limit has previously been
vrorked out by several people. ' " In particular,
Tsuzuki~ and Werthamers give the result in a form
vrhich is equivalent to ours.

Finally, we would like to mention the recent work of
Stephen" who has discussed transport equations for
superconductors by the Green's function technique.
In his paper, local equilibrium is assumed to have been
established. It is the development of this local equili-
brium by interelectronic interactions which is described

by the diffusion equation of our work.

3, Collective Modes

The time-dependent GL equation near T=O which is
of the wave type LEqs. (3.14)—(3.15)) leads to the
propagation of collective modes in the follovring
manner: We 6rst linearize the equation about equili-
brium. Note that Ir= (—2/gXs) —2rrh J's' Rex where x
is the deviation of the gap from its (real) equilibrium
value 6, and Js' is given by Eq. (3.10) with h=h, .
The result of the linearization is

6,'Js' ReX= (s '/12)(Js'Vx —6,'J 'P ReX)
—(1/8rr) (Is'xt" API; ReX"), —

where I„' is given by Eq. (3.13) with h=h, . We
equate separately the real and imaginary parts and
assume the variation exp(ig r —inst). We find the
dispersion relations

(Imh) qs' ——(2s Js'/3Is')sp'q',

(Re~) q,'= L8~/(I, —SPIs )j
XL(J, —~, J, ).,~/12+~, J, j.

The 6rst dispersion relation, for oscillations of the

imaginary part of A, corresponds to the Anderson
mode" of the neutral superconductor. At T=O, vre

have 2mJ3=I3 and the mode propagates with the
velocity ss/VS as may be seen immediately from Eq.
(3.16). That this mode couples to the density is easily
seen from Eq. {5.6). Of course, in the charged case,
when the long-range Coulomb interaction is present,
this longitudinal density Quctuation occurs at the
plasma frequency. This comes about because the
motion of 6 is restricted through Eq. (5.9), Poisson's
equation and the requirement bp=0. For a detailed
discussion from the Green's function point of view, see
Ambegaokar and Kadano8. 26

We note from Eq. (5.6) that the oscillations of the
real part of 6 which are described by the second
dispersion relation give no density fluctuations. Un-
fortunately, the second dispersion relation is incon-
sistent with our approximations. At T=O, the threshold
is qs ——87rJs/(Is —hpIs) and is greater than 6, itself,
i.e., the condition for slow variation is not satis6ed. At
higher temperatures, vre cannot produce a differential
equation in the regime ~&qo&spy.

C. Nucleation

We have used the time-dependent GL equation near
T, to investigate the question of nucleation of super-
conducting regions due to interelectronic interactions.
In reduced units, the important terms of Eq. (3.5) or
Eq. (4.6) are the diffusion equation

M/83= %%+(1—~%~')4,

where 4'=1 in equilibrium, the unit of length is er/
h,+6, the unit of time is rr'k2', /86/ and 6, is, as before,
the equilibrium value of the gap (we have 5=1, as
usual). An interesting example is that of the growth
of the order parameter 4' starting from an initial
distribution representing a superconducting bubble of
width 1 and height «1. The growth of 0' oGers no
surprises. The bubble spreads faster than it grows.
Before )=2 it has spread to a width =j.0 vrhile the
height at the center has doubled. Of course, if the
curvature of the initial 0' is great enough, it vrill initially
decrease in the maximum region as diffusion takes place
to regions of small 0'.

D. London Acceleration Equation

An important problem related to the time variation
of the order parameter is that of determining under
vrhat conditions one can derive London's acceleration
equation for the superRuid. '~ We have throughout made
the assumption that the thermal excitations are at
rest; we therefore limit the present discussion to T=O.

"P. W. Anderson, Phys. Rev. 112, 1900 i1958l.
"V, Ambegaokar and L. P. Kadano8, Nuovo Cimento 22,

914 (1961)."F. London, SNperguQs (John %iley R Sons, Inc., New York,
1950), Vo|. 1, p. 54.
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We begin by writing the time-dependent GL equation
of Eq. (3.15) and we include the external flelds according
to the prescriptions of Sec. V [cf. in particular, Eqs.
(5.8)—(5.12)j. Then the only change in Eq. (3.15) is
to replace the space and time derivatives of iP by

V'e= (v —2@A/c)e,
L%= [it/N+2o (p i+eP V—"/8m) 5%'. (7.1)

j=Xev, (7.4)

p= eN p[S'+2—(lj,i+eg) V'R/4 R—m+m 5o
—2Npe'g, (7.5)

where v= (VS—2eA/c)/2m is the superfluid velocity.
We now show that the London acceleration equation

follows from Eq. (7.5) if we can neglect the spatial
variation of R. We note that the external field does
not appear in Eq. (7.2) for R. We may then take R=Rp,
the equilibrium value, and from the gradient of Eq.
(7.5) we derive

Bv/Bt+v Vv= (e/m) (E+vXH/c)
—(1/m) V[@~+(p/2eNp+eP)], (7.6)

which is just the acceleration equation.
We wish to make several comments on these results:

First, we remark that the derivation of the London
equation depended on the neglect of the V'R term in
Eq. (7.5) which is justifled if the external fields do not
appear in Eq. (7.2) for R. At T=O, they only can enter
in the time-derivative part of the Gl equation. As

As we remarked near the end of Sec. V, the terms
involving 2 in the spatial derivative part cancel when
the London gauge is used. However, we may proceed in
a general gauge. It is convenient to separate the real
and imaginary parts of 4 by writing

%=Re's

where R(r, t) and S(r,t) are real. The GL equation for
0' reduces to

(4mB PR'/R, 4)ln(R/R, )
= -', ( [V'R/R —(VR/R)"-)

—(3/op') [R"/R —(R'/R)'j) (7.2)

VPS—(3/or')S" =2e[(1/c) V A+ (3/op')P'j. (7.3)

In writing these equations, we have, as before, restricted
ourselves to second derivatives and dropped cross terms
in space and time derivatives. We have as well not
written terms of higher order than first in the fields
when a derivative is also involved (to do better is
straightforward but tedious). Equation (7.3) has been
written before by Ambegaokar and Kadanoff. " It is
shown there how Eq. (7.3) arises in a gauge-invariant
perturbation treatment of the external fields.

We can also give the charge and current expressions
in terms of R and S by making the appropriate trans-
formations of Eqs. (5.9) and (5.10).The results are

indicated below Eqs. (7.2) and (7.3), we have not
succeeded in formulating precise criteria for dropping
the field-dependent terms. However, in case all the time-
derivative terms are small then everything follows.
The criterion for this is

qo/ho«1/w = $o/X =&s'q/6 ov&, (7.7)
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APPENDIX A

In this Appendix, we evaluate the integrals of Kq.
(6.4) in order to determine the elements of the matrix I.

where X is the penetration depth and ~ is the Abrikosov
parameter. Under this condition then,

~
%~ =R changes

quasistatically. Also, from Eq. (7.3), we find that the
superQuid behaves as an incompressible ideal Quid:

V'S—2eV A/c=V v=0.

Thus, we conclude that at T=O and in the local limit,
London s theory is valid if condition (7.7) is satisfied.
As remarked earlier, it is interesting to note that the
hydrodynamical equation arises not from the GL equa-
tion itself but rather from the charge equation.

At finite temperature, Eqs. (7.4) and (7.5) are still
valid provided we assume that the normal Quid is at
rest and that the other approximations of Sec. V which
led to Eqs. (5.9) and (5.10) for the charge and current
are valid. We can still drop the time-derivative terms
in the GL equation when the criterion (7.7) is satisfied.
However, the equation for R which corresponds to
Eq. (7.2) now contains the phase S and the vector
potential A explicitly (recall that A only drops out of
the spatial derivative part of the GL equation at
T=O). Therefore, another condition is required for
neglecting the spatial derivative of R on the right-hand
side of Eq. (7.5) to obtain the acceleration equation.
We do not pursue this matter here because of our
restrictive assumption concerning the motion of the
normal component. In the impure case also the situation
is much more complicated since the equation for R
will contain A, even at 7.'=0.

Note added ie proof. Using a slightly different method,
M. P. Kemoklidze and L. P. Pitaevskii, Zh. Kksperim.
i Teor. Fiz. SO, 243 (1966) [English transl. : Soviet
Phys. —JETP 23, 160 (1966)j have derived results
similar to ours for the neutral pure superconductor at
absolute zero.
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which determines the vertex corrections in the impure case. The integrand is the matrix Z defined in Kq. (6.2)
with g( and Fd everywhere. These Green's functions are

bi (p o)) (]+s(p)/($2+ 82) g
—

(p (d) ($ t(p)/($2+ F2) 5' (p (d) $/(P+ 82) P t (p (d) Qt/($2+ gs)

where f=P'/2m —p, o) is the Matsubara frequency (2m+1)rr/P, 8'=&p'+ ~Z~' and A=h&=h(1). Quantities
with tildes are the original quantities multiplied by rf„=1+1/2r8. Thus, o)=rf„&p.

As an example, we compute L~g.

L»—- (1/8s'r) d$'d0'K»'(p+', p ') = (1/8rr'r) d('d0'8;(p+', o)+)(ot(p '&o) )

=(1/4 q) dx d&(g s(p )—(& +i )[($ '+8 ')($ '+8 ')] '

In the above, 4,= $&t)i x, (p~=o)&-', 0 where 0 is the Matsubara frequency 2es/P associated with the frequency
component of the 4-momentum q. It is convenient to perform the $ integral first. The result is

Lts= (1+(p+o)—/hiB )I,
where

I= (1/4rq) dx($++ h +1/r+st rdx)

The other elements of L are evaluated in a similar manner. The complete matrix is given by

—(~')'

ZG)+lg

—zA~M

—(~)'

8+8 +o)+o)

—Zco+5

zA M

8+h —co+a)

iA(o

ico+A~

—(gtrNp/2r)sqP)g„g, (q, U+U )[(1 o)p) /UU )SLY-
+ (UU )'(~t)'"o~] (B1)-

where

g, (q,Z) =4t)r qrI/(1 2I)— (B2)

APPENDIX 3
We outline in this Appendix the analysis of Eq. (6.6).

We rewrite the required frequency sum by shifting the
origin of o) by —',0 and defining U=i8= [—o)' —

~

d, ~']' '.
We then have, in an otherwise obvious notation, the
frequency sum

tanhth/2 in the counterclockwise sense and no other
singularities of the integrand are included.

In addition to the poles, the integrand has four
branch points coming from the square roots U and U ~

They are located at s=&A, &6+i0. We choose cuts
extending from these points to +~ . There are no
other singularities arising from g, (q,Z). We deform the
contour so that it encircles the cuts as shown in Fig. 1.
It is not difFicult to show that the integrals along 1 and 8
are equal. The same is true for the pairs (2,7), (3,6),
and (4,5). Thus, the integral is just twice the contribu-
tion from the lower cuts. Now we perform the continua-

I= (i/4qr) dx(Z+i/r —t)d x)
—'. (B3)

We express the sum as an integral in the standard
manner by considering ice to be the complex variable z: ~ ~ iG

—(dZ, /8(v d)gds tanh(dz/2)d, (d, U+ P )

)([(1+ss /UU )f)gt+(UU )
—'(g&)si)g], (B4) Fio. 1. Contours for the integration of Eq. (B4). The arrows

indicated how the upper cuts approach the lower ones in the
continuation sQ(fp+f)i. The upper branch points go to ~ ~a~where z =z—iQ and U is now given in terms of z by +go+i&. The numbers indicate portions of the integration that

U=[a' —

ldll']'".

The contour encircles the poles of are referred to in the text
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tion iQ~ qp+ir/. The upper cuts approach the lower
ones and take up the position shown in Fig. 1. The
upper branch points (for U ) are shifted and then U
has different phases along the lower cuts (integrals
3, 4, 7, 8) than it had before continuation. In the pure
case, this leads to the appearance of poles in the
integrand of the integraII which appears in the definition
of g„(q,Z) [cf. Eq. (82)]. These poles insure energy

and momentum conservation in the diffusion process,
they only appear (for qp& 6, T= 2",) when vt)q) qp, and
they give rise to the first time-derivative terms. In the
alloy, it is more complicated since the momentum is no
longer a good quantum number. Ke remark, however,
that no poles appear between the cuts but that the
phases of U must be kept careful track of. The result
of the analysis is

—(gN p/4iv/ q) —2 dy tanh(py/2) [Reg, (q,Zi) (yy bA +At'bh)/v/Tv —Img, (q,Z,)bled]

+ dy[tanh(Py+/2) —tanh(Py/2)]g, (q,Zp) [(1—yy+/vtvt+) RV —6"'bh/vtrv+]

dy[tanh(Py+/2)g, *(q,Zp) —tanh(Py/2)g, (q,Zp)][(1+yy+/wiv~)RV+At'bh/ww~], (85)

where

[yp +2]1/2 v/ [gp (y q )p]1/2

~+= L(y+q )'—~']'"
and

Zi=w+vw ) Zp=v't+ —v't ) Zp='Ky+w.

We may understand the role of the three integrals by
passing to the pure limit and comparing with Sec. IV.
All three integrals contribute to the second time-
derivative terms; they combine in a simple manner
when q

—+0. However, at T=O, where we expect this
procedure to be valid, the second integral is zero and
it is sufBcient to consider only the first and third.

The diffusion term near T, comes from the second and
third integrals which contain [tanhPy+/2 —tanhPy/2],
the factor which describes thermal excitations.

For the space derivatives, we set qo
—+ 0 at once and

only the third integral survives in the pure case. This
remains true in the alloy but we have already analyzed
this case in the main text.

To analyze the second time-derivative terms we look
at absolute zero. Then only the first and third integrals
survive and are given by

In the first integral, ~Zi~ = ~w+iw
~
=(qpA)''&&vrq

«1/r We .furthermore assume that the impurity
scattering is strong enough that vt qr«(qpA)'/'/vpq«1.
Then g, (q,Zi) ls simply 2ivt;/q/Zi which is the same
result as for the pure case when g

—+ 0. The other inte-
gral contains g, (q,Zp) where (2qpd)'/'&Zp ——w++vt& pp.

Then in the same extremely dirty limit

Img, (q,Zp) = (2vrq/Z p) [1+-', v'tqr'
X (ZpPr'+1) ']=2vFq/—Zp,

which once again is the pure result when q~ 0. The
conclusion is that if (vpq)'r(qph) ' '«1 then the second
time-derivative terms are the same as in the pure case no
matter how q goes to zero.

Ke conclude this Appendix with a discussion of the
diffusion term near T,. We need only the imaginary
part of the whole expression (84). The first integral
does not contribute. The contributions of the second
and third integrals may be combined by a change of
variable from y to Z& ——(y~' —6')'/' —(y' —6')'/' in the
second integral and to Zp ——(y+' —cV)'/'+ (y' —6')' ' in
the third. We work near T, so we neglect second order
in 3, where feasible. The result is

—(gNp/2vpq) dy[Img, (q,Zi)bled —Reg„(q,Zi)

—(gNpi/4vt) q) dZ{t anh[P(ZT+ pq) 4/]

X (yy RV+LV'bh)/rviv ]+ dy Img, (q,Zp)

X[(1+yy+/7/vt/+) bh"+ &t'bh/7//)J/+]

To evaluate the functions g, we work in the very dirty
limit vvqr= ql«1. Then from Eq. (82) we may write

g, (q,Z) = (2iv/ q/Z) [1+,'v p'q'r'(Zr+-i)-']
X[I j(vt) q r/3Z) (Zr—+i) ] (86)

—tanh[P (ZT—qp)/4]) Reg, (Z)bled/2',

rP =1+4~a
~
P/(ZP —qpP).

Because of the temperature-dependent statistical factor,
the integrand is exponentially small if Z is as large as
1/r. It behaves as exp( —$p/l)«1 where $p is the
coherence length. Then, from Eq. (85) we have

Reg, (q)Z) =2v/ q(v p q'r/3) [Z'+ (vJ'q r/3)'] '

Furthermore, we may expand tanh[8(ZT+qp)/4] about
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q p
——0, keep only the first-order terms and drop qp pzr3(Z). Thefinalresultis thesameasinthepurecase:

everywhere else. The result is —(gSpzzr qp/8 3hz.

—(glVpiPqp/4) dZ sech'[P(Z'+4
~

A
~

')'"/4]

X(sZ",sqs)t (Z+4(a~ ) (Z+re, q, )j-3gt.

We consider the case se'q'r/3»2A. Then we may drop

~
6 ~' everywhere and pass to the limit of strong scatter-

ing so that the v.-dependent term may be replaced by

The approximations we have used to obtain this result
are summarized as follows:

q/«1,
T=T.
i/$p= AT,r«1,
h«vp'q'v «k T, .
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The low-temperature susceptibility and specific heat of thorium and uranium have been measured. It is
found that thorium becomes a superconductor at T,= (1.374&0.001)'K, and has a value of C„(T,)/yT,
=2.42, in good agreement with BCS theory. (Here C„is the superconducting electronic specific heat, and

y is the temperature coefBcient of the normal electronic specific heat. ) The 7 and OD for thorium were found
to be (4.31+0.05) mJ/mole degz and (163.3&0.7)'K, respectively. Both uranium samples appeared to
undergo superconducting transitions when observed magnetically, yet both exhibited only normal-state
behavior in their specific heat. Hence it seems likely that the apparent superconductivity of alpha uranium
is not characteristic of the bulk metal. The y and O~ of the purer uranium sample were found to be (10.03
&0.02) mJ/mole deg' and (207+1)'K, respectively.

INTRODUCTION

HERE have been several investigations of super-
conductivity in the actinide metals thorium"

and n uranium. ' ' According to magnetic measurements,
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both metals become superconducting below 1.5'K, but
whereas thorium shows a narrow transition at a tem-
perature ( 1.37'K) which varies little among samples,
o. uranium shows surprisingly broad transitions at tem-
peratures which vary considerably from sample to
sample, even in high-purity material. The transition
temperature of thorium, like that of most supercon-
ductors, is depressed by the application of pressure, 6

whereas that of n uranium rises dramatically, 10 kbar
being suKcient to raise it above 2'K.~ Another sur-
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