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If D is comparable with
~
Vg, ~s, the following

occurs. Those parts of the transition probability which
would be within the interval D in the case of no con-
Gguration interaction will be partially shifted out of the
region of integration if the interaction is effective. These
parts of the transition probability might be replaced,
however, by comparable amounts stemming from ad-
jacent terms. The average cross section is also in this
case approximately given by the mean value represented
by Eq. (42).

The previously considered absorption measurements
in xenon are used for a check of the approximation
(42) as follows: As the hitherto undetermined part of
os in Eqs. (42) and (43) is only dependent on Q, but
not on

~
V~~', and the value of o is included in the

measurements, it is possible to calculate Q as a function
of

~

V~~' from each of the two equations. These func-
tions are also shown in Fig. 3. The designated limits of
error contain the uncertainty in the evaluation of fT

and os. The curve having the larger Q values represents
Eq. (42). As is to be expected, only this equation is

consistent within the limits of error with the results
previously obtained.

Measurements of the energy of the electrons ejected
by photo-ionization in the heavier rare gases at energies

lying above the second ionization limit I'1~2 show two
groups of electrons having diferent kinetic energies.
The intensity ratio of the two groups was measured
earlier. This ratio also allows the value of the parameter

Q to be determined. In accordance with the calculations
carried out before, we get Q= 1.88 which is drawn as a
dashed line in Fig. 3. The excellent agreement with the
results taken from (38) points out that the inclusion of
an additional configuration interaction between the
continuous states above the P1~2 limit is either very
small or nonexistent.

This research was sponsored in part by the Deutsche
Forschungsgemeinschaft. The computations were car-
ried out at the Institut fur Instrumentelle Mathematik,
Bonn, using the IBM 7090.

' F.J.Comes and H. G. Salzer, Z. Naturforsch. 19a, 1230 (1964).
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Dipole Polarizabilities of the 2'St and 2'So States of He and Li+t
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Variational calculations of the dipole polarizabilities of the two lowest excited states 2 'SI and 2 'So of He
and Li+ are made with 72-term variational wave functions. Because of the slow convergence for the He 2 'So
state, the wave function for this system is extended to include 96 terms. The polarizabilities are determined
from the interaction energy of the atomic system with a uniform external electric field. The most complete
calculations gave 315.63 atomic units and 801.95 a.u. for He, and 46.88 a.u. and 98.19 a.u. for Li+,
for the 2 Si and 2 'So states, respectively. The only previous calculations are those for helium, in which
Dalgarno and Kingston used theoretical oscillator strengths. They obtained 313 and 788 a.u. for the 2 3S1
and 2 'So states, respectively. The ground states are also calculated as a check on the method used. Excellent
agreement with the previous calculations and with experiment is obtained for the ground states of H, He,
and Li+.

I. INTRODUCTION
' 'N recent years, great effort has been expended in the
- ~ study of two-electron systems. In addition to the
intrinsic interest in these systems themselves, they are
sufIiciently simple that they are of special interest in
the study of various approximation methods. Thus, even
under the usual assumptions of a nonrelativistic,
infinite-nuclear-mass Hamiltonian, they cannot be
solved exactly. However, variational calculations, with
the help of high speed computers, have approximated
the energy of the unperturbed Hamiltonian to as high

t Work supported by U. S. Air Force Oifice of Scientific Re-
search, Grant Number AF-AFOSR-191-63.

*Present address: Department of Physics, State University
College at Fredonia, Fredonia, New York.

an accuracy as obtained in experiment. ' ' For this
reason most of the interest now centers on properties
other than the energy, such as the polarizabilities. The
electric polarizabilities of the 'So ground state of He and
two-electron ions have been obtained theoretically and
are in good agreement with experiment. However, for
higher energy states, the theoretical and experimental
data are more limited.

In the presence of a uniform external electric Geld
the total energy of the atomic system will be decreased.
To fourth order in the electric Geld, the interaction

' C. L. Pekeris, Phys. Rev. 112, 1649 (1958); 115, 1216 (1959);
126, 1470 (1962).

2 C. Schwartz, Phys. Rev. 128, 1146 (1962).' A. L. Stewart, Advan. Phys. 12, 47 (1963).
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This implies
n= limp/F .

F~P

The polarizability of the 1 'Sp ground state of helium
and two electron ions have been computed by Winker
and Das' using a variation-perturbation approach.
Sternheimer' solved directly the first-order equation
both analytically and numerically. More recent work
has been carried out by McNamee and Dalgarno'
Yoshimine and Hurst' and Langhoff and Hurst' using
uncoupled Hartree-Fock approximations. McNamee
and Dalgarno' and Cohen" have used coupled Hartree-
Fock approximations. Geltman" used an absorption
coefFicient integral over the wavelength in calculating
the polarizability of H and obtained a result in close
agreement with Schwartz, " who used an 18-term
Hylleraas-type zero-order wave function with a more
general form of first-order perturbed wave function.
Schwartz's calculation probably gave the most accurate
results that have thus far been obtained for the ground
state of H .

As to the excited states, the only ones which are
bound are those with one electron in the ground state. "
The primary aim of the present work is to obtain the
polarizabilities of the metastable states 2 'S» and 2 'Sp.
These states are of special importance because they are
metastable. Dipole transitions to the ground state from
the state 2 'S» are forbidden by both spin and spatial
symmetries whereas the 2 'Sp transition to the ground
state is forbidden by the spatial symmetry alone. Thus,
while both of these excited states are metastable, the

' 1 a.u. of electric Geld strength=e'/ace=5. 142)&10' V/cm.' E. G. Winker and T. P. Das, Phys. Rev. 107, 497 (1957).
'R. M. Sternheimer, Phys. Rev. 96, 951 (1954); 107, 1565

(1957).
7 A. Dalgrano and J. M. McNamee, Proc. Phys. Soc. (London)

77, 673 (1961).
M. Yoshimine and R. P. Hurst, Phys. Rev. 135, A612 (1964).' P. W. Langhoff and R. P. Hurst, Phys. Rev. 159, A1415 (1965).' Howard D. Cohen, J. Chem. Phys. 43, 3558 (1965)."S. Geltman, Astrophys. J. 136, 935 (1962)."C.Schwartz, Phys. Rev. 123, 1700 (1961)."H. A. Bethe and E. Salpter, Quantum Mechanics of One- and

Tao-electron Atoms (Academic Press Inc,, New York, 1957),
pp. 125,, 146.

energy hE in atomic units is given by

1 1
AE—= nF—'+ PF—'+

2! 4!
Here n and P are the dipole polarizability and dipole-

hyperpolarizability, respectively. Then,

n = lim —2AE/F'. (2)
F~p

An alternative point of view is to consider the effect
of the external field on the wave function. Thus, when
the uniform Geld is introduced the wave function of the
atomic system is distorted and a dipole moment p is
then induced according to

p =nF+ 'PF'+ .-

2 'S» transition to the ground state can be obtained only
from consideration of higher order effects than for the
2 'Sp state.

In 1958, Dalgarno and Kingston' used the theoreti-
cally calculated values of dipole transition oscillator
strengths in obtaining the polarizabilities of helium
2 'S» and 2 'Sp states. In the present work, variation
functions are used to obtain the perturbation energy due
to the uniform external electric field. The resulting
values of polarizabilities are in good agreement with
Dalgarno and Kingston's calculations.

As a check on the method, the same computer pro-
grams are used for the 'Sp ground states. The results
for the ground states are in excellent agreement with
previous accurate calculations and with experiment.

In Sec. II the choice of the wave function and its
symmetry are discussed and the problem is formulated.
Section III gives results of computations, including 0. of
the ground state of H . In addition are presented
results for the1 'Sp, 2 'S», and 2 'Sp states of He and Li+
in the presence of an external Geld. Finally, Sec. IV is
a summary and discussion of results.

3» S2
n= limp/F = lim—

F(410)

Alternatively 0. can be computed from the interaction
energy AE according to

n= lim —2AE/Fs
F~p

(6)

The basic problem then reduces to obtaining a varia-
tional wave function, which has the proper distortion in
the external field and in using this wave function to
obtain n according to Eq. (5) and Eq. (6).

Perhaps the simplest function one could conceive of
which would have distortion in the presence of the
external field and none when the field is zero, is given by

4='p+(zl+Z2)$1+(sl ss)$1 + ' ' '

=8+8+4" (7)

On substituting Eq. (7) into the usual energy integral
one obtains,

(0 I
& lit') (V+0'+0"

I
&o+&'I 0'+0'+0")

jV- , (Sa)
0 I II p I II

'4 A. Dalgarno and A. E. Kingston, Proc. Phys. Soc. (London)
72, 1035 (1958).

II. THEORY

In the absence of an electric field the zero-order wave
functions for the 2 'S» and 2 'Sp states have spherical
symmetry so that the permanent electric moment is
zero. Thus, from Eq. (4) in the presence of a uniform
electric Geld in the Z direction the polarizability 0. is
given from the induced moment p according to
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where
II0 2 V1 2 V2 q/r1 q/r2+ 1/r12

HI =F(s1+ss) .

(Sb)

(Sc)

lt "(ks,ku, kt, ksk, k»2) =

N

(»1 Z )g ZIZ
kc—ski,+m,+n,+ Sl;um;tn;

sinh(2kt)

cosh( —', kt)

N

lt,o(ks ku kt) —Q r 0 kcs/2kl, +—m;+n;sl;uin;tn;
sinh(skt)

cosh(-', kt )

N

=Q c;P,o(ks, ku, kt). (9a)

By analogy to Eq. (9a) the first-order functions are
chosen to be of the form

$1(ks,ku, kt,kzl, k»2) =

sinh(2kt)
(Z +» )Q ds kcs/2, k—l;+mi+ni+lsliumitni

cosh(2kt)

=P d,(t&&I(kS)ku)kt)k»I)k»2) ) (9b)

The wave function 4 is that function which mini-
mizes the total energy of Eqs. (8) in the field.

The explicit form of the trial functions p, ltl, and
$11 must represent reasonable compromises in speed of
convergence and difhculty of evaluating the integrals.
Chosen from these points of view the zero order wave
function used here are of the form 6rst proposed by
Hylleraas and Undheim. "Specifically,

=g e;(t&;Il(ks, ku, kt, kzl, k»2) (9c)

$= f1+f2 t= f1 f2 u= f12. (10)

The hyperbolic functions sinh(skt) and cosh(skt) are
chosen accordingly so as to maintain the proper sym-
metry. Thus, for the case of the zero-order functions, for
the singlet states the spatial part of the function must
be symmetric so that if 22, is even the cosh(-,'kt) function
is taken and if rt; is odd the sinh(skt) is used. Similarly,
for the triplet states the spatial part of the function
must be antisymmetric so that when e; is even the
sinh(-', kt) function is taken and when 22; is odd cosh(-', kt)
is used.

Substituting Eq. (7) and Eq. (9) into Eq. (8), one can,
then, minimize this energy integral with respect to the
linear parameters c;, d, , ei and nonlinear parameters
c and k.

Preceeding in the usual way, ""one obtains the
secular equation:

Here k is a scaling parameter, c is a nonlinear parameter,
c;, d;, and ei are linear variation coefficients and l;, m;, n;
are integral powers. Further s, t, and I are defined
according to

(O'M kL EN) )(—0 0&—
P;;" '&/k

P . , (O, II)/k

P&)(0 "/k P „(o,ll&/k

(k2M kL EN) „&I,I& (k2M kL EN) )(I,II) 0,
(k'M —kL—EN) »"" (k'M kL EN) "—' "'—

in which, the superscripts correspond to the wave
functions )t),0, ))I);I, st&;11, respectively. The integrals M, L,
I', E correspond to the kinetic energy, Coulomb po-
tential, perturbation potential and normalization inte-
grals, respectively. Speci6cally these integrals represent

M. (0,0)
st& 0($ u, t )( .V12 V ) t22()& u0st)dr . (12S)

(&q q i))I,,"'&= y (s,u, t)i + iy,'(s,u,t)d, (12b)
krl r1 rls/

y;1(s,u, t,»I,»2)

X + (t ( )ts&u&&»)Id)»r2()12g)
~1 ~2 ~12

N)& ' = (t&) ($)u)t&»I)»2)&t&) ($)u&t&»1,»2)dr, (12h)

M, ('» = y'(s, u, t,s„»2)

X(——',VI' ——',Vs')&/ ($)u, t,sl)zs)dr, (12f)

N;, (' '& = )t) (s,u, t)(t)&'(s,u, t)dr, (12c)
M;, &"I&= (t& (s,u, t,»I,»2)

st)i ($)uit)P(»I+»2)&&' ($&u&t)»I&»2)«) (12d) X(——,
' Vls —-', Vs'))t);"(s,u, t,»I,»2)dr, (12i)

P;;&o II&= )t);0(s,u, t)F(»I+»2))t), 11(s)u)t)»I,»2)dr
& (12e)

's E. Hylloraas and B. Undheim, Z. Physik 65& 759 (1930).

L;,&' "&=
&t& (s,u, t,z,z )

q q 1)
X + ~p/I'(s, u, t,»I,»2)dr, (12j)

&1 r2 r12
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Finally in the (s,u, t) coordinate system, the matrix
element of the Laplacian operator can be written as" ":

4 (——',V'1' —-'72')ddt=

Fro. l. Coordinate system in integration. LIn this figure the
direction of X1' is so chosen that the X1' axis intersects with the s
axis. O'A is the intersection of (r1,rs) and X'F' plane. j

4'~'(s)u)t~sr~s2)4't"(s)u&t~srP2)dr & {12k)

y "(s,u, t,sl,s2)

)& (——',V'12—-', 22)yp(s, u, t,sr, ss)dr, (121)

pp(s, u, t,sr, s2) rt, rr(s, u, t,sr, ss)dr (12n)

The differential volume element of integration in this
coordinate system is":

dr = su($ P)dsdudt sln8—rd81@ld&. (13)

Since the wave function contains cos02, in order to express
it in terms of the integration variable, the axis of co-
ordinate system is so directed that the x' axis passes
through the s axis (see Fig. 1). Hence, from geometry,
one can prove that"

1.,(rr, re) p rr(s u t sl s2)

tr g lt 1
y

~

—+ yp(s, u, t,sr, ss)dr, (12m)
~ rl r2 r12

2s(u' —P) f84 tH
u(s' —t') &8s &8u

2t(s' —u') t 8% 8%
+ i

dr. (16)
u(s' —P) &8u Bt

Using Eqs. (13)—(16), expl. icit expressions are ob-
tained for the integrals listed as Eqs. (12). Further
details on evaluation of these integrals are given
elsewhere. "

Once the integrals are evaluated. the secular equations
are constructed for both the singlet and triplet systems.
For the 2 'S~ state the appropriate secular equation is
solved for the lowest root. Since the second root of the
secular equation, corresponding to the singlet states, is
an upper bound to the energy of the 2 'So state, '7 the
energies of the 1 'So and 2 'So states are taken as the
first and second roots of this equation, respectively.

For all states considered here the parameters c and k,
are taken as the corresponding optimized. parameters for
zero Geld. This approximation is at least partially justi-
fied because the polarizability is determined from the
limiting value of the interaction energy as the GeM ap-
proaches zero. In any event, both c and k are exceedingly
insensitive to the field for fields of the size considered
in this work.

III;. RESULTS

In all calculations presented here, the nonlinear
parameters c and. k are optimized for the 14-term Geld-

free wave functions. Preliminary study has indicated
that extending the wave function to more terms or
including the Geld-dependent terms results in only
small changes in the optimized c and k. The computa-
tional e6ort, saved by making this approximation, of
course, is very large. In Table I is given a list of these
nonlinear parameters corresponding to the appropriate
l4-term field. -free wave functions for each of these states.

The energy corresponding to the 14 term zero order
functions, with and. without the applied field are given

TABLE I. The values of nonlinear parameters of two-electron
systems optimized for 14-term wave function (dimensionless).

where

Ion H

c/uo 3.046

(15) k 0.505

COS82 = COS81 COB++Sln81 Sln"y COSX

rrs+r22 rr22 s'+P —2u'—
cos+ =—

2~1~2 s'—t'

He

1 'So 2 'S1 2 'So
6.047 1.889 1.890
0.6270 1.412 1.4395

1 'So 2 'S1 2 'So

8.506 2.420 2.422
0.7002 1./321 1.751

"Kwong T. Chung, Ph.D. thesis, State University of New Vork
at Buffalo, Buffalo, New York (unpublished).

a a0 =0.52917 A.

'V,J. K. L. MacDonald, Phys. Rev. 43, 830 (1933).
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TABLE II. The polarizability calculations for the 42-term wave functions {in a.u.).

Ion

H

He

He

He

Li+

Li+

Li+

State

1 'Sp

1 'Sp

2 'Si

2 'Sp

1 'Sp

2 'Si

2 'Sp

F (10 sa.u.)
-2
4
6

20
40
60

100
200
300

5
10
15

10
20
30

ga
—0.52769913689586

—2.90362994382937

—2.175225639039099

—2.14563164291700

—7.27979268148201

—5.11072218577530

—5.040408359149628

—0.52769917635228
—0.52769929947229
—0.52769949201295

—2.90362997149437
—2.90363005448435
—2.90363019281777

—2.17522570214046
—2.17522589144309
—2.1-7522620964469

—2.14563168329705
—2.14563180443620
—2.14563200633189

—7.27979277772253
—7.27979306644393
—7.27979354764769

—5.11072224435210
—5.11072242008217
—5.11072271296409

—5.04040885092036
—5.04041036217434
—5.04041278473672

2nE—/F'

197.282
197.284
197.287

1.38325
1.38325
1.38325

315.506
315.505
315.503

807.601
807.596
807.589

0.192480
0.192480
0.192480

46.8612
46.8613
46.8614

98.3561
98.3512
98.3463

a Zp is the field free energy and E is the field-dependent energy. The wave function contains 14 terms in each of pp, p&, and p». )See Eqs. (9) of text. g

TABLE III. The polarizability calculations for the
72-term wave function (in a.u.).

Ion State
Qp

(Pekeris) a (present work)
F

(10-p a.u.) -2~F/F
H 1 Up —0.52775100

He 1 iSp —2.903-72437

-0.52773389606

—2.90370799598

2 202.117
4 202.120
6 202.125

20 1.38405
40 1.38405
60 1.38405

He 2 &Si -2.175229378 -2.17522826506 2 315.628b
4 315.627
6 315.626

He 2 iSp —2.14597404 —2.14590723586 1 798.988
2 798.988

in Table II. The Geld-dependent wave function has 42
terms. In addition, the polarizabilities computed from
the interaction energies, i.e., 2AEjF, are—also given
in this table.

In Table III is given the polarizabilities for the 72
term wave function calculation. Also the energy values
given by Pekeris' are listed so as to show the energy
convergence in the present wave functions.

In order to obtain high accuracy for the polarizability
calculations with reasonably small Gelds, it is found
necessary to make all computations carrying a large
number of significant figures. Thus, the numerical
calculations are made Grst on the University of Texas
CDC 1604 computer and later on an IBM 7044 com-
puter using double precision arithmetic. In the Grst
case the CDC gave 12 place accuracy and the IBM 7044
gave 16 with double-precision arithmetic. Some pre-
liminary work shows that, with this accuracy the polar-
izability calculated from the energy of interaction hE
and the induced moment p, agree to at least six places
for every state. For this reason only the results as
computed from the interaction energy are included.

Li+ 1 iSp —7.27991324 —7.27988396961 100
200
300

0.192515
0.192515
0.192515

TABLE IV. The 96-term polarizability calculations
for He 2'Sp and H 1 'Sp (in a.u.).

Li+ 2 S.Si —5.110,72737

Li+ 2 iSp —5.04087673

—5.11072612263

—5.04076794916

..46.8795
46.8795
46.8795

98.1899
98.1899
98.1899

H

He

1 'Sp

2 lS

+pa

—0.527745632599

—2, 1459277430165

p
(10 'a.u.) —2AE/F2

205.878
205.882
801.952
801.943

& Bp is the field free energy and F is the field intensity. The wave function
contains 24 terms- in each of PP, f&, and P&&, /See Eqs. (9) of text. j C. L,
Pekeris, Phys. Rev. 136, 143 (1962); 136, 1470 ($962),

b The 96-term results agree for this state, with these values to 5 places,
& Bp is the field free energy and F is the field intensity. The wave function

goptains 32 terpin jn eacb of fp, p&, and QI&. /See Eqs. (9) of text. g
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TanLE V. Comparison of calculated and experimental polarizabilities of two-electron systems (in a.u.).

Energy state

Uncoupled Hartreea-
Fock calculation

Coupled Hartreeb-
Fock calculation

Present result

Experimental or
best previous
calculation

H
1 'Sp

112

93

1 'Sp

1.322

1 384e

He
2 'SI

315.6

2 'Sp

802.0

1 'Sp

0.205

0.189

0.1925

0.1907'

Li+
2 gSI

46.88

2 'Sp

a M. Voshimine and R. P. Hurst, Phys. Rev. 135, A612 (1964).
b H. D. Cohen, J. Chem. Phys. 43, 3558 (1965).
e C. Schvpartz, Phys. Rev. 123, 1700 (1961).(Accurate calculation. )
d S. Geltman, Astrophys. J. 136, 935 (1962). (Accurate calculation. )
& A. Dalgarno and A. E. Kingston, Proc. Phys. Soc. (London) 'F3, 455 (1960). (Extrapolated from refractive index. )f A. Dalgarno and A. E. Kingston, Proc. Phys. Soc. (London), V2, 1053 (1958). (Calculated from theoretical oscillator strengths. )I K. Bockasten, Arkiv. Fysik 10, $6'l (1956). (Spectroscopic determination. )

Because of the comparatively poor convergence of the
polarizabilitv of He 2 'S0 and H 1 '50, the wave func-
tions for these states are extended to 96 terms. The
results of these calculations are listed in Table IV.
Because of bmitations in the IBM 7044 computer
memory on using double-precision arithmetic, further
extension of the size of the wave function is hardly
possible.

In Table V are summarized the polarizability results
and a comparison is made with previous experimental
and theoretical values. Table VI gives a comparison of
the present 6eld free energy results of He 2'51 with
previous calculation of these energies. Finally, in Tables
VII and VIII are given comparisons of computed (r')
results with the highly accurate calculations of Pekeris.

Tax.z VI. Energy convergence of He 2 'SI (no external Geld).

Pekeris'

Davisb

Traub and Foleye

Hart and Herzberg

Present work

No. of terms

125
252
400
715

20

Energy (a.u.)
—2.17522097961—2.17522925888—2.17522937680—2.17522937822

-2.1752246—2.1752259

—2.1752176

—2.1752192

-2.175225662—2.175228491
-2.175229004—2.175229346

IV. SUMMARY AND DISCUSSION

Inasmuch as the accuracy obtained for the computed
polarizabilities and for (r') depends mostly on the
accuracy of the outermost reaches of the wave function
the comparisons of (rs) values listed, in Tables VII and

Tasrz VIL Expectation value of s'((rP+rq')) of
He 2 'SI (no external Geld).

Pekeris'

No. of terms
k((r~'+rm') )

(ln a.u.)

11.437314
11.463512
11.464304
11.464321

VIII are of special interest. Inspection of these tables
shows that the 26-term wave function of the present
work gives values for (r') which agree with the highly
accurate Pekeris results to five or six places except for
the ground state of H and the 2 '+0 states of He and
Li+. A similar trend is found, as one should expect, in
the study of the convergence of the polarizabilities as
more terms are included in the wave function (see
Tables II-IV). Specifically, on comparing the results of
Tables II and III, it is seen that the polarizabilities
have converged to at least three and usually four places
in going from 42 to 72 terms except for the ground state
of I and the 1 'Se state of helium (see also Table III
footnote b). In an attempt to achieve greater con-
vergence the wave function for these two cases was
extended to 96 terms. Nevertheless, it appears that the
uncertainties in the polarizabilities, for these two states,
are of the order of several atomic units or around 1'Pq.

Using an IBM 7044 computer it is not considered
fcaslblc to cxtcnd thc wave function to lncludc IDOI'c

terms.
It is gratifying to note from Tables II-IV that the

contribution of the nonlinear terms to the dipole mo-
ment tsee Eq. (3)j does not significantly effect the
induced moments for 6eMs of the size considered here.
More speci6cally, in every case the error introduced in
the polarizabilities resulting from the use of finite 6elds,

a C. L. Pekeris, Phys. Rev. 115, 1216 (1959).
b H. L. Davis, J. Chem. Phys. 39, 1183 (1963).
J. Traub and H. M. Foley, Phys. Rev. 111, 1098 (1958)„

d J, F. Hart; apd 6, Hergberg, Z. Physik l7'1, 83 (1962).

Present work

a Q, L, Pekeris, Phys, Rev. IIS, 1216 (1959).

11.46176
11.46477



2'SI AND 2'Sp STATES OF He AND Li+

TABLE VIII. Comparison of expectation value x~((rP+r&')) with Pekeris value (a.u.).

Energy state

Pekeris
Present work"

H
1 'Sp

11.91369a
11.85265

1 'Sp

1.1934830b
1.193475

He
2 'S1

11.4643210
11.46477

2 'Sp

16.08913~
16.13428

1 'Sp

0.446279'
0.446278

Li+
2 'S1

3.773589'
3.77369

2'Sp

4.695098K
4.70034

a C. L. Pekeris, Phys. Rev. 126, 1470 (1962), for 444 terms.
b C. L. Pekeris, Phys. Rev. 115, 1216 (1959), for 715 terms.
e Reference b, for 715 terms.
~ Reference a, for 615 terms.

e C. L. Pekeris, Phys. Rev. 126, 143 (1962), for 308 terms.
& Reference e, for 308 terms.
R Reference e, for 444 terms.
h Present vpork, 26 terms.

is several orders of magnitude smaller than the error
introduced because of incomplete convergence of the
wave function.

The most comprehensive check on the reliability of
the present method is, of course, the comparison of the
computed dipole polarizabilities with the experimental
values for the ground state of He and Li+ (see Table V).
In the case of helium the most recent experimental
measurements of 0, from the dielectric constant give
values somewhat larger than our calculated value. Thus,
Essen" in 1953 obtained 1.40+0.01 a.u. which agrees
with the Johnson, Oudemans, and Cole" value of 1960
which is 1.396&0.001.On the other hand, Dalgarno and
Kingston, ' from a careful extrapolation of refractive
index data, obtained 1.384 a.u. which is in exact agree-
ment with the present work. Inasmuch as refractive
index data are usually more accurate than dielectric
constant measurements it seems reasonable to give the
Dalgarno and Kingston result preference as is indicated
in Table V. In this connection, it is interesting to note
that Schwartz" has computed 0, using an 18-parameter
function for fs and a very flexible function for fr. He
obtains 1.383 a.u. for helium atom.

In the case of the Li+ ion the most reliable experi-
mental measurement of the ground state polarizability
is the spectroscopic determination of Bockasten. "His
value of 0.19073 a.u. was obtained by assuming that the
difference between the observed term values and the
hydrogen-like term values for the 'D, 2', and 'G terms
are due to dipole and quadrupole polarization of the Li+
ion. This is to be compared with 0.1925 a.u. obtained
here. In Bockasten's work the accuracy of the experi-
mental term values he used and the internal numerical

"L.Essen, Proc. Phys. Soc. (London) $66, 189 (1953)."D. R. Johnson, G. J. Oudemans, and R. H. Cole, J. Chem.
Phys. 33, 1310 (1960).

"A. Dalgarno and A. E. Kingston, Proc. Roy. Soc. (London}
A259, 424 (1960)."K.Bockasten (private communication).

consistency in the polarization formula support the
assumption that his result is valid to all places quoted. "
Nevertheless, the possibility remains that other effects
not considered in this type of interpretation of the
spectral data may have changed his experimental polari-
zability enough to account for the discrepancy between
the present calculated value and his experimental
result. In the present work this polarizability has con-
verged to at least four places and experience with this
and other 1 'Ss states strongly suggests (see Tables
II—IV) including more terms in the wave function would
most probably make 0. larger still thus very slightly
increasing this discrepancy. In this connection it is
interesting to note that Saber and Hasse" have com-
puted a value of 0.1927 a.u. using a 6-parameter repre-
sentation of fs and a 3-parameter function for It r.

Finally, the only other previous determinations of the
dipole polarizabilities of the 2 'S& and 2 Sp states of
helium are the calculated values of Dalgarno and King-
ston. ".Using theoretical oscillator strengths they ob-
tained 313 and 788 a.u. to be compared with the present
results of 315.6 and 802 a.u. for the 2 'S1and 2 Sp states
respectively. In view of the problem of contributions
from transitions to the continuum the agreement be-
tween the present results and those of Dalgarno and
Kingston must be regarded as quite good.
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