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Experimental results for the shift with uniaxial stress of the (Fy,I'1) — (2F7.,I'7) laser transition in
Tm?*:CaF, and Tm?t:SrF, are presented. The results, 1.75 cm™(dyn/cm?)™! and 1.78 cm™(dyn/cm?)72,
are used to calculate the radial dependence of the cubic ligand field splitting. The resulting dependence is
somewhat larger than that predicted by the familiar electrostatic model for the splitting. Partially to deter-
mine its influence on the above result, we have considered the effect of covalency by means of a semiempirical
molecular-orbital model. The overlap of the 4f orbitals with the neighboring fluoride ions was calculated
using Hartree-Fock wave functions and known internuclear distances. The off-diagonal elements of the
interaction Hamiltonian were obtained from the Wolfsberg-Helmholz approximation Hij=2S;; (Hii+Hj;)/2.
A range of reasonable values for the diagonal elements were obtained by analogy with those necessary to
explain iron-series splittings. The largest group overlap of the 4 f wave function with F~ ligands was found
to be 3.6% and leads to a sizable (our best estimate in CaF: is 509,) covalent contribution to the ligand
field splitting. We have also investigated some of the consequences of a covalent contribution of this magni-
tude. The radial dependence of the covalent part of the energy is greater than for the electrostatic part.
The resulting radial dependence is thus in better agreement with experiment. Transferred hyperfine effects
are calculated and compared to experiment, but the extent of the agreement is hard to ascertain because of
uncertainty of the sign of the experimental quantity and polarization effects. The calculated orbital re-
duction factor for Tm?*:CaF. is found to be much smaller than is observed. We have also calculated the
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expected variation of the (rare earth)**-F'~ overlap as a function of atomic number.

INTRODUCTION

HE theory of the low-lying electronic levels of
transition-metal and rare-earth ions in solids

was initially advanced upon the hypothesis that the
major forces acting upon these magnetic electrons were
of a classical electrostatic nature. The theory has had
many successes as applied to both systems. However, a
closer look at some of the data of the transition-metal
ions (transferred hyperfine structure, orbital moment
reduction, etc.) has led to the realization that the
crystal-field splittings arise predominantly from co-
valent effects. On the other hand, the 4f electrons in
rare-earth (R.E.) ions are much less exposed for bonding
purposes than are the 3d electrons. Thus, it was usually
supposed that longer range electrostatic forces pre-
dominate the (considerably smaller) observed 4f split-
tings. However, detailed calculations based upon an
electrostatic model have been attempted and have met
with indifferent success.’~® While it is possible that
explicit consideration of shielding?4-% and polarization”
effects will reduce the discrepancy, such covalent effects
as transferred ligand hfs have been observed,®® and
Jorgensen et al.l0 argue that rare-earth crystal-field

LC. A. Hutchison and E. Y. Wong, J. Chem. Phys. 29, 754
(1958); and E. Y. Wong and 1. Richman, zbid. 36, 1889 (1962).

2 G. Burns, Phys. Rev. 128, 2121 (1962).

3 M. T. Hutchings and D. K. Ray, Proc. Roy. Soc. (London)
81, 633 (1963).

4 C. J. Lenander and E. Y. Wong, J. Chem. Phys. 38, 2750 (1963).

5D. K. Ray, Proc. Phys. Soc. (London) 82, 47 (1963).
(1;6%) E. Watson and A. J. Freeman, Phys. Rev. 133, A1571

7 G. Burns, J. Chem. Phys. 42, 377 (1965).

8 J. M. Baker and J. P. Hurrell, Proc. Phys. Soc. (London) 82,
742 (1963).

?R. G. Bessent and W. Hayes, Proc. Roy. Soc. (London)
A285, 430 (1964).

10 C. K. Jorgensen, R. Pappalardo, and H. H. Smidtke, J.
Chem. Phys. 39, 1422 (1963).
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splitting might be better understood as a weak c-anti-
bonding effect.

In studying crystal-field effects, comparatively little
attention has been given to changes induced by uniaxial
or hydrostatic pressure. Uniaxial stresses have been
used to establish the point symmetry of the rare-earth
defects! and to determine if the transition involves a
5d level.1213 We felt that strain experiments on 4f to
4 f transitions in rare-earth ions at high symmetry sites
could be of importance since the strain is equivalent to
an additional crystal field of variable symmetry and
strength. The alkaline-earth fluoride-divalent thulium
combination was chosen as one possessing the following
advantages. The spectrum of Tm?*, a single “hole” in an
otherwise completed 4f shell, is relatively simple and
well understood. Previous optical'* and spin-resonance
studies®!® have reported much subsidiary information.
One of the fluorescent transitions is sharp and intense.
Symmetry imposes a very simple form for the strain
interaction. Finally by substituting SrF. for CaFs; as a
host matrix, an additional degree of freedom can be
introduced and investigated. The CaFs result has been
reported previously’® and the results in SrF; here. In
both cases the crystal field appears to depend on a larger
negative power of the internuclear distance than pre-
dicted by the ionic model providing the microscopic
stress-strain relation is taken to be identical to that

11 A, A. Kaplianskii, Opt. Spectry. (USSR) 7, 406 (1959).
(1126."57;7. A. Runcimann and C. V. Stager, J. Chem. Phys. 38, 279

963).

13 For a general review of high pressure hydrostatic strain
effects see H. G. Drickamer, in Solid State Physics, edited by F.
Seitz e;nd D. Turnbull (Academic Press Inc., New York, 1965),
Vol. 17.

147, J. Kiss, Phys. Rev. 127, 718 (1962).

18 W. Hayes and J. W. Twidell, J. Chem. Phys. 35, 152 (1961).

16 G. Burns and J. D. Axe, Phys. Letters 19, 98 (1965).
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Fic. 1. The energy levels of f1® (one hole) as a function of the
ratio of one of the cubic-crystal-field parameters, A, divided by
the spin-orbit coupling parameter (7¢/2). The vertical arrow near
the left is the approximate situation for SrF. (7¢/2>3>A) and the
observed I';’ — TI'; transition. (A/8=10 was chosen to give agree-
ment with the observed splitting. The details of the diagram are
discussed subsequently in the text.)

of the host matrix. A very simple elastic-continuum
model of the local compressibility is discussed in this
connection and its use modifies this discrepancy
slightly.

We felt it would be interesting to estimate the effect
of covalent bonding upon the strain dependence with
the hope that it might shed light upon some of the above
difficulties. The rare-earth covalency calculations them-
selves have proved of interest since a reasonable fraction
of the crystal-field splittings can be explained. In
particular we calculate the contribution of ¢ and =
bonding of the 4 f electrons of Tm?*+ in CaFo, etc. to the
rare-earth energy-level splitting as well as the radial
strain dependence of the splitting, transferred hyperfine
structure (hfs), and orbital reduction factor. The very
simple covalent model that we use is essentially that of
Wolfsberg-Helmholz,'” adjusted to give good results
for the transition metal ions (3d"). Hartree-Fock rare
earth and F~! wave functions are used to calculate the
overlap integrals. Briefly it is found that in addition to
explaining a reasonably large fraction of the energy
level splitting the radial dependence of the covalent
contribution is slightly greater than predicted by an
electrostatic model, and is thus in closer agreement with
observation. The calculated amplitudes of the 4f
orbitals at the F~! nucleus are also of reasonable magni-
tude to explain the transferred hfs, but uncertainties as
to the sign of the measured quantities and the impor-
tance of polarization effects makes the significance of
this result uncertain. The orbital reduction, though
experimentally quite small, is still an order of magnitude

17 See, for example, C. J. Ballhausen and H. Gray, Molecular
Orbital Theory (W. A. Benjamin, Inc., New York, 1964), or C. J.
Ballhausen, Ligand Field Theory (McGraw-Hill Book Company,
Inc., New York, 1962).
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larger than can be reasonably accounted for by co-
valency effects with this model. The importance of
covalent bonding which these simple calculations sug-
gest should serve to indicate the desirability of more
careful and rigorous treatments in the future.

EXPERIMENTAL RESULTS AND IONIC MODEL

The crystal samples studied were doped with 0.1,
and less Tm?®* and obtained from Optovac Corp. After
being suitably oriented and shaped they were x-irradi-
ated (50 keV, 16 h) to obtain the desired degree of con-
version to Tm?*. The load bearing faces were polished
and gasketed with gold foil to insure even loading. The
pressure was transmitted to the crystal mounted in
the vacuum space of an optical cryostat from the ram
of a piston driven by compressed gas mounted above
the Dewar. The load was computed by a knowledge of
the cross section of the crystal and the variable gas
pressure in the piston. The fluorescence was excited by
radiation from 100-W high-pressure Hg lamp filtered
through a CuSOj, solution. The sample temperature was
about 8°K with liquid helium in the cryostat. A 1-m
Ebert monochromator equipped with a 7500-line/in.
Harrison grating was used in conjunction with a cooled
PbS detector and lock-in amplification. Linewidths on
the order of 0.1 cm™! were observed with no applied
stress. Some additional broadening due to inhomogene-
ous loading was sometimes observed. Measurements
were made with applied stress along (100), (110), and
(111) axes.

Figure 1 shows the energy level diagram for Tm?*
(4113) cubically coordinated with eight negative ions
in On(m3m) symmetry. The figure displays the levels
for the full ranges of the magnitudes of the spin-orbit
coupling ({) to cubic field (V). The details of the dia-
gram will be discussed in the next section. For the
present purposes it will suffice to say that normally the
rare earths are in the regime {~>V,.. The approximate
position of the energy levels is shown on the figure by a
vertical arrow representing the I';' <> I'; transition. In
fluorescence the emission due to this transition occurs
at!* E(T'y—Ty)=8966.2 cm™! and is very intense.

We have measured the shift of the E(T';’—T';) tran-
sition with uniaxial stress for three different orienta-
tions. Figure 2 shows that the results are independent of
direction of applied stress as well as linear with applied
stress. The result for Tm?*: SrF; is 1.78X10~1 cm™?
(dyn/cm?)~! which is very close to our previously
measured value!® of 1.75X 1071 cm™! (dyn/cm?)~! for
Tm?* in CaFs.

Elementary group theoretical considerations show
that for I'/ <> I'; transitions the shift should be inde-
pendent of the direction of applied stress. For the O
group a general strain, ¢, that transforms as the aj,
~+e,+1s, irreducible representations can be applied.
However, since the antisymmetric direct product
{T7X T2} =ay,, the strains of the form e(E) and (T)
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are ineffective on the I'; levels.!® Thus, the only nonzero
matrix element is (T'7| e(a1,) | T7). e(ay,) is just the hydro-
static component of the strain. Writing e(a1,) alterna-
tively in terms of the fractional change in volume
(AV/V=g) and elastic constants and bulk modulus (K)

B=AV/V=e(a1y) = (su+2s12) p=p/3K ,

where p is the applied stress. Using the known elastic
constants for SrF,; and assuming for the present that
the local stress-strain relationship around a Tm?*
impurity is the same as for the bulk crystal, the experi-
mental shift per unit strain is dE(I'/—T)/B=—364
cm~! as compared to the experimental result obtained
for Tm?*: CaF, of —499 cm™.

It is straightforward to compare the above quoted
experimental numbers to what is predicted by the ionic
model. The cubic crystal field can be written in terms
of cubic harmonic operators!®

I b
Ve=—"]004504 14+—10s2—2104 1. 1
60[ { ] 180[ 6 6t ] 1)

Using the optical data of Kiss* for Tm?t:CaFs,
Bleaney!® has determined 5,=45.8 cm™! and b¢=35.05
cm~. For an ionic model one expects ds< R~% and
bgx R~7, where R is the radial distance to the charge
that produces the cubic crystal field. Then using
B=AV/V=3dR/R and 0bs/dR=—5bs/R and dbs
JdR=—"Tb¢/R

dE(TY—T7) 50

=04 6

B 21

(96/147)
E(TY—T%)
X [25062+ 25200405+ 24698521 (2)

is obtained, E(I'//—T')=8966.2 cm™!. The last term,
in square brackets, is due to second-order crystal-field
contributions but amounts to =309, of the total. The
higher order contributions, not shown, are negligible.¢
Also omitted from Eq. (2) is the contribution from the
volume dependence of the spin-orbit coupling parame-
ter, which is expected to be small.?? Using the above
quoted values of b4 and bg for Tm?*+:CaF, the theoret-
ical value from Eq. (2) is dE(T'/—T%)/8=—377 cm™.
This is smaller than the experimental value of —499
cml. For Tm?*:SrF, the values of b4 and b have not
been published. However, a rough fit to the spectra
has been obtained? assuming the ratio b4/b¢ for Tm?*
to be the same in SrF; as in CaF,. (This is what is

18 A. A. Kaplianskii, Opt. i Spektroskopiya 16, 1031 (1964)
[English transl.: Opt. Spectry. (USSR) 16, 557 (1964)7].

19 B, Bleaney, Proc. Roy. Soc. (London) A277, 289 (1964).

2 For example, from Dy2?" in the three compounds CaFs,
SrFs, and BaF; [Z. J. Kiss, Phys. Rev. 137, A1749 (1965)] one
would calculate ~13 cm™ for this term.

2 7. J. Kiss and H. A. Weakliem, Technical Report AFAL-TR-
64-334, 1965, p. 33 (unpublished).
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Fic. 2. The observed shift of 'Y to I'; transition of Tm?*
versus applied stress along three directions for two different host
lattices. Although the measured shift versus stress is very similar
for the two hosts, due to a difference in elastic constants the shift
per unit strain is about 359, smaller in SrFs.

found® for Dy* in the three hosts CaF,, SrF,, and
BaF,.) Thus, for?® Tm?+:SrF, 8,=38 cm™ and bs=38
(5.05/45.8) cm™ was used. The theoretical value from
Eq. (2) is dE(TY'—T%)/8=—295 cm™™. This again is
smaller than the experimental value of —365 cm™.

LOCAL COMPRESSIBILITY

Probably the greatest source of uncertainty in inter-
preting these pressure experiments arises from an un-
certainty of the stress-strain relations which hold in the
immediate vicinity of the defect being studied. Insight
into the problem can be obtained from a study of the
corresponding situation in a macroscopic elastic con-
tinuum. Such a model has been successful in discussing
many of the properties of dilute alloys?? such as devi-
ations from Vegard’s law (additivity of lattice spacing
of solid solutions).2

Imagine placing an isotropic elastic “defect” sphere
with an unconstrained radius Rp into a spherical hole
with unconstrained radius Ry in an infinite isotropic
elastic matrix. It is easiest to visualize the case Rp> Ry.
Thus, the defect will be compressed to some equilibrium
radius R. Then we apply an external pressure on the
entire sample and ask how much the defect is com-
pressed. The radial displacement of any point in the
matrix, #(r), or defect #p(r), for an arbitrary external

22 J. D. Eshelby, in Solid State Physics, edited by F. Seitz and
D.7Turnbull (Academic Press Inc., New York, 1956), Vol. 3,
9

p. 79.
2 ], Friedel, Phil. Mag. 46, 514 (1955).
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pressure (p,) and internal pressure (p;) is?

pe  (pi—pe) Rus®

luae(r) = ———r —, (3a)
u Qupy 72
Pi
up(r)=———, (3b)
D

where K (K p) and uas are, respectively, the bulk and
shear modulus of the matrix (defect). The internal
pressure p; is provided by the compression of the inner
sphere

pi= 3KD(RD—1’>/RD= 3KD(AR—MM(RM))/RD , (4:)

where the equilibrium radius of the hole and sphere is
R=Ruy+uy(Ry) and AR=Rp— Ry The first term in
Eq. (3a) is a compressive inward displacement whereas
the second is a shear motion localized about the im-
perfection. Only compressive forces act on the defect
as can be seen in Eq. (3b). By eliminating p; from Eqgs.
(3a) and (3b) the equilibrium radius can be found for
an arbitrary set of conditions. Finally we find for the
displacements in the internal defect sphere

up()=par/3K p°tt, ®)
where

K pett=(1—p)K p+p(Rp/Ra)Kar, ©

p=tuuse/ (K se+-$uns) @

Equations (5)-(7) are the desired equations. They
relate the strain of the elastic defect sphere to the ex-
external pressure via an effective bulk modulus K p°f.
This effective bulk modulus depends on the equilibrium
properties of both the host lattice and the defect lattice.
Low-temperature p values of 0.374 and 0.387 are
calculated from Eq. (7) for CaF; and SrF,, respec-
tively.?* In applying these results to nonisotropic solids
an averaged sheard modulus (u) should be used?

() t= @) (ca) 4+ @) (cu—c) ™. @®

The smallest defect unit which could reasonably be
considered as having macroscopic elastic behavior is
probably an (M Fs) cube, which is already so large that
(Rp/Ryu) differs from unity by only a few percent for
either lattice. (We have used an estimate of 1.08 A for
the ionic radius of Tm?2* as compared to 1.00 A for Ca?*,
1.14 A for Sr?*.) The model thus predicts Kp*f~K
~+0.6(Kp—K ). We can only estimate a bulk modulus
for TmF, because to our knowledge the pure material
has never been prepared. In an ionic bonding model the
bulk modulus scales inversely as the (%) power of the
atomic volume, other considerations being equal. This
in turn predicts Kpeff about midway between the

24 F, D. Murnaghan, Finite Deformation of an Elastic Solid
(John Wiley & Sons, Inc., New York, 1951), p. 119.

28 H, Brooks, Impurities and Imperfections (American Society
for Metals, Cleveland, Ohio, 1955), pp. 22-23.
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values?® for CaF, and SrF. (0.95 and 0.75X102
dyn/cm?, respectively). Kp°ff for Tm?* in CaF; is
about 6% smaller than K and about 8%, larger than
Ky in SrF,. The influence of these corrections on the
observed strain dependence will be considered subse-
quently. However, in view of the nature of the uncer-
tainties involved, the above should probably best be
considered as a semiquantitative estimate of the
magnitude of the local compressibility correction.
Microscopic calculations of the positions of the matrix
atoms near an impurity atom have been performed?” and
used to interpret crystal fields. An extension of such a
treatment to a consideration of the change of the fields
with strain would be of interest.

COVALENT BONDING

By exploiting the well-known correspondence be-
tween a single electron and a single hole, it is possible to
evaluate the elements of the Hamiltonian matrix
3¢'=¢L-S+V., for the states of the f13 system in the
strong field representation. This representation is much
more convenient to adopt when discussing covalent
bondingt han the more familiar weak field representation
(£>V,). Upon diagonalization, these matrices yield five
eigenvalues?

E(Te) =35+ (1/7)(40+4), ©)

E(T7)=(3/7)0+3[35— (5/1)A
+{(35)2—Ar+A%7],  (10)

E(Ts)= (1/7)A+305+ (1/No={(F5)*— 200 +62}1%],
11)

where 6=es—e; and A=e;—e; are the orbital energy
differences in the strong-cubic-field limit. These energy
differences are, of course, not observable because spin-
orbit interaction cannot be “turned off,” but they serve
as convenient parameters. In fact it is important to
realize that these energy differences along with ¢
completely describe the splittings and the more familiar
b’s [Eq. (1)] need never be mentioned. [As a conven-
ience we list the relations between the bd’s of Eq.
(1) and the ¢és: €2=—12b4—48b6; €4= 6[)4—201)5,
e5=—2b4+36bs.] Figure 1 shows the resulting energy
levels as a function of the ratio of the cubic-field pa-
rameter A to the spin-orbit parameter {. The vertical
line at the left of the diagram shows the approximate
position of the energy levels of Tm?** in CaF,. The
values which fit the observed energy levels of Tm?**:

26 For low temperature elastic constants for CdF. see D. R.
Huffman and M. H. Norwood, Phys. Rev. 117, 709 (1960); for
SrF. see D. Gerlich, bid. 136, A1366 (1964).

27 For example see T. P. Das, Phys. Rev. 140, A1957 (1965) and
some of the references quoted there.

28 J, C. Eisenstein and M. H. L. Pryce, Proc. Roy. Soc. (London)
A255, 181 (1960) ; J. D. Axe, thesis [ Lawrence Radiation Labora-
tory Report No. UCRL-9293, 1960 (unpublished)]. Available as
Document No. 8127 from the Photoduplication Service, ADI
Auxiliary Publications Project, Library of Congress, Washington
25, D. C. (unpublished).
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TaBiLE I. Linear combinations of ligand orbitalsTin cubic MX; complexes which can bond with f orbitals on the central ion. ¢; is a
sigma orbital (along the internuclear distance) centered on the X ion and #; and &; are pi orbitals (perpendicular to the internuclear
distance). As can be seen 4f orbitals that transform as the a@s, representation can form sigma but not pi bonds with the ligands, etc.
The coefficients relating the group overlaps and the ion pair overlaps as calculated in the Appendix are given in the last column and are
the same for 25 and 2po overlap integrals. The positions of atoms F referred to the nucleus M at the center of the cube, as origin, are
1) (@/V3)(1,1,1) (2) (a/v3)(1,1,1) (3) (a/¥3)(1,1,1) 4) (a/¥v3)(1,1,1), where a'is the length of the cube edge. The Miller indices for the

vectors to describe the ligand 2p orbitals are

”I(iri:i) 51(1)2;1) 771(1;0;1)
'72(1’i;1) Ez(i,i,i) 7/2(1:0;1)
0'3(171:1) 53(1,2,1) 773(1:():1)
0'4(1:1yi) 54(]-.,2,1) 774(i;0:i)

The positions and associated vectors for atoms (5), (6), (7) and (8) are obtained from those for (1), (2), (3), and (4) by inversion.

Representation Desig- Central ion Group overlap
(bond type) nation orbital Ligand orbitals (Smv)
azu(s and po) 18 (105)/2xyz @)V [o1+02t03+0s—05—05—a1—035] (40/9)V%po | f)
tou(m) |e) $(105)1/25(x2—»2) (32)712 (na+ns+ns+ns—m—na—ns—17)
FV3(ErttstbotEs—fo—Ei—Es—E) ]
[ e2) $(105)12x(y2—2?) (32)712[ (nz+natns+mr—n1—n3—ns—ns) (40/9)1*(pr| f)
+V3(E1+-EstEotEs—Ea—Ea—Es—E1)]
[e) 3(105)12y(z2—x?) @)1 2(n1+-na+n1+18—n3—n4—n5—n6)
tiu(s and po) |81) 1(7)1/25(552—3r2) 8)1%(014-04+06+071—02—03—05—0%)
[62) %(7)”293(5352_3’2) (8)—”2(171+0'3+¢T6+0'a—0'5—07—0’2—0'4) - (32/2‘7)1“’('170'] f)
|53) %(7)”23)(53/2—372) (8)_1/2(U1+02+0'7+0’3*0’3—<T4'—05—0'6)
biu(m) [81) 3(7)1125(522—3r%) B2) "V (ke +-Est-Est-Es—E1—Ea—Es— 1)
+V3(m+nat-net-n1—n2—ns—n5—1s) ]
[82) 3(7)12(Sa?—3r%) B2) 2 (fo-Eat-E5+ £ —E1— E3— Eo—£s) (1/2)1%pr/ f)
+V3 (n2+natns+n1—n1—n3—n6—1ns)
|83) 3(7)112y(Sy2—3r%) @) V2 (e t-Eat bt Es—Es—Ea—Es—Eo)

CaF; are {=—2513 cm™, ee=—792.0 cm™, ¢=173.8
cm™}, 6=90.2 cm~!. We emphasize again’ that this
procedure is thus far entirely consistent with the normal
electrostatic field treatment but is more general in that
the precise nature of the crystal-field interaction is not
specified at the outset. The reason that the strong-field
representation is convenient for the present purpose is
that the quantities calculated by molecular orbital
treatment, the e;’s appear in the energy expressions in
place of the crystal-field parameters.

A set of ligand orbitals interact with only those metal
orbitals which transform according to the same repre-
sentation (T';). A suitable set of irreducible ligand basis
functions X(T';) and their metal-ion counterparts ¢ (T';)
are listed in Table 1.8 While we have included 2pq, 2s,
and 2pr ligands in our basis set, we have not explicitly
considered the effect of higher lying (e.g., 6s, 6p, 5d)
metal orbitals. Likewise we have not considered the
effect of overlap of the ligands with themselves. We do
not believe the inclusion of such effects will greatly
modify our conclusions concerning the behavior of the
4f electrons. The secular equation, which follows from
the variational treatment of the system, is of course
factorable according to symmetry. Each of these
systems of equations is of the form |H;—SyE|=0
where H is the appropriate Hamiltonian operator for the

system and S (i>%7) are the group overlap integrals,
i.e., the projections of the irreducible metal and ligand
basis functions upon one another. Since these group
overlaps are small it is permissible to obtain a pertur-
bation solution to second order for E; by replacing the
off-diagonal terms S;E by Ss;H ;. For the bonding (B)
and antibonding (4) states the wave functions are?

WEB(T;p) =X(Tsw)+v(Tiw)pa(Ts), (12)
VA(T)=¢u(Te)— 2 ANTew)X(Tsp),  (13a)
X(Tip)=Zar s (13b)

The index » refers to the three types of bonds s, po, and
pm. Of course, the allowed values of » for each irreduci-
ble representation are determined by symmetry (see
Table I). The parameters that must be calculated are
the A(T's»)’s. [Note: By orthogonality of the bonding
and antibonding wave functions A(T;»)=v(T;p)
+S,(Ts).] Solving the factored secular determinant
for the antibonding energies E4, with the above ap-

20 The notation follows that of P. W. Anderson, in Solid State
Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc.,
New York, 1963), Vol. 14, p. 190ff where this type of calculation
is briefly reviewed.
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F16. 3. Overlap for a number of (R.E.)3*—F~ gystems. This
is the ion-pair overlap, e.g., (2pa|4f), etc., as in the Appendix, and
not the group overlap Su. A plot of overlap at the equilibrium
distance versus number of electrons would appear quite similar.
Such a plot would display the fact that Eut? and Gd*? have very
similar overlap (but of course at different equilibrium distances).

proximation for the off-diagonal values of E, we obtain

&=EA(T;)=Hyu(T:)+ 2N (Ti0)

X[HMM(Pi)—HVV(Pi)]; (14)
HMV_SMVHMM
x(r.-,u)=[~—-————HWHMM :In. (15)

[Note: In Eq. (15) we have started to suppress the index
T'; and will continue to do this.] These two equations
(14)-(15) completely describe the splittings of the three
41 levels provided the overlap Sy, and the diagonal and
off-diagonal matrix elements are known. Sy, can be
calculated in a straightforward manner provided the
wave functions of the ions and internuclear distance are
known. However, values for H s, are more troublesome.

In order to proceed further we make use of the
Wolfsberg-Helmholz (W-H) approximation,'” by which
the off-diagonal matrix elements H s, are assumed to
have asymptotic values proportional to the overlap
S, and more particularly

Hy=g My (16)

(H uut+H, vv)

In conformity to much recent molecular-orbital
(M. O.) treatments of transition metals!” we have chosen
g=2.0 for both o- and =-type interactions. The problem
of estimating the covalency thus divides itself into two
distinct parts. The first, calculating the overlap inte-
grals presents no formal problem if a suitable set of wave
functions exists. The second part of the problem is to
find values for the diagonal matrix elements Hy.

To calculate the overlap we have used analytical
Hartree-Fock solutions expressed as sums of terms of the
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simple Slater type. Therefore, the overlap integrals
were readily evaluated by a transformation to spher-
oidal coordinates.!”:30 Some details of these calculations
are found in the Appendix. In order to gain some feeling
as to the magnitude of overlap of 4f wave functions
with po, pm, and s ligand orbitals and how these
quantities vary within the rare-earth series sequence,
Fig. 3 shows some results for a single fluoride ion—
trivalent R. E. overlap at distances appropriate to the
sum of their respective radii.! As can be seen the vari-
ous overlaps decrease by about 2 or 23 when the 4f
shell is filled. Quantitatively it appears that the shrink-
ing of the internuclear distance (lanthanide contraction)
with increasing atomic number fails to compensate
for the decreasing radial extent of the 4f orbitals
themselves.

The estimate more closely the possible covalent con-
tributions to Eq. (14) in cubically coordinated (M Xs)
divalent rare earths, wave functions®? and interatomic
distances® appropriate to EuF, (2.592 A) were used.
The results for values of Sy, are given in Table II. It
can be argued using the results of Fig. 3. that the cor-
rection necessary for any other rare earth is no greater
than two.

The remaining task of choosing appropriate values
for the diagonal matrix elements Hj; is by no means as
certain. Quite properly in an empirical treatment of this
sort, the concern is not a detailed consideration of the

TABLE II. Summary of the contributions to the molecular-
orbital calculation. The energy parameters used to calculate S and
A are Hypy=—70X103 cm™, H,p— Hpypr= —100X10% cm™, and
Hyo—Hpp=—200X10% cm™. On the right the logarithmic deriva-
tives of S? is given. Thus, if S « R™™ values for 2m are listed. The
bottom of the table lists the various contributions to the energy of
the three strong-field levels. These values are computed using
Eqgs. (14) or (17) as was done in Fig. 4. Note that the energies
given here are one electron orbital energies, whereas Fig. 4 is an
energy level diagram for a single hole in the 413 configuration for

which the energies are inverted.
R\ dS
tou 2m=2 (S‘—)EE

Orbital type

Q2u biu
2s S 0.0234 —0.0120 0.0 12.1
A 0.0288 —0.0148 0.0
2pa S 0.0364 —0.0188 0.0 6.5
A 0.0619 —0.0319 0.0
2pm S 0.0 0.0077 0.0231 104
A 0.0 0.0131 0.0393
A=\(Hyp—Hyy) Alazy) A1) A(tey)
2s 249 cm™! 67 cm™1 0.0
2pa 383 102 0.0
2pr 0 17 154
Total 632 186 154

3 R. S. Mulliken, C. A. Reike, D. Orloff, and H. Orloff, J. Chem.
Phys. 17, 1248 (1949).

31D, H. Templeton and C. H. Dauben, J. Am. Chem. Soc. 76,
5237 (1954).
( - A) J. Freeman and R. E. Watson, Phys. Rev. 127, 2058
1962).
( ;364'5 R. McGuire and M. W. Shafer, J. Appl. Phys. 35, 984
1 .
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nature of the terms in the Hamiltonian operator. Rather
the concern is to find a set of numbers representing
some “‘effective” Hamiltonian which when used in Eqs.
(13)-(15) represent as closely as possible the true
physical situation. This is the philosophy behind the
extensive use!’” of the Wolfsberg-Helmholz approxi-
mation in the M. O. calculations that are used to de-
termine the energy splittings, etc. We have applied the
Egs. (13)—(15) to known values of 10 Dq and orbital-
mixing parameters for several transition-metal com-
plexes (e.g., NiFg*, etc.). Quite good agreement for
NiFg* 10 Dq and transfer hfs can be obtained using
Hyu=—120X10* cm™, H,,=—170X10° cm™!, H,,
=—370X10% cm™. For VF¢*, 10 Dq was fitted with
Hyryr=—75X10® cm™, H,,=—155X10® cm™!, and
H,,=—355X10® cm™!. The numbers were chosen so
that Hprayr— H p, agree with experimental charge trans-
fer energies (i.e., 50X10° cm™! for Ni-F and 80X10?
cm~! for V-F).3* In both cases the F—! energies quoted
above were approximately the same. For the rare earths
the value of the quantity Harar—H ,p should also co-
incide with charge-transfer excitations of the complex,
and while we know of no direct measurements for
divalent rare earths an estimate of Hpyp—Hpp~
100X10% cm™ seems reasonable, based upon what is
known for trivalent rare earths and the general system-
atics of charge-transfer excitation.?* In the absence of
any strong physical arguments to the contrary, we
would suppose that the matrix elements H,, and H,,
for the fluoride ligands will not differ appreciably in
rare earths as opposed to transition metal complexes.
(It seems sensible that H s is less negative for rare-
earth ions than transition metals because the 4f
electrons are much less strongly bound in the free ion.)
Thus, taking the above values of H,, and H,, as central
values we have evaluated covalent energy contribu-
tions, but have chosen to introduce some variation
more or less concomitant with our uncertainty in the
parameters by fixing Hyar—Hpp=100X103 cm™,
H,p—H;=200X10° cm™, and by varying H sa. The
energy levels as a function of H sy are shown in Fig. 4
and Table IT lists a breakdown of the contributions to
the energy for a particular set of parameter values
quoted in the caption. We imagine that the more
plausible values for 1the parameters lie near the center of
Fig. 4. There are two points of intesest to be made. First
the magnitude of the predicted covalent?®® contribution
to the splitting (=480 cm™!) is a rather substantial

34 C. K. Jorgensen, Absorption Spectra and Chemical Bonding
in Complexes (Pergamon Press, Ltd., Oxford, 1962). When treated
consistently by M.O. theory, the energy denominator in Eq. (15)
refers to virtual excitations of the complex, rather than an experi-
mentally observable charge transfer energy as has been tradition-
ally (and somewhat carelessly) used in semiemprical treatments.
However, Sugano and Tanabe (Ref. 46) have recently shown this
procedure to be justifiable on empirical grounds.

3 We mean by covalent energy contributions all those terms
which depend upon nonvanishing overlap with the ligands, which
is traditional usage. According to a more specific usage in the

recent physics literature (Ref. 42) our covalent energy is the sum
of renormalization, overlap, and covalent contributions.
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Fi16. 4. A plot of the splittingresulting from overlap as a function
of the diagonal metal matrix element Harar. The splittings of the
three strong-field energy levels are drawn so the center of gravity
is unshifted. Although the maximum splitting varies from about
250 to 700 cm™! as Haar becomes more negative, as discussed in
the text, the most probable value is ~—70X10® cm™. For this
value of Hu the orbital splittings are given in Table II. The
dashed line is a plot of #ess versus H . This quantity (~8.2 at
H = —70%103 cm™) can be used for comparison with the strain
experiment and the electrostatic model.

portion of the total observed splitting (e.g., 960 cm™!
for Tm?*:CaF;). In this regard it should be mentioned
that Bleaney!® has calculated the splitting to be ex-
pected due to a CaF lattice of point charges and finds
that it accounts for only about % of the observed
splitting. This is just one example of the general in-
sufficiency of the point-charge model in calculating
rare-earth splittings.’~® The second point of interest
is that covalent interaction alone leaves the #,, and fs,
levels very close together in agreement with what is
observed experimentally. In any electrostatic model
using the full interatomic distances the fourth-order
term dominates the sixth-order term which places the
ts. level about midway between the 1, and @y, levels.
Note from Table II that although po bonding contri-
butions dominate the over-all splitting pattern s overlap
accounts for 399, of the as, energy while s and pr
overlaps account for 369, and 9%, respectively, of the
t1, covalent orbital energy.

STRAIN DEPENDENCE, HYPERFINE INTER-
ACTION AND ORBITAL REDUCTION
IN A COVALENT MODEL

The preceding section indicates that it would not be
unreasonable to expect sizable covalent contributions to
the 4 f cubic-crystal-field splitting. Thus, it becomes im-
mediately interesting to estimate some of the other
consequences of this covalent contribution.
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We can calculate the strain dependence of the co-
valent contribution using Eqs. (13)-(16). The covalent
splitting is the sum of terms contributed by overlap
with the »th ligand set.

EA(T:)— Hprn(T)

=X [[H,*/(Hyuu—H,») 1S Jrs. (17)

If the diagonal elements H;; could be treated as a
constant, the radial dependence would be determined
by the behavior of Sy,. Even though the Hj; differ
substantially from the free-ion values because of mutual
interactions in the crystal, we can justify neglecting
the radial dependence of H,,%/(H yy—H,) so long as
Hyry—H,, is not very small compared with H,,. This
is because it is likely that the largest radially dependent
fractions of the Hj; are Coulombic and have the rela-
tively slow R—! dependence.

It is convenient to specify the radial dependences
of quantities by their logarithmic derivatives [ (R/ f(R))
(@f/dR) Jr=re. In particular the logarithmic derivative
of the orbital splitting (ea—e;)=A we shall call 7es
because at the equilibrium distance A and dA/dR are
given correctly by an expression of the form (constant)
X Rtnett, We need concern ourselves only with the be-
havior of A because from Eq. (10) the strain dependence
of the observed transition E(I'Y/—T;) depends only
upon A. Each of the individual overlap contributions
has a different radial dependence as seen in Table II,
and the net contribution to #es varies as shown in
Fig. 4, according to the relative magnitude of the s,
pa, and pr contributions. By way of comparison, in the
electrostatic model #.¢ depends only upon the ratio
(b6/bs) and from Egs. (2) and (10) a value of —6.03 is
predicted for both Tm?":CaF,; and Tm?*:SrF,. The
“observed” values of 7., that is the changes in A im-
plied by the measured strain dependences of E(I'/—TI'7),
can be calculated with the aid of Eq. (10). They are
—6.9 for Tm?>*:CaF; and —6.7 for Tm?+:SrF, assuming
that bulk compressibilities hold locally. If the compressi-
bilities are corrected along the lines discussed in the
section on local compressibility the values are —6.5 and
—7.2, respectively. Thus, while the radial dependence
of the electrostatic model seems slightly too weak, that
of a purely covalent model is slightly too strong. It is
worth pointing out that 7 bonding in the £y, levels de-
creases e2—e; and thus also #e. Incidentally we also
find that the change in the square of the overlap ac-
counts for the observed strain dependence of transition
metal complexes in the instances®® we have investigated.

Among the consequences of small amounts of co-
valency, one of the most readily observable is the
change in magnetic moment due to “orbital reduction.”
We may write the two hole states comprising the lowest
Kramer’s doublet in Tm?* in a cubic (M X3) environ-

3 G. Burns and J. D. Axe, J. Chem. Phys. (to be published).
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ment as?8 v
| T7)=cosd| 4 )+sind| B), ‘
| T4*)=cosb| A)+sind| B), (18)
where
|4)=il0); |B=O Tty Hlailml,

[4)=ilB); | B)= @) [—|a)+|e)—ile*)].

Here |B*), etc., are products of orbital wave functions
given in Table I and the | =) spin eigenfunctions. |4),
|B) and |4), | B) form bases for the I'; representation.
The proper value of 8 is obtained by diagonalization of
3¢’ and is given by

tand=(2v3)~"- {(A—35)—[(F)*—Ar+A7]V2} . (20)

Orbital reduction can be specified phenomenologically
by two parameters

k=(A|Lz|B)/{f4|Lz| f3), (215
k'=(B|Lz|B)/{fs|Lz| f5),

where (| f4),| f5)) represents (|4),|B)) in the limit of
no ligand admixing. (A third reduction factor involving
(4|Lz|A) proves unnecessary because (A|Lz|A4)
=(fa|Lz| fa)=0.) The g factor for this lowest Kramer’s
doublet is given by

g(T)=2(T7| Lz+gsSz| T'7)
=g, cos20+ (8/V3)k cosf sinfd
+(3)(2k' —gs)sin?0.  (22)

(This expression is more generally valid than that given
by Bleaney,'® who assumed identical orbital reduction
factors for all orbital states.) The orbital reduction
factors introduced in Egs. (21) and (22) can be evalu-
ated in terms of the M.O. wave functions arrived at in
the previous section by direct substitution. After a
rather tedious calculation following Stevens,’” we ob-
tain to lowest order in A2

k=1—[\*(a24,8) +N*(@2u, p0) +1/3N (@20, p0)
X)\(tzu,PW)+>\2(t2u,P7r)]; (23)

k=1.

For the range of values of H sy represented in Fig. 4,
the calculated values of 1—£% lie between 1.3)X10~% and
0.3X1073. The value of 1—% necessary to explain the
observed g value is 0.011(2=0.001) which is larger by at
least an order of magnitude. Put another way, using our
estimates of the relations between ligand admixing and
covalent energies, the orbital admixtures necessary to
explain the observed discrepancy in the g value would
result in covalent splitting terms about 5 times greater
than the total observed splittings. These results seem
therefore to lend credence to Inoue’s suggestion® that
mixing of electronic states due to multiple phonon

( ZK) W. H. Stevens, Proc. Roy. Soc. (London) A219, 542
1953).

38 M. Inoue, Phys. Rev. Letters 11, 196 (1963). Also R. Orbach
and P. Pincus, Phys. Rev. 143, 168 (1966).
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processes contributes strongly to the small magnetic
moment anomaly in Tm?* :CaF,.

One of the most valuable methods of investigating
covalency in transition-metal fluoride complexes has
been through the observation in the electron paramag-
netic resonance of anomalous hyperfine interaction of
the F? nuclear spin with the nonlocalized electronic
spin of the complex. Bessent and Hayes® have studied
this effect by ENDOR techniques in Tm?**:CaF,. For
simplicity we consider only the contact term which is
assumed to arise from admixtures of 2s orbitals of
nearest fluorine ligands. The corresponding term in the
spin Hamiltonian is >~ ;4 #S-1; where the sum is over
the eight nearest F'~ neighbors and a comparison of the
matrix elements of this spin Hamiltonian with those
using the wave functions given in Eq. (18) yields

A $=[cos?0 N2(a24,5) A 24/8. (24)

Here A3,=45.0 kMc/sec is the calculated hyperfine
interaction constant evaluated for a 2s electron in F'~.
This leads to calculated values of 4. ranging from
+1.8 Mc/sec to +3.6 Mc/sec, as compared to the
measured value of £2.584 Mc/sec reported by Bessent
and Hayes.® Although the sign of the measured value
is uncertain in Tm?*, other processes (presumably in-
kolving polarization of outer filled rare-earth orbitals??)
cause 4 to be negative in Eu?t.? It is therefore not
clear what significance is to be attached to the order of
magnitude agreement noted above.

SUMMARY AND DISCUSSION

(1) There has been relatively little experimental work
on stress effects in 4f <> 4f transitions,* although the
symmetry aspects of uniaxial stress effects have re-
ceived some attention.'® However, stress measurements
contain valuable information concerning the radial
dependence of crystal-field interactions, which can be
checked for example, with the prediction of an electro-
static model.1®

(2) It has been shown that for Tm?2*+ in both CaF,
and SrF, the experimentally observed radial dependence
is somewhat larger than predicted by the electrostatic
model ‘if the macroscopic- stress-strain relation is as-
sumed to hold at the position of the Tm?** ion. The use
of an elastic continuum model to estimate the “local”
compressibility does not produce substantially better
results.

(3) We have performed a semiempirical, Wolfsberg-
Helmholz type, molecular-orbital calculation to de-
termine the energy splittings of rare earths in cubic
(O1) symmetry in particular for M Fs6. The off-diagonal
matrix elements are set equal to the product of the
overlap times an average of the diagonal matrix
elements. The diagonal matrix elements are varied

1;”6%{ E. Watson and A. J. Freeman, Phys. Rev. Letters 6, 277
( 0 A) A. Kaplianskii and A. K. Przhevuskii, Opt. Spectro-

skopiya 13, 882 (1962) [English transl.: Opt. Spectry. (USSR)
13, 508 (1962)]; and Z. J. Kiss (unpublished).
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between some reasonable limits. This treatment pre-
dicts that a considerable fraction of the cubic crystal
field can be explained as coming from overlap of the 4f
electrons with the ligands. This is in general agreement
with the conclusions of Jorgensen et al.1° A simple argu-
ment leading directly to this conclusion can be pre-
sented. The magnitude of the covalent antibonding
energy shift is proportional to the square of the overlap
with the neighboring ligands [see Eq. (17)]. Thus, in a
rough way the total splitting of the levels is « S? where
S is the largest overlap. The ratio of S? for iron group
fluorides to that for R.E. fluorides is =10, which is also
roughly the ratio of 10 Dq to the strong-field orbital
energy splittings for rare-earth fluorides. Since the
splittings for the iron group are known to originate from
covalent effects predominantly, we should not therefore
be surprised to find sizeable covalent contributions in
rare earths also.

A strong-ligand-field representation is used since it
is the strong-field eigenvalues (the €/s) that are directly
calculated in the M.O. treatment. These one-electron
orbital-energy differences A=e;—e; and 6=es—e€s5 to-
gether with ¢ constitute a convenient and equally valid
alternative set of parameters to the usual set of cubic-
crystal-field parameters b4, bg, and {.

(4) The traditional electsostatic contribution to the
energy splittings is of course still to be considered. Thus,
using what we believe to be reasonable values for the
diagonal matrix elements, Table II shows that ~509 of
the energy splitting can be accounted for by covalency.
However, the familiar electrostatic crystal-field terms
occur in the Hamiltonian as well, and in general increase
the magnitude of the splitting. What is not obvious
and will take a more careful treatment to untangle is to
what extent these electrostatic effects have been in-
advertently mixed with covalency by our empirical
method of parameter selection.*! Nevertheless, the fact
that in an M.O. treatment for rare earths, less crystal
field is required to come from electrostatic effects is in
right direction since, in general, electrostatic calcu-
lations of the fields due to the surrounding ions are
smaller than the experimentally observed fields.!=®
However, there are still uncertainties as to the detailed
values to be obtained from the electrostatic model as-
sociated with, for example, the detailed distribution of
charge.”

(5) It should also be emphasized that there exist
several first principle calculations of overlap effects for
theiron series ions.*>~%6 These calculations determine the

4 M. H. Cohen, and V. Heine, Phys. Rev. 122, 1821 (1961).

42 R. G. Schulman and S. Sugano, Phys. Rev. 130, 506 (1962);
K. Knox, R. G. Shulman, and S. Sugano, sbid. 130, 512 (1962);
S. Sugano and R. G. Shulman, ¢bid. 130, 517 (1962).

( 4;11{). E. Watson and A. J. Freeman, Phys. Rev. 134, A1526
1964).

44 E. Simanek and Z. Sroubek, Phys. Status Solidi 4, 251 (1964).

4 J. Hubbard, D. E. Rimmer, and F. R. A. Hopgood, Proc.
Phys. Soc. 88, 13 (1966).

a ;6 ?) Sugano and Y. Tanabe, J. Phys. Soc. Japan 20, 1155
65).
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amount of ligand admixing by directly solving the wave
equation. Thus, the values for the matrix elements H;
are directly calculated (rather than estimated as is done
when using the Wolfsberg-Helmholz method). The
empirical treatment we have attempted is not an ade-
quate substitute for a more detailed analysis, and such
a calculation would be most welcome. The present
treatment does however have the advantage of being
simple and lucid. Also the semiempirical methods used
here usually produce good results'’ in transition metals.

(6) We have also used this model to estimate some
of the consequences of what we believe to be a non-
negligible covalent bonding contribution.

The covalent contribution to the cubic-crystal-field
parameter A is proportional to ~R~8%, whereas the
electrostatic contribution is ~R™% and the experi-
mental results are about midway between. The result
is consistent with a large but not dominant covalent
contribution.

We have calculated the orbital reduction factor (the
deviation of the g value of the lowest state caused by
ligand orbital admixtures). We are unable to explain
the magnitude of this factor even though it is not
large. This result lends credence to the suggestion® that
phonon admixing of electronic states contribute to the
small deviations from the expected g values for
Tm?*:CaF,.

Finally, we have calculated the contact term in the
transferred hyperfine Hamiltonian of (TmFs)é—. The
magnitude of the resultis in agreement with experiment.
However, the sign of the experimental result is un-
certain, and the issue is further clouded by the possi-
bility of large core polarization effects.?® In addition, it
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has recently been shown#—4 that a somewhat different
effective Hamiltonian should be used to calculate un-
paired ligand spin density than that used for calculation
of the energies of the antibonding states.
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APPENDIX

The analytical radial wave functions for the fluoride
ion were those used by Sugano and Shulman*?

Xop=15.671¢,(3.7374)+1.5742¢,(1.3584), (A1)
Xgo=—11.156¢15(8.70)+10.805¢2,(2.425),  (A2)

whereas the rare-earth functions as determined by
Freeman and Watson?®? are all of the type
4

Xyy=2 Nias(ui), (A3)
where ¢ni(u)= ("1e~#") ¥ ™(0,4). The overlap integrals
between ion pairs can then be written as sums of
overlap integrals of the simple Slater type s(nl,n'l',R)
={¢ni|¢pnr), where R is the internuclear distance.
Mulliken et al.3%17 have shown how to evaluate such
expressions in terms of the incomplete gamma functions
An(p)= S1* tre?tdE, and Bi(pt) = JI1! nte~?trdy. Sev-
eral overlap expressions involving 4f Slater functions
are as follows:

(1s]4f)=(7/16)"%(R/2)*[(—5Bs+3Bs) Ao+ (9Bs—3Bs) A
+(5Bo—9B9) Ayt (—9B1+5B5) A+ (—3Bo+-9B2) A s+ (3Bi—5B5) 5],
(25|4f)= (7/16)2(R/2)"[ (—5Bs+3Bs) Ao+ (—5By+12Bs—3Be) A1+ (5B1+9Bs— 12B5) 4,
+ (SBy—9B3—9B+5Bs) A s+ (—12B1+9By-+5B5) A s+ (— 3Bo+12B:—5B) As+ (3B1— 5B5) 4],
(2pa|4f)=(21/16)*(R/2)"[(—5Bs+3Bs) Ao+ (4Bs) A1+ (5Bo—3Bs) A2
+(—4B1—4Bs) A3+ (—3Bo+5Bs) A4+ (4Bs) As+ (3Ba—5B1) 4],
(2pr|4f)=(63/128)*(R/2)"[ (5B2—6Bs+ Bs)Ao— (8Bs—8B5) A1+ (—5Bo+11B,—6Bs) As— (—8B1+8Bs) 43
4 (6Bo—11B3+5Bs) 43— (8B1—8B5) A5+ (— Bo+6Bs— 5By As].

Note that these formulas are for use with unnormalized
radial wave functions ¢.;(u) defined above.

The above overlap integrals for a pair of atoms must
be related to the more complicated group overlap of a
central ion with the appropriate set of symmetry
adapted ligand functions in order to be useful. This can
always be performed by a suitable set of coordinate
transformations. The results for the group overlap
involving the 8 cubic-basis ligand functions are included
in Table IL.

As previously explained, the radial dependence of
covalent splittings has been characterized by a number

ee. This is convenient for comparison with multipole
electrostatic splittings which are proportional to R™™.
This is not meant to imply that covalent splittings are
well represented by S= const R—™ over any appreciable
range however. In fact, if S is to be extrapolated for
for large changes of R a better form is probably*
S=B exp(—R/p). To go from one form to the other is
quite trivial since m= Ro/p where Ry is the internuclear
distance for which m is calculated. p is apparently
independent of R over a reasonably large range of R.7

( 4 g W. Hafemeister and W. H. Flygare, J. Chem. Phys. 43, 795
1965).



