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For explicit calculations, we have averaged (AS) over all directions of the vector g; this gives

(Is), = 2J'Z(sinqb/qb) . (A9)

Here, J is the exchange integral between two neighboring spins, and b is the lattice parameter. It may be worth-
while remarking that this usual averaging procedure, which is consistent with the experimental situation, has the
nontrivial eGect of destroying the periodicity of I~ in different Brillouin zones.
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The nuclear hexadecapole matrix elements for the static and the one-phonon nuclear interactions are
developed and are evaluated for dna= +3 and hm =&4 nuclear transitions involving a spin-f nucleus in a
crystal with 43m symmetry. An expression for the saturation factor for a general interaction which gives
rise to nuclear-spin transitions involving the change in the s component of the spin by any amount hm =&n
is developed and is used to derive the angular variation of the one-phonon, Am =+3 and Am =+4 nuclear
hexadecapole interactions. Finally a way to end the speculation about the observation of the hexadecapole
interaction is presented.

1. INTRODUCTION

INCE the first observation of the interaction of the
nucleus with its environment through its electric

moment, many experiments have been done to investi-
gate both the static and the time-dependent effects of
this phenomenon. In 1948, Pound' demonstrated that
the time-dependent quadrupole interaction was re-
sponsible for the relaxation of the Br~' and Br" nuclei
in solution. He then observed the static effect through
the splitting of the nuclear-resonance lines in a crystal
with lower than cubic symmetry. ' In 1956, Proctor and
Tanttila' observed externally induced Cl" quadrupole
transitions between the degenerate quadrupole levels
in NaC103.

In 1955, Wang4 postulated that an unexplained shift
in the pure quadrupole spectra in Sb"' and Sb"' was
due to the static nuclear-electric hexadecapole inter-
action. In 1966, externally induced hexadecapole transi-
tions between magnetically split In"' levels in InAs
were believed to have been observed. '

The nuclear-electric moments are coupled to their
electronic environment through the electric-field gradi-
ents of the electronic charge. To first approximation in
an ionic crystal, the electronic charge is symmetric
about the nucleus; thus there is no coupling between
the nucleus and its surrounding electrons. In this

' R. V. Pound, Phys. Rev. 73, 1247 (1948).' R. V. Pound, Phys. Rev. 79, 685 (1950).
'W. G. Proctor and W. H. Tanttila, Phys. Rev. 101, 1757

(1956).
' T. C. Wang, Phys. Rev. 99, 566 (1955).' R. J. Mahler, L. W. James, and W. H. Tanttila, Phys. Rev.

Letters 16, 259 (1966).

approximation, the electric-6eld gradients arise solely
from charges external to the ion. However, there is a
distortion from this spherical symmetry due to the
interaction with external charges and with the nuclear-
quadrupole moment, which gives rise to an additive
coupling characterized by an antishielding factor 7.
Sternheimer and others have calculated these anti-
shielding factors for both the quadrupole' " and the
hexadecapole interaction. ""In addition to the anti-
shielding factor, there is an additional contribution to
the hexadecapole coupling due to the perturbation of
the ion by the 6eld of the nuclear-quadrupole moment. '~

2. THEORY

The interaction energy of a nuclear-charge distribu-
tion p~(r~)dr~ and an electron-charge distribution
p@(r~)dr g can be written

ps (r~)
p~(rx) dr~drs.

z

Assuming the electron does not penetrate the nucleus, .

6 R. M. Sternheimer, Phys. Rev. 80, 102 (1950).
7 R. M. Sternheimer, Phys. Rev. 84, 244 (1951).
s H. M. Foley, R. M. Sternheimer, and D. Tycho, Phys. Rev.

93, 734 (1954).
~ R. M. Sternheimer and H. M. Foley, Phys. Rev. 92, 1460

(1953)."R. M. Sternheimer and H. M. Foley, Phys. Rev. 102, 731
(1956)."R.M. Sternheimer, Phys. Rev. Letters 6, 190 (1961)."R.M. Sternheimer, Phys. Rev. 123, 870 (1961)."R.M. Sternheimer, Phys. Rev. 127, 812 (1962).
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~e can expand, the integrand of Eq. (1) to obtain electronic terms in Eq. (2) as

to +l
U=g P X/"E&"',

l~ ~&

g m- r//'p//(rx) 1'1"*(0/vA ~)«~, (3)
21+1-

vr here

6'= 2V',
Z„~~=-,5~~2V+&,

+2 2 (10)1/2 V+2

Ers+6 ——(4/35) (35)'"V+',

816+4= (1/35) (70)'"V+',

(5)

—
42r '" &1"(f}zd z)

p/. (rs)dr J..
2l+1- z rz'+'

3fg6'= AB',
M„+&=5~~2aa+',

+2 1 (10)1/2g B+2

Mrs+2= (35)'/2AB+6,

Z„+4=,'(70)'/2~B+4,-

(4)

g = s~„/16I(I—1)(2I—1)(2I—3),

e&16=(II
~ P (35s —30r;2s;2+3r 4) t II),

Bo P5Ig4 30PI '+25Igs 6P+3I4)„»
B~'= L (7I,6—3PI,—I,)Ig+Ig (7I.'—3PI,—I,)$.w,

B+'= j (7I,'—P—5) (Ig)2+ (Ig)2(7I,2—P—5)j.w,

B"=D.(I.)'+(I.)'I.3.„
B+'=P(I~)'$,w,

I~= (I,W6Iu).

In the above, the %~6+" are the hexadecapole operator
equivalents of the E/" terms for I,=4. (Expressions
similar to the B+"have appeared in the literature. ")

Proceeding along similar lines, we can express the

If we choose suitable nuclear wave functions and. ex-

press the E~" as expectation values of nuclear operators,
odd values of / will be forbidden since stationary nuclear

states have dehnite parity. The 6ve operators for l= 2

are the nuclear-quadrupole operators, and the nine

operators corresponding to l=4 are the hexadecapole
operators. %e require that operator expressions for the

gp terms have the same matrix elements, aside from

a constant, as the Hermitian operators formed by the

spin operators, I~, I„'4 which results in the following

hexadecapole operators:

V'= (1/24) (V**-),
V+ = (1/12) (Vgggg+6Vgggy)»

V+'= (1/24) (V.„,—V„yu& 2i V...y),
= (1/12)fVgggg 3Vggyy~s(3Vzggu Vgyyy) j»

V+ = (1/4g)LV»»+ Vuyuw 6V**yw

~46(V»gy Vguyu) j ~

In the above expressions

V.„..—=L(84/8XByr}Sr}X)V]6,

1vhere V is the electronic potentjai, and L 16 sjgni6es
the evaluation of the quantity in the bracket at the
nuclear site.

The terms in Eq. (2) corresponding to the hexa-
decapole Hamiltonian then reduce to the simple

expression

a~4 a~4
II16 2 ~16 +16 2 1M 16 +16

=A(B6V6+B+'V '+ .+B+'V '+B 'V+'). (6)-
The first term in the expansion in Eq. (6) gives rise to
a small static shift in the energy levels and was used
to explain the small perturbation on the pure quadru-
pole spectra4 of Sb'~' and Sb"'. The e=l, 2, 3, and 4
terms will be shown to give rise to the interaction of
phonons with the spin system, corresponding to one-
phonon hm= &1, &2, &3, and &4 nuclear spin transi-
tions, respectively. It should be expected that all the
terms in the expansion are extremely small, and since
there are competing hm=& j. dipole and km=~i and
6m=&2 quadrupole interactions, one should not be
able to detect these phonon-induced hexadecapole
transitions. For the 8m=&3 transitions, there is a
competing magnetic-octupole process that has been
shown to be weaker than the hexadecapole interaction. '
Finally, for the 6m=&4 transitions, there is no other
interaction involving nuclear moments of lower order
that will give rise directly to such a transition.

3. HEXADECAPOLE-PHOÃON
DTTERACTIONS

~4See, for example, A. Abragam, The Priecip/es of Nuclear
Magnetism (Oxford University Press, London, 1961),pp. 159-166.

"K. W. H. Stevens, Proc. Phys. Soc. (London) A65, 209
(1952);E. Ambler, J. C. Eisenstein, and J. I".Schooley, J.Math.
Phys. 3, 118 (1962).

In order to investigate the interaction of phonons
with the spin system, it will be necessary to introduce
phonon operators into the expression for the interaction
energy, Eq. (6). This is done by expanding the terms
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in the expansion in a Taylor series about the equi-
libriurn position of the nucleus. If f;" denotes the sth
component of the displacement of the ath particle from
its equilibrium position, the Taylor series can be written

to, o, ~]

I

I

I

—P jj+nVwn] +gg+n Q Vvn (.a
i, a ling~

Q2

+ /pan Q .Vwn t,a(,s+. . . (7)
2! ~,a 8$, 8$,~

p
isP

= fo to]

where n&0 and P denotes a lattice sum. From this
point we have two approaches to the problem. The
first approach involves expanding the displacements (
in terms of phonon operators. Such an expansion clearly
shows that the second term on the right side of Eq. (7)
describes the creation or annihilation of one phonon
coupled with an energy conserving nuclear-spin transi-
tion, and the third term describes the interaction of
two phonons with the spin system coupled with an
energy conserving nuclear transition. For m=1, the
energy conserving nuclear transition is a km=~i
transition; similarly, n=2, 3, and 4 correspond to
d,m=&2, 3, and 4 transitions, respectively. Since we
are interested only in the interaction between a longi-
tudinal photon of a particular frequency and direction
of propagation with the nuclear-spin system, the prob-
lem is simplified a great deal, but the result of such an
approach yields a solution in terms of internal-energy
density of externally added phonons, antishielding fac-
tors, and lattice terms of which we have, at best, only
scant knowledge. We choose, therefore, a second ap-
proach which deals with lattice symmetries. This
approach yields as a result the angular variation of
both the static and hexadecapole-phonon interaction
matrix elements.

4. ANGULAR DEPENDENCE IN A CRYSTAL
WITH 43yn SYMMETRY

b i

[i,o, o] I

FIG. 1. Unit cell structure of a crystal with 43m symmetry.
The axes shown dejne the L1,0,0j fraine; the (1,0,0), (0,1,0},and
(0,0,&) axes are along the x, y, s axes, respectively.

the evaluation of 8'(m') is shown in Fig. 2. Note that
the &~ and +~ levels fal1. on each other. Of course,
the zero-Geld splitting due to the hexadecapole moment
is purely academic, since the interaction is normally
extremely weak. A more realistic case would be a spin--',

nucleus in a crystal with lower than cubic symmetry.
In this case, the 3f~6 interaction would be a small
perturbation on the quadrupole split levels, as indicated
in Fig. 3.

For the case of a cubic crystal in a uniform magnetic
field we have

where B = —hvqm, v J. is the nuclear I,armor frequency,
and it will be assumed that B~&B~~'. The magnetic
6eld splits the nuclear-energy levels into 2I+1 equally
spaced levels, and the hexadecapole interaction can be
regarded as a small perturbation on these levels.

In the L1,0,0j frame (as de6ned by Fig. 1), there are

QUADRUPOLE HEXADECAPOLE

In Fig. 1 is shown the unit-cell structure of a crystal
with 43m symmetry, as well as a set of axes which we

will de6ne as the $1,0,0] frame. A nucleus of type A is
located at the origin, surrounded by 4 nearest neighbors
of type 8 located at (g,g,g), (g, —g, —g), (—g, —

g, g),
and (—g, g, —g), where g is one-half the usual lattice
constant. For such cubic symmetry, (V, )p=(V»)p
= (V„)p, and supposedly the I.aplacian is zero when
evaluated at the nuclear site; hence the static quadru-
pole interaction is zero.

If we consider only the ta=0 term in Eq. (6) we obtain

Pipe ——ABP (m') V'.

m=+- +—+—+—+——5 7 9p&p&2&2

m=+- +—I 9
p

m=+—5
2

rn=i—5
2

It can be seen that this splitting will be degenerate in
+m (just as in the quadrupole case). For the particular
case of a spin-2 nucleus in a crystal with 43m symmetry,

FIG. 2. Zero-Geld hexadecapole splitting for a spin-9/2
nucleus in a cubic lattice.
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21 nonzero terms of the fourth-rank tensor V;,~~. Of
these 21 terms there are three equal terms of the form
V;;;; which will be denoted by a, and 18 equal terms of
the form V,,;, (and permutations) which will be de-
noted by b A.n arbitrary rotation about a(0, 1,0) axis

yields
V'.„,=a[1 ((—a 3b—)/2a) sin'28],

where the prime denotes the rotated frame, and 8 is
the angle between the external magnetic field (taken
to be along the s' axis in the rotated frame) and the
(0,0,1) crystalline axis. If the potential satisfies La-
place's equation, one can show that a= —2b. The shift
in the energy levels due to the static hexadecapole
interaction becomes

eAEMa[35m4 30I—(I+1)m'+25m' 6I(—I+1)+3I2(I+1)']- (a—3b)
816 1— sin'28

384I(I 1)(2I——1)(2I—3) 28
(10)

The angular dependence for rotation about other crys-
talline directions may be calculated in a straightforward
manner but tends to be slightly more complex.

In order to calculate the angular dependence of the
hexadecapole one-phonon interaction, we write the dis-

placement g as

g= )okg(l', m', 4)4(K+mM+44N),

where (L,M,1V) are the direction cosines of the nuclear
sites, (l,m, n) are the direction cosines for the wave
vector k, and (P, 'm, 4)4are the direction cosines of the
polarization, all with respect to the [1,0,0] frame. We
must now evaluate the rotational properties of the
fourth-rank tensor

In general, in the [1,0,0] frame, the frame displaying

the maximum symmetry, there will be 81 nonzero com-

ponents of the fourth rank V;~~ " tensor. Of these 81
terms only 21 are nonzero after the lattice sum, and of
these nonzero terms only two are distinct apd will be

where

V„+'(8)= nD sin'8 cos8,

V,+4(8) = —~D sin48,

(12a)

(12b)

denoted by n[V, ;;;4', i=x, y, s(3)], and P[V,,;p, and
permutations with iW j(18)].

We can simplify the problem by assuming that we-

are dealing with longitudinally polarized phonons with
wave vectors parallel to the x axis. With this assump--

tion, only 21 tensor components of the V;&& & tensor will

be nonzero after the lattice sum is taken. We will.

evaluate the tensor for one particular experimental.
arrangement since the calculation is somewhat lengthy.

If we define the [1,1,1] frame as the x axis along the
(1,1,1) direction, the y axis along the (—1, 1,0) direction, ,

and the s axis along the (—1, —1, 2) crystalline direc-
tion, and assume that the longitudinal phonons are
propagated along the x axis in this frame, we can
evaluate the 21 nonzero components of the V„+"tensor
in this [1,1,1] frame in terms of the two independent
values, n and P, by performing a transformation which
consists of two rotations, first about the (0,0,1) direc-
tion, then about the (—1, 1,0) direction. An arbitrary
rotation about the (—1, 1,0) crystalline direction will

yield the angular dependence of the 5m=+3 and.
Am =&4 one-phonon hexadecapole matrix elements

+
. 2 D= (7kg&/864) [n—3P], (12c)

+ 7
2

+5
2

+
2

QUADRUPOLE

+
2

+ 5
2

+
2

QUADRUPOLE PLUS
HEXADECAPOLE

FIG. 3. Zero-field
quadrupole and quad-
rupole plus hexadec-
apole splitting for a
spin-9/2 nucleus in a
crystal with lower
than cubic symme-
try.

and 0 is the angle between the direction of phonon-
propagation vector and the external magnetic field.

In deriving Eqs. (12) we assumed that the amplitude
of the displacement ($0) is proportional to the driving
voltage (s) impressed on the phonon generator, the
transducer, or (0——Xw. Actually, X is not constant, more
probably a Lorentzian function of frequency for a given
transducer, and varies with the transducer thickness
and material. "However, this fact will not a6ect our
results.

S. SATURATION FACTOR

The transition probability per unit time 5" ~ for a
5m=&m transition is given by time-dependent first-

"R.J. Mahler and W. H. Tanttila, J. Acoust. Soc. Am. BS,
429 (1965).
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order perturbation theory as

w„.(n) = (1/l'22)p„(v) IIIm .I',
where B ~ is the perturbation matrix element con-
necting the m and m' states, which in general will be
different for each value of m, and p„(v) is the density
of transitions defined such that p„(v)dv is the number of
possible transitions in a frequency range dv normalized
such that

p„(v)dv=1.

If we assume that p„(v) is a Gaussian distribution, "
p„(v) = (1/2r'"hv. ) exp( —[(v—v„.)/hv $'},

we can write

dpm/d~= Wm(m+n) (pm pm+n) Wm(m-n) (pm pm-n)

+[(S'L)-+(SS)-lp-,
where (SL) represents the spin-lattice and (SS)
represents the spin-spin contributions, I) (m+n) ) I, —
and I) (m —n)) —I. If we write down the 2I+1
equations corresponding to the levels labeled by m,
multiply each by the appropriate value of phd, and.
add all the equations, we obtain

dpm
yl2 P m =—(g,)

m

= —W ykn{ p IB "(m)I'(p —p )
hv can be evaluated experimentally by measuring the
half-width of the absorption line at a point where the
saturation is e ' of its maximum value. Evaluating
W .(n) at maximum saturation, we find

all
m ynyo

m=Z/2

I
Il'"(m —n) I'(p(—)

—p-(--.))}

w„„(n)= (1/2r'/2/22)
I
II ~

I 2(1/hv ) . (13)

In Eq. (7) we have written the one-phonon hexa-
decapole interaction Hamiltonian II ~ as

gg+n Q P'Wn p.a
-0

where only 8+" is a function of the s component of the
nuclear spin. This type of separation is always possible
when the total wave function can be written as a product
of a spin and a space function. In what follows, we wiB
not restrict ourselves to hexadecapole interactions when
we derive a general expression for the saturation factor.
We merely require that the interaction Hamiltonian
can be written as a product of a spin and space function,

W, .(n) =W. I
a+.(m) I, (14a)

where W„ includes the spatial part of the transition
probability (and constants), and the explicit depend-
ence on m is given by I

8+n(m) I'. In the case of the
one-phonon hexadecapole interaction,

+yi2[P m(SL) P„+Pm(SS)„P„j, (17)

We assume that the spin system approaches equilibrium
with the lattice exponentially with a single relaxation
time Tj, or

yh Q m(SL)„p„=—(M, M,)/T, , (18b—)

where Mo is the maximum magnetization with no
perturbation applied. We then assume that the spin-spin
interaction constantly maintains a Boltzmann distribu-
tion between the spin levels, or

pm p m2m(—p»2 p—»2) ~

Finally, we write

(18c)

where we have assumed half-integer spin and M, is the
magnetization. Since in a strong magnetic field, the
spin-spin interactions cannot change the energy of the
spin system, they must leave (3II,) unchanged, or

p m(SS) p =0.

W2I V,+-I2
8'„= (]4b) r m=r

(M,)=y/2 Q mp„=yA Q 2m'(p»2 —p»2)

We will further assume that 8+"contains nothing more
than products of the matrix elements of the nuclear
raising and lowering operators [I~1,v,

(m+1
I [I~j„I m) = [(Iwm) (I&m+1) j)/2, (15a)

and the operator [I,j,v,

(ml [I3 Im&=m. (15b)

If p represents the population of the I,=m level,

=-',I(I+1)(2I+1)yi2(p»2 —p»2). (18d)

Solving for (P»2 —P»2) in Eq. (18d), substituting Eqs.
(18a), (18b), (18c), and (18d) into Eq. (17), and
assuming (d/dt)(I/II. )=0 at equilibrium, one obtains

3f, 6eT~H/'„
1+ (Q mIB—(m)I'

M() I(I+1)(2I+1) ~r

"E.Srun, R. J. Mahler, H. Mahon, and W. L. Pierce, Phys.
Rev. 129, 1965 (1963).

all
m&n)0
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This equation gives the saturation factor for any inter-
action vrhich gives rise to spin transitions involving a
change in the s component of the spin (m) by any
amount (hm= ~e).

Since it wouM be almost impossible to observe Am
=~ j. and, ~2 hexadecapole transitions because of the
much stronger quadrupole transitions, we only need to
evaluate 8+' and 8~. By repeated use of the raising
and lovrering operator one obtains

(ms+3 [ LB+'1„[m)
= (2m~3) f (I~m) (I~~—1)(I~~—2)

X (I+m+1) (I&ns+2) (I~m+3)1'~', (20a)

6. CONCLUSION

We have thus far calculated the matrix elements for
the Am= +3 and hm= ~4 hexadecapole-phonon inter-
action and evaluated them for a crystal vrith 43m
symmetry and a nucleus with arbitrary spin I. Let us
now assume vre have a sample containing spin I= &

nuclei, and that it is cut so that longitudinally polarized
phonons may be added to the lattice along a (1,1,1)
crystalline direction. Experimentally, we add phonons
of a frequency vrhich corresponds to the Am=~3 or
Am= +4 nuclear transition frequency and monitor the

0'/o

l0%, 50' 604 904 I20' l50O Isoo

Pro. 4. Angular dependence of the nuclear-spin saturation due
to the hm =~3 and hm =~4 nuclear hexadecapole-phonon inter-
action in a crystal with 43m symmetry. The direction of phonon
propagation is along the (1,1,1) crystalline direction, rotation is
about a (—1, 1,0) direction, and 8 is the angle between the phonon
propagation direction and the external magnetic 6eld.

(ma4~ LB+4j., ) m)
= [(Ivm, ) (Ivm —1)(I+m.—2) (Iam —3)(I+m+1)

X (I+m+2) (Iwm+3) (I+m+4) Jl'. (20b)

One can immediately see from Eq. (20a) that hexa-
decapole transitions are forbidden betvreen m=~~
levels, quite analogous to the forbidden quadrupole
transitions between m= ~-,' levels.

magnetization to determine the eBect of these phonons
on the spin system as the angle between the phonon-
propa, gation direction and, the external magnetic Geld
is varied.

Theoretically, we evaluate Eq. (19) using Eqs. (20),
(14), (13), (12), and (4) to obtain the angular depend-
ence of the Am= &3 and hm= &4hexadecapole-phonon
interaction. For the Am= ~3 transitions, we obtain

M./Mo ——L1+ 7.26X 10-4(eM„Dn/a)'

X (T&/Av~) sin'8 cos'0] ', (21a)

and fol the 651=&4 tlansltlons

M./Mo= Li+8.62X10-'(eMMD~/h)'

X (r,/~. ,) sin ej-, (21b)

where 8 is the angle between the direction of phonon
propagation )the (1,1,1) crystalline direction) and the
external magnetic field [rotating about a (1,1,0) crys-
talline axis), e is the voltage applied to the transducer,
T~ is the spin-lattice relaxation time, Av is the Am= ~e
hexadecapole linewidth, eM&6 is the hexadecapole mo-
ment, and D is given in Eq. (12c).The angular variation
of Eqs. (21) ls shown 1n Fig. 4.

Experimentally, one would like to shovr that in a,

crystal with 43m symmetry, the angular va, riation of
the Am=&3 and Am=&4 saturation corresponds to
Fig. 4. It vrould also be extremely valuable to prove
that the observed saturation was a result of the hexa-
decapole-phonon interaction. The 43m symmetry crystal
is not suitable to prove this, but was chosen for this
paper because hm= +3 transitions have been observed
in Inhs, ' a crystal of this structure. It should be noted,
that in this experiment, phonons were added to the
lattice along the (1,1,1) direction, but the rotation
direction was unknown. The maximum saturation vras

observed near 60' which corresponds very vrell vrith

Fig. 4.
One vrould. like next to prove that the saturation was

due to the hexadecapole-phonon interaction. This can
be done by again observing In"' Am =~3 and, Am =~4
transitions in a crystal with lower than cubic symmetry
ln which the static quadrupole spllttlng would be non-
zero. One could then split the degenerate quad, rupole
levels vrith an external magnetic Geld and attempt to
observe the hm= &3 and Ans= &4 transitions between
the various levels. If these transitions are observable,
but the forbidden transition between the +-,' levels are
not observable, then one would have almost conclusive
proof that the transitions are caused. by the hexa-
decapole-phonon interaction, since only hm =~3
electric-hexadecapole transitions are forbidd, en between
these levels.


