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A systematic approximation scheme is proposed that permits solution of the kinetic equations, recently
derived by the authors, describing the high-temperature behavior of the spin autocorrelation function
Tab(f). A numerical solution and approximate analytical expressions are given in the first approximation
and the importance of the neglected terms is discussed. It is shown that the direct autocorrelation function
has an approximate Gaussian behavior for short times and decays then to zero through damped oscillations.
A diffusion equation is derived for the short-wave-number Fourier components of I'y;(f). We also compare

this theory with previous work on the subject.

I. INTRODUCTION

N the preceding paper! (hereafter referred to as RDL)
we have derived kinetic equations governing the
time evolution of the spin autocorrelation function (a.f.)
I'es(#) in a Heisenberg spin system. These equations,
which are exact in the double limit of high temperature
and large number of neighbors, were obtained by a
systematic reorganization of the perturbation expansion
for T'u3(#). The main feature of these equations is that
they involve only quantities which remain meaningful
in the limit of long times.
More precisely, it has been shown that the direct a.f.
T'(#)=T,.(?) (independent of the lattice point a) obeys
the nonlinear equation

AL (t)=— / tGo(t'| DI (t—¢)dt (I1.1)

while the Fourier transform T'y() of the a.f. is given by
the following:

8T, ()= f [Go(t | T)—Gol¢ | D) ITu(— )i, (L2)

which is linear once I'(¢) has been determined by (I.1).
In Egs. (I.1) and (1.2), G,(¢|T") denotes the Fourier
transform of a kernel G;;(¢|T"), which can be calculated
using rules given in RDL (Appendix C). Its most im-
portant property is its nonlinear functional dependence
on I'(#) which insures that

G,(tT) >0 (t—>w). (L.3)

This kernel is, however, defined as an infinite series of
terms, and some approximation is needed in order to get
an explicit expression for the temporal behavior of I'(#)
and of T',(¢). The present paper will be concerned with
the development of such approximation methods.

In Sec. II, we point out the difficulties involved in
the solution of the exact kinetic equations (I.1,2) and
we formulate a self-consistent approximation scheme;
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1 P. Resibois and M. De Leener, preceding paper, Phys. Rev.
151, 305 (1966) ; we follow here the notation of this paper.
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we should stress, however, that we have not been able
to establish the convergence of the procedure, which is
largely based on physical intuition. A particularly
simple result is obtained in the lowest order approxima-
tion, where G, is computed to second order in its explicit
dependence upon the exchange integral J.

Although quite simple, the resulting equation for I'(?)
is of course still nonlinear and cannot be solved in
analytic form. Numerical solution is reported in Sec. III.
We also discuss the exact short-time behavior of I'(z)
and of the kernel Go® ; the rapid decay of this kernel for
moderately short times suggests a simple procedure for
obtaining an approximate asymptotic solution in ana-
lytic form; the agreement with the exact numerical
result is satisfactory. In particular, we show that I'(7)
starts with a Gaussian behavior, followed by damped
oscillations for longer times. A similar behavior is ob-
tained for I',(f) for ¢ large, while in the limit of long
times and small wave number, I'y(f) obeys a simple
diffusion equation.

Finally, in Sec. IV, we evaluate the higher order terms
coming from a better approximation for the kernel Go;
these terms are rather small. This gives some indication
that the lowest order approximation might furnish a
correct semiquantitative description of the phenomena.
We also compare our results with previous work on the
subject.

II. APPROXIMATION SCHEME AND THE
FIRST APPROXIMATION

As mentioned above, and discussed in great detail in
Sec. V and Appendix C of RDL, the kernel G;;(¢|T'), the
Fourier transform of which appears in Egs. (I.1) and
(1.2), is given by an infinite series of terms: These terms
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are associated with the so-called “renormalized basic
irreducible skeleton graphs”; the first graphs of this
series are given in Fig. 1.

As is readily seen by applying the rules of RDL
(Appendix C), G;;(#|T) may be formally written as an
expansion in the number of A factors (measuring the
strength of the exchange interaction) that appear
explicitly: ’

Gi(tIT)= 3 NG5 (1| T). (IL1)

However, this classification is purely formal because the
functional dependence on I'(f) hides a complicated
implicit A behavior

T@O=T({;N). (11.2)
Worse than this, it is evident that the only three
dimensional quantities which appear in the problem
(%, t, and J, the exchange interaction) can be eliminated
by working with a suitable reduced unit system, whence
any equation would contain only pure numbers! This
feature of the problem comes from the absence of an
unperturbed time scale; it is in contrast with the usual
situation in transport theory : for instance, in the kinetic
theory of gases, there is a smallness parameter, a®p (p is
the particle density; @ is the range of the forces) which
allows a systematic expansion of the collision operator.
No such parameter exists here: J is eliminated by the
rescaling (tJ/%) and the only remaining parameter,
which is the number of neighbors, has already been
taken very large in order to derive the kinetic equations.
There is thus no well-defined smallness parameter
allowing us to expand (IL.1); the eventual convergence
of the series (IL.1) for all times will be entirely due to
the numerical factors weighting each term G;;®» and
to the highly nonlinear dependence on I'. The analysis
of such a convergence property seems outside the power
of the present theory.

We shall then adopt a much more naive attitude
based on physical intuition and we shall only require
two conditions:

(1) We want a theory that gives correctly the first
terms in a short-time expansion:

r(¢)=i wlr (Ji/hK1). (IL.3)

(2) We also require that the same theory should lead
to physically meaningful results in the limit of long
times.

The first requirement forces us then to retain in Eq.
(I1.1) the # first terms of the sum; the second makes it
necessary to retain the complete functional I' depend-
ence in each of the terms G®* (¢|T) (n' < n) ; otherwise,
as discussed in RDL, the theory would become meaning-
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less in the limit of long times. By choosing successively
n=1, 2. .-, we are led to a sequence of approximations
to the kinetic equations (I.1) and (I.2); we then write

6,I‘<">(t)

=— / t[znj Go@) (¢ [T T ™ (¢—¢)dt', (I1.4)
0

n'=1

el ()

n’==1

= t[ i (Gq(zm)(tl[I‘(n))_GO(L’n')(t/{P(n)))]

XT ™ (¢)de. (ILS)
Hopefully, this sequence will converge to the true
equation when # — . Let us stress the self-consistent
character of these equations (I1.4) and (I1.5); for each
n, the kernel G, is calculated as a functional of the
approximate I'® itself.

In the first approximation, »=1, Egs. (IL.4) and
(IL.5) take a very compact form which we shall discuss
in detail presently. Applying the rules of RDL (Ap-
pendix C), a simple calculation reproduced in Appendix
A gives indeed for the kernel Gi;®(|T) of Fig. 1
(setting now A=1, #=1):

Gu® (| T)=2[T (i—7)]T2(2). (11.6)

Using the definition [RDL (V.13)] for the Fourier
transform of G;;, we get immediately :

G, (D) =1,I(%), (IL.7)
where we have set
I,=2% J*(i—j) explig(i—j)]. (I1.8)

i#]

If we now introduce the dimensionless time = by the
equation

T=f\/lo

we get for the first approximation:

(IL.9)

ammm=“/EWWrwﬂTmWM#, (IL.10)

—T 4
aqua)(r)=g_q_§/ [TO(r—7) T
IO 0
XD ()dr'.  (IL11)

We shall now study the solution of these equations.

III. SOLUTION OF THE FIRST APPROXIMATION

The nonlinear character of the kernel in Eq. (I1.10)
makes it difficult to get any rigorous mathematical
information on the direct a.f. I'(7).2 In order to obtain

% In_this paragraph, we drop the superscript (1).
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F16. 2. The direct
af. I' (7).

some hint about possible approximation methods, we
have integrated this equation numerically using an
IBM 7040 computer. The results are reported in
Fig. 2. We shall discuss the physical consequences of
this result a little later; for the moment, we just want
to stress that indeed, as was anticipated in RDL, the
autocorrelation function I'(r) tends to zero, through
rapidly damped oscillations.

It is, moreover, quite easy to obtain an exact solution
of Eq. (I1.10) valid for short times:

T(r)=1—7%/2+417Y8—177%7204---. (IIL1)

The coefficients of this expansion are determined by
expressing I'() as a power series in , inserting this
series into (II.10), and equating equal powers of 7.

We see that for short times, the expansion (IIL.1) re-
mains very close to the Taylor expansion of a Gaussian
function:

FGauss(T) = eXP(— 7'2/2)
=1—17%/2+74/8—1578/7204---. (IIL2)

It can be verified that, up to 7=1.2, the difference be-
tween the exact solution and the Gaussian is less than
1%. But at this point the kernel Go(7|T'), which is the
square of I'(7), is already very much reduced from its
value at t=0; indeed we have

Go(1.2|T)/Go(0|T)=T2(1.2)/T2(0)~0.24. (I11.3)

Because of the nonlinear character of the kernel Go(7|T')
the dominant contributions to the right-hand side of the
integro-differential equation (II1.10) will thus come
mainly from short time intervals 7—7’; therefore we
expect that a good approximation will be obtained by
solving instead of (II.10) the following linear equation:

9,0 (r)=— / Go(r— 7' | Paauss)T'(/)d7’  (II1.4)

with B
Go(7|T gauss) =exp(—172). (II1.5)

In principle, Eq. (IIL.4) may be considered as the first
step in an iterative sequence of linear approximations
to the nonlinear equation (I1.10); in the second step, we
would take as the new kernel the square of the solution
of Eq. (IIL.4) and so on. However, the convergence of
this sequence is again difficult to establish, and we shall
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be content with solving Eq. (II1.4) and comparing it
with the exact numerical result.
Defining the Laplace transform of I'(r) by

T'(S)= /‘“’ exp(—S7)T'(r)dr (I11.6)
we immediately obtain from (IIL.4)
IS ={S+ivrexp(ESH[1—erf(3S) )7, (IIL7)

The inversion of Eq. (II1.7) cannot be done analytically.
It is, however, straightforward to deduce the solution
for short times

I(r)=1—r2/247/8—117%/720+---, (IIL8)

which reproduces exactly the four first terms of the
exact solution (III.1). Moreover, for long times, the
inversion of Eq. (IT1.7) can be obtained by determining
numerically the poles of (II1.7) closest to the imaginary
axis. We have shown that these poles .S, occur in pairs,
being complex conjugates of one another. Using tables
for the complex error function,® we have found

Sp=—8"%15", (I11.9)
S$’=1.0840.01, (I11.10)
5"=0.9940.01, (ITL.11)
and the residue of I'(S) at these points is
T—1(S)\!
ResT(S)| S;.( ) =208 ()
"

Trivial algebraic manipulations give then
T(r)=4exp(—S'7)
(1—S"24S5"%) cosS" 7425"S" sinS"'r
X[ (1—S8"24-5"%)24-4(5'S")? ]

(r—mo).

(II1.13)

Using Egs. (II1.10) and (III.11), we get the following
formula for the asymptotic solution of Eq. (I11.4):

T'(r)=[0.62 c0s0.997+1.64 sin0.997] exp(—1.087)
(r—w). (IIL.14)

We have also estimated the distance to the imaginary
axis of the next important poles: It is larger than 24/7.
This indicates that the asymptotic expansion (III.14) is
valid for fairly short times, when the series (I11.7) is still
converging : the two formulas (II1.8) and (I11.14) cover
thus the entire range 0<7< . As may be seen from
Table I, the agreement with the exact numerical solu-
tion is satisfactory. In particular, the approximation
(I11.14) reproduces the strongly damped oscillation of

8 M. Abranowitz and J. A. Stegun, Handbook of Mathematical
Functions (Dover Publications, Inc., New York, 1965).
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TaBLE I. Numerical value for I' (7).

Exact Asymptotic Gaussian
solution Eq. (II1.14) approx.

0.0 1.000 1.000
0.4 0.923 0.923
0.8 0.725 cee 0.726
1.2 0.482 0.475 0.487
1.6 0.263 0.288 0.278
2.0 0.104 0.144 0.135
2.4 0.010 0.052 0.056
2.8 —0.033 0.000 0.020
3.2 —0.044 —0.022 0.006
3.6 —0.039 —0.025 0.001
4.0 —0.028 —0.021 0.000
44 —0.016 —0.016 e
4.6 —0.008 —0.008

5.2 —0.002 —0.004

5.6 0.000 —0.001

6.0 0.001 0.000

the exact solution, except for an underestimate of the
minimum in this oscillation.

Once T'(7) is determined, there is no difficulty in
solving for T'g(7). Let us discuss separately the cases
of short times and of long times.

For small 7, one easily obtains from Eqs. (II.11) and
(II1.1) the following series expansion :

I—1,) 7°
r=1-10
I, 2
2(L—1,)  (Io—Ig)*)
+[(o q)=(° Q):]_T__i_... (I11.15)
I I 24

which is not in general simply related to the Gaussian
decay (II1.7). However, it may easily be checked that
the general expression (II1.15) verifies (up to order Z1)
the sum rule

I'(r)= (1/N)Zq, Fq(T) ’

where 3, indicates a summation over the first Brillouin
zone. Since, when ¢ becomes large, taking the average
of I';(r) over all orientations of the vector ¢ is essentially
equivalent to summing over the first Brillouin zone [see
(A9)], it follows that the result (I'((7))ay for large ¢
obeys a Gaussian decay for short times:

1M goeo(Tg(7))av= (1/N)2J To(r)=T(r).

For large 7, we may use the same method as for T'(7).
With the approximate Gaussian kernel (IILS), we
find for the Laplace transform of I',(7):
fq(S) ={S—3(m"*((I,—10)/Iv)

Xexp(1SH[1—erf(3S)]}".

(II1.16)

(II1.17)

For large g, we obtain of course the same behavior asin
(I11.12). We have not, however, computed the poles of
Eq. (IIL.17) for arbitrary ¢. Yet the small-wave-
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number limit is readily solved; indeed, we have
(Io—10)/Io=—ag*/Io+0(¢") (¢—0) (IIL18)

which defines the constant a.
Up to corrections of order ¢%, Eq. (II1.17) has then
a single pole at

S=—Dg/\/Is, (111.19)

where we have introduced a diffusion coefficient D,
D=%(m)2a/\/I. (I11.20)

Laplace-transforming, and turning back to the ordinary
time variable {=17/4/I,, we immediately obtain the
familiar diffusion equation

ol ()=—DgT, (1) (¢—0,i—w). (IIL21)

Before closing this section, let us still point out that
this diffusion equation is quite general, except for the
explicit value of D, and can be deduced from the general
kinetic equation (1.2) in the limit of small wave vector.
It is indeed straightforward to verify that

G,(t|T)=Go(t|T)=a/¢>+0(¢") (¢—0),

whence T'y(¢) is a slowly varying function of ¢ in this
limit. Expanding I',(¢) around ¢ in (1.2), we then obtain

(I11.22)

o, [ WG D)=Got [T
' o4 (1)
at

Xl:I‘q(t)— *) +-- ] . (TIL.23)

If we assume that

G, (t|T)—0 (£>74), (111.24)

where 74 is some characteristic time independent of g,
we see that for long times ¢4, the last term in the second
bracket of Eq. (II1.23) gives a negligible contribution
of order ¢*. We then recover the diffusion equation
(II1.21) with a coefficient

D=—%|::~; fo " Gq(t[r):lq=0. (I11.25)

This exact result generalizes Eq. (II1.20).

IV. HIGHER ORDER APPROXIMATIONS

In the preceding section, explicit expressions have
been obtained for I'(#) and I'y(¢) in the approximation
that retains only the term G;® (¢|T') in the expansion
(IL.1) for the kernel. A detailed analysis beyond this
order is very difficult, but it is possible to get a rough
estimate of the neglected terms by looking at the in-
fluence of the next term, G (¢|T'), on the behavior of
I'(#). The graphs contributing to G;;® (¢|T) are drawn
in Fig. 1; their evaluation is sketched in Appendix A.
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For a typical simple cubic structure, with nearest-
neighbor interactions, we obtain*

Go®(t|T)=—I1s2(/|T),
where the functional ®(¢|T) is defined by

1 t t’
O T)=- / / ardy”’
2Je Jo

XTI (=T (t— T — ¢TI ().

(Iv.1)

(Iv.2)

Other crystallographic structures would lead to similar
results, but the advantage of the case treated in (IV.1)
is that it leads to a kinetic equation involving no
parameter; indeed, we get from (I1.4) and (I1.9)

[@® (=)
—®(r—|T®)JTO ()dr’ .

3.T®(7)=—
(Iv.3)

In the limit of small 7, Eq. (IV.3) is readily solved; we
obtain
T®(r)=1—72/24+[7/61r%/8—---. (IV.4)

We have written Eq. (IV.4) in such a way that the de-
parture from the Gaussian behavior is exhibited [com-
pare with (ITIL1.2)7. For arbitrary 7, Eq. (IV.3) is quite
difficult to solve, even numerically, and we have not yet
undertaken this task. However, the small difference be-
tween (IV.4) and the Gaussian (IIL.2) (159, on the 74
term) suggests very much that, as in the preceding sec-
tion, a fair estimate of Go® (7|T') may be obtained by
calculating it with the Gaussian approximation for I'.
In this case, it is possible to evaluate (IV.2) numeri-
cally; the results of this calculation are represented in
Fig. 3 together with the kernel Go¢® (7|T'geuss) and
the sum [Go® (7|Tgauss) +Go® (7| Tgauss) |- It is seen
that Go® remains a small correction (<20%,) with
respect to Go® until 7=0.8, where Go® itself is already
considerably reduced with respect to its value at 7=0.
Moreover, the integral of Go®(r|T') from zero to
infinity is less than 209, of the corresponding integral

G, 4
1

FiG. 3. The second
approximation to the
kernel with Gaussian
().

.\'\.2 3

- T

~Sa————

4 There is of course a slight inconsistency in taking nearest-
neighbor interactions in a simple cubic structure (Z=6) within a
theory valid in the Weiss limit Z — . This, however, does not
affect the conclusions of this paragraph.
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of Go® (|T). Consequently, we do not expect the solu-
tion of the corrected kinetic equation (IV.3) to be
deeply modified by the term Go® ; in particular, the ap-
proach toward equilibrium through strongly damped
oscillations will remain valid. A similar argument may
be developed for the behavior of I'g(7).

Let us still make a few remarks about the higher
order terms (#>2): First, we notice that they give con-
tributions which behave at least like 7° for short times;
they will thus not affect the terms indicated in Eq.
(IV.4). Second, because of their increasing nonlinear
dependence on I'(7), they will also decrease very rapidly
for long times. We expect, thus, that these contributions
will become smaller and smaller for bigger #, over the
whole time range, ensuring thereby a rapid convergence
of the expansion (IL.1).

Finally, let us recall that the diffusion equation
(II1.21) is valid provided the very general condition
(I11.24) is satisfied.

V. DISCUSSION

In this paper, we have obtained approximate analytic
solutions for the direct autocorrelation function I'(#) and
for the Fourier transform of the indirect a.f. T',(¢). The
main results are summarized by Eqgs. (IIL.1), (II1.13)
and (II1.21).

It is interesting to compare these equations with pre-
vious calculations.”7 Let us discuss separately the cases
of large wave number and of small wave number.

To study the large-wave-number limit, we average
T'¢(#) over all orientations of the vector ¢. As remarked
in Sec. III, the result behaves like the direct a.f. T'(Z)
when ¢ becomes large. This large-momentum-transfer
problem was first treated by de Gennes, who analyzed
the so-called momenta of the autocorrelation function
defined by

2n

@)=(=1)"—T@O| . (v.1)

dﬁn 0
This author noticed that for a Gaussian decay the

quantity
p=3(w?)*/ (") (V.2)

is equal to 1. Calculating (w?) and {(w?) in the case of a
simple cubic structure with nearest neighbor inter-
actions and spin S=%, he finds p=0.87,% which is'close
to 1, and he suggests that the Gaussian will provide a
good approximation for all times. However, we have
seen here that if the Gaussianform is well satisfied for

5P. G. de Gennes, (a) J. Phys. Chem. Solids 4, 223 (1958);
(b) Centre d’Etudes Nucléaires de Saclay, France, Rapport No.
CEA 925, 1959 (unpublished).

6 H. Mori and K. Kawazaki, Progr. Theoret. Phys. (Kyoto)
27, 3 (1962).

7 H. Bennett and P. Martin, Phys. Rev. 138, A608 (1965).

8In formulas (II.4) of Ref. S(a) and (IL.2.6) of Ref. 5(b), the
factor (224/34-2/S(S+1)) is in error and should be replaced by
(224/3—2/S5(S+1)). The momentum calculation of de Gennes
would agree then exactly with those of Ref. 6.
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short times, the long-time behavior for I'(¢) is described
by damped oscillations [see Eq. (II1.13)] which cannot
be deduced from the analysis of a finite number of
momenta. Although neither Mori and Kawazaki nor
Bennett and Martin considered explicitly the large-
momentum behavior of T',(¢), it is very easy to obtain
the value of p from their calculation. Mori and Kawazaki
have calculated {w?), and {w!),, by a perturbation cal-
culus, and, except for a trivial mistake of sign,® this leads
to the correct value of p. Bennett and Martin derived
an integral equation for the Laplace transform of I'(?),
which is obtained by a factorization assumption on the
four-spin Green’s function. Although they present their
result as exact in the high-temperature region, it is easily
verified that their integral equation leads to a value of p
which is in error by about a factor of 2. In terms of our
diagrams, the contributions retained by Bennett and
Martin may be schematized as indicated in Fig. 4:
Iteration of this equation gives the second moment
correctly but ignores a large number of nonvanishing
graphs already in the next order.

The case of short wave numbers is treated by de
Gennes by using a Lorentzian behavior with a cutoff at
a characteristic frequency 747'; this assumption rests
largely upon the validity of a macroscopic diffusion

-l - = + gzl

F16. 4. Diagrammatic description of the Bennett-Martin equation.

equation; he writes
Ty(iw)=2Dg*/ («*+(Dg*)?)
r q (z‘*’) =0,

The constants D and 74 are then determined by identify-
ing the exact small-wave-number momenta {wg?) and
{wsY) with the corresponding momenta computed with
(V.3). Together with a few other results, the values of
D and 7 calculated by this method are given in Table II.
It should, however, be clear that this method is not
satisfactory, because the major contribution to {(w?), and
{w*)q, when calculated with Eq. (V.3), comes from large
values of w for which Eq. (V.3) is uncertain.

A more satisfactory approach is given by Mori and
Kawazaki, who first establish an exponential relation
between the small-momentum Fourier component I'4(?)
and a higher autocorrelation function

[w|<'rd_1

V.3
Jw|>7d . (v-3)

Iy ()T (0) exp[t<qu<o>S_qZ<o>> [ \I/(t’)dt’:l (V.4)

9 There should be a 4 sign (instead of —) in the second term in
the bracket of formula [(C.3), Ref. 6]; this does not, however,
affect the limit of small ¢ considered by these authors.
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TasLe II. Comparison between various theories
for cubic structure (Z=6; S=%).

P
(Exact: 0.92)

D/Jv* TaJ

de Gennes 0.87 0.40 0.12

Mori Kawazaki ) (0.92) 0.59 0.29

Bennett Martin ::, <180) 046
. © 1 . .

This theory {(d) 0.86 0 51 0 29

s Integral equation.

b Momentum method.

o First approximation.

d Second approximation.

with
W (1) = (82())8-2(0))/ (87 (0)S-Z(0)). (V.5)

They assume a rapid Gaussian decay for ¥(¢), with a
characteristic time computed by de Gennes’s momen-
tum method. They then readily derive a diffusion
equation for I'(Z) with!?

w?) 32
() qg?

while the characteristic time 7s~{w?)~172,

Up to terms of order Z—%!! this equation is easily
shown to be identical to our first approximation, Eq.
(II1.20), as is not surprising in view of the similarity
between Eqgs. (V.5) with a Gaussian form for ¥(¢) on the
one hand, and the solution of the diffusion equation
(II1.21) with a Gaussian approximation to determine D
from Eq. (IIL.25) on the other hand. Finally, Bennett
and Martin proposed two different methods to analyze
the short-wave-number limit: one is based on their
integral equation, but has not been applied to the cubic
structure discussed here; it gives, however, results
which are rather close to those obtained in the second
method, which is based on sum rules. As an intermediate
step, they derive an equation identical to (V.6), but
their explicit expression for the diffusion coefficient
differs however from Mori and Kawazaki’s value be-
cause the momenta (w?), and {(w*), are again determined
by a factorization of Green’s functions.

As may be seen from Table II, even the first approxi-
mation to our exact kinetic equation seems to in-
corporate within a unified formalism the more satis-
factory features of the previous theories. Moreover, it
allows us to treat situations which were not discussed
previously, as for example the damped oscillations in
the long-time behavior of I'(f). Although this latter
phenomenon is probably very difficult to observe experi-

D=lqi_x)1(}(1r/2)”2 (V.6)

R 1; 'I;he form of D, as given in Eq. (V.6), was obtained first in
ef. 7.

11 For consistency, we have not made any exclusion in calculat-
ing lattice sums in our theory; in the kighly unfavorable case con-
sidered in Table II, this is the origin of the difference between
p=0.86 and pexact=0.92 as well as for the discrepancy between
D=0.51 and the value obtained by Mori and Kawazaki. ‘
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mentally in a ferromagnet with strong exchange inter- the present work, will be considered in separate
actions, similar behavior has been reported in nuclear publications.
magnetic resonance with dipole-dipole interactions.!?

There seems to be no fundamental difficulty in extend- ACKNOWLEDGMENTS
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least. This problem, as well as other developments of Professor J. Jeener for interesting discussions.

APPENDIX : EVALUATION OF G;;® (¢|T') AND G;® (¢t|I")

Applying the rules given in RDL (Appendix C), we get immediately from the first graph of Fig. 1:
Gi® (8| 1) = —2XA4[2 T2 (i— )l it i—n" g3 100z, 0™ 0ar5,0
Mi
XT2(0) [ i~ ti—o i M oo™t (M) po* (M) | ars—y, (A1)

where all symbols have been defined in RDL. Note that the factor 2 in front of Eq. (A1) comes from the two
possible orientations of the arrows of the graph.

We perform the displacement operations and use the fact that pe*d(M;)=7% in the high-temperature limit; we
then obtain

G ® (t|T) =272 (i— )2 [oars 4580, —4™— Sars, 4 ™"000; 471 | s,y T2 (1) (A2)
M

which immediately leads to Eq. (I1.6).

The calculation of G;; (¢|T) follows parallel lines; let us denote by G;;“® (¢|T') the contribution of the purely
transverse graph of fourth order in Fig. 1, by Gi;“¥ (¢|T") the contribution of the purely longitudinal graph, and
by G (t|T) the sum of all mixed fourth-order graphs (only one of which is represented on Fig. 1). We have

G40 (tT)=2X42 22 | dr¥{[J2(G—s)J2(i— )T = 7)T (t— )T (11— )T (r1)T' (72)

s Ms Mj Jg
Xis0a2:,05 001,050 01,0550, 05 i JH[E— 555 = 45 f— jI+[— 7, o 555 > i} M;
X po® (M) po*t (M) po*d (M 5) | ari=3.  (A3)

In this formula, the symbol [t — s;s—4; j— j| indicates an obvious permutation of the indices in the first
brackets. Similarly, one gets

t
Gy (| T)=2X4X22 X | ar?[J2G— DI (=) (s— HI (t— )T (t— )T (11— 7)T ()T (73)
8 Ms Mj; /g
X1i0a2:,0558 025,05 (AM )i IM po°d (M 3) po® (M ) po*d (M) | 3=y (A4)

For reasons which will shortly become clear, we shall not need the explicit form of G;;“ (#|T').
When the operations are performed in (A3) and in (A4), the results are

G40 (U T) = —4[J2(G— )X 2 =)= 20 J2(i—38) T2 (s— J)+T2(i— )2 J2(j—s)J@(t|T) (AS5)
and
G4 (1| T)=872(i— )[Xs J(i—5)J (s—7)1@(¢|T). (A6)

In these formulas, the notation of Eq. (IV.2) has been used. For the particular case of a simple cubic structure
with nearest-neighbor interactions (and also for body-centered cubic structure), the sum over s vanishes identically
in (A6), and, for the same reason, G;;#9 (¢|T') is zero. We are thus left with a very simple result for the zero-wave
number Fourier component : ‘
Go® (t|T)=~3; G4 (1| T)=1®((|T), (A7)

where
I,=23%;J*(i—j) explig(i—7)]. (A8)

) 12 See for instance: A. Abragam *The Principles of Nuclear Magnetism (The Clarendon Press, Oxford, England, 1961), Chap. IV, p.
23.
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For explicit calculations, we have averaged (A8) over all directions of the vector g; this gives
{I Qav=2J%Z (singb/qb) . (A9)

Here, J is the exchange integral between two neighboring spins, and & is the lattice parameter. It may be worth-
while remarking that this usual averaging procedure, which is consistent with the experimental situation, has the
nontrivial effect of destroying the periodicity of I, in different Brillouin zones.
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The nuclear hexadecapole matrix elements for the static and the one-phonon nuclear interactions are
developed and are evaluated for Am = =43 and Am=2-4 nuclear transitions involving a spin-§ nucleus in a
crystal with 43m symmetry. An expression for the saturation factor for a general interaction which gives
rise to nuclear-spin transitions involving the change in the z component of the spin by any amount Am =
is developed and is used to derive the angular variation of the one-phonon, Am = =43 and Am = 24 nuclear
hexadecapole interactions. Finally a way to end the speculation about the observation of the hexadecapole

interaction is presented.

1. INTRODUCTION

INCE the first observation of the interaction of the
nucleus with its environment through its electric
moment, many experiments have been done to investi-
gate both the static and the time-dependent effects of
this phenomenon. In 1948, Pound' demonstrated that
the time-dependent quadrupole interaction was re-
sponsible for the relaxation of the Br” and Br® nuclei
in solution. He then observed the static effect through
the splitting of the nuclear-resonance lines in a crystal
with lower than cubic symmetry.2 In 1956, Proctor and
Tanttila® observed externally induced CI*® quadrupole
transitions between the degenerate quadrupole levels
in NaClO;.

In 1955, Wang* postulated that an unexplained shift
in the pure quadrupole spectra in Sb'* and Sb'?® was
due to the static nuclear-electric hexadecapole inter-
action. In 1966, externally induced hexadecapole transi-
tions between magnetically split In' levels in InAs
were believed to have been observed.®

The nuclear-electric moments are coupled to their
electronic environment through the electric-field gradi-
ents of the electronic charge. To first approximation in
an ionic crystal, the electronic charge is symmetric
about the nucleus; thus there is no coupling between
the nucleus and its surrounding electrons. In this

1R. V. Pound, Phys. Rev. 73, 1247 (1948).
2 R. V. Pound, Phys. Rev. 79, 685 (1950).
( 3;}8}) G. Proctor and W. H. Tanttila, Phys. Rev. 101, 1757
1956).
4+ T. C. Wang, Phys. Rev. 99, 566 (1955).
SR. J. Mahler, L. W. James, and W. H. Tanttila, Phys. Rev.
Letters 16, 259 (1966).

approximation, the electric-field gradients arise solely
from charges external to the ion. However, there is a
distortion from this spherical symmetry due to the
interaction with external charges and with the nuclear-
quadrupole moment, which gives rise to an additive
coupling characterized by an antishielding factor =.
Sternheimer and others have calculated these anti-
shielding factors for both the quadrupole®™™ and the
hexadecapole interaction."? In addition to the anti-
shielding factor, there is an additional contribution to
the hexadecapole coupling due to the perturbation of
the ion by the field of the nuclear-quadrupole moment.!®

2. THEORY

The interaction energy of a nuclear-charge distribu-
tion py(ry)dry and an electron-charge distribution
pe(rg)dTE can be written

pr(7E)

/ ] ()i )

Assuming the electron does not penetrate the nucleus,

6 R. M. Sternheimer, Phys. Rev. 80, 102 (1950).

7R. M. Sternhelmer, Phys. Rev. 84, 244 (1951).

8 H. M. Foley, R. M. Sternheimer, and D. Tycko, Phys. Rev.
9, 734 (1954).
(1953) M. Sternheimer and H. M. Foley, Phys. Rev. 92, 1460
(1;]516{) M. Sternheimer and H. M. Foley, Phys. Rev. 102, 731

1 R. M. Sternheimer, Phys. Rev. Letters 6, 190 (1961).

12 R. M. Sternheimer, Phys. Rev. 123, 870 (1961).

13 R. M. Sternheimer, Phys. Rev. 127, 812 (1962).



