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Irreversibility in Heisenberg Spin Systems. IL Approximate Solution
of the High-Temperature Kinetic Equations
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A systematic approximation scheme is proposed that permits solution of the kinetic equations, recently
delived by the authors, describing the high-temperature behavior of the spin autocorrelation function
F,~(t}.A numerical solution and approximate analytical expressions are given in the fIrst approximation
and the importance of the neglected terms is discussed. It is shown that the direct autocorrelation function
has an approximate Gaussian behavior for short times and decays then to zero through damped oscillations.
A di6usion equation is derived for the short-wave-number Fourier components of I',q(t). We also compare
this theory with previous work on the subject.

I. INTRODUCTION
' 'N the preceding paper' (hereafter referred to as RDL)
~ ~ we have derived kinetic equations governing the
time evolution of the spin autocorrelation function (a.f.)
r, s(t,') in a Heisenberg spin system. These equations,
which are exact in the double limit of high temperature
and large number of neighbors, mere obtained by a
systematic reorganization of the perturbation expansion
fol' r s(f). Tile IIla1I1 fcatlll'c of 'these cqtlatloIls 1s that
they involve only quantities which remain meaningful
in the limit of long times.

MOI'c precisely& lt hRs bccn showIl that t4c dlI'cct R.f.
r(/) =r„(t) (independent of the lattice point a) obeys
the nonlinear equation

B,r (t) = — Gs(t'
~

r)I" (t t')dt', —

while the Fourier transform rs(/) of the a.f. is given by
the following:

which is linear once r(/) has been determined by (I.1).
In Eqs. (I.1) and (I.2), C,(t~r) denotes the Fourier
transform of a kernel G,, (t

~
r), which can be calculated

using rules given in RDL (Appendix C). Its most im-

portant property is its nonlinear functional dependence
on r(t) which insures that

This kernel is, however, defined as an infinite series of
terms, and soInc RppI'oxlIQRtlon ls nccdcd lIl ordcl to gct
an explicit expression for the temporal behavior of r(/)
and of r, (t). The present paper will be concerned with
the development of such approximation methods.

In Sec. II, wc point out the difhculties involved in
the solution of the exact kinetic equations (I.1,2) and
wc formulate a self-consistent approximation scheme;

~ Charge de Recherches au Ponds National de la Recherche
Scientifique de Selgique.' P. Resibois and M. De I,eener, preceding paper, Phys. Rev.
151, 305 (1966);we follow here the notation of this paper.

we should stress, however, that we have not been able
to establish the convergence of the procedure, which is
largely based on physical intuition. A particularly
simple result is obtained in the lowest order approxima-
tion, where G, is computed to second order in its explicit
dependence upon the exchange integral J.

Although quite simple, the resulting equation for r (/)
is of course still nonlinear and cannot be solved in
analytic form. Numerical solution is reported in Sec. III.
We also discuss the exact short-time behavior of r(1')
and of the kernel Go('),. the rapid decay of this kernel for
moderately short times suggests a simple procedure for
obtaining an approximate asymptotic solution in ana-
lytic form; the agreement with the exact numerical
result is satisfactory. In particular, we show that r(&)
starts with a Gaussian behavior, followed by damped
oscillations for longer times. A similar behavior is ob-
tained for r, (/) for q large, while in the limit of long
times and small wave number, r, (/) obeys a simple
diffusion equation.

Finally, in Scc. IV, we evaluate the higher order terms
coming from a better approximation for the kernel 6„'
these terms are rather small. This gives some indication
that the lowest order approximation might furnish a
correct semiquantitative description of the phenomena.
%C also compare our results with previous work on the
subject.

II. APPROXIMATION SCHEME AND THE
FIRST APPROXIMATION

As mentioned above& Rnd discussed ln gI'cRt detail ln
Sec. V and Appendix C of RDL, the kernel G,,(t

~ r), the
Fourier transform of which appears in Eqs. (I.1) and
(I.2), is given by an infinite series of terms: These terms

I i&%a g «ww +

6. (2)
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FIo. 1. First terms of G;, (I ~F).
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are associated with the so-called "renormalized basic
irreducible skeleton graphs"; the erst graphs of this
series are given in Fig. i.

As is readily scen by applying the rules of RDL
(Appendix C), G;, (3 ~r) may be formally written as an
expansion in the number of X factors (measuring the
strcrlgtll of tile cxcllRllgc 111tclRct1011) tlla't appear
egPlicstly:

G;,(t(r)=g V.G,;&s )(t~r).

less in the limit of long times. By choosing successively
N=1 2 . wc Rlc lcd to R scqucncc of approxlmatlons
to the kinetic equations (I.1) and (I.2); we then write

8)r t") (I)

L p G, ts-')(&'~rt"))jrt")(&—&')dI', (II4)

8)r, t") (t)

However, this classi6cation is purely formal because the
functional dependence on r(t) hides a complicated
implicit X behavior

r(&)=r{}',;)). (II.2)

Torse than this, it is evident that the only three
dimensional quantities which appear in the problem
(k, t, and J, the exchange interaction) can be eliminated
by woI'klQg with R sultRble leduced unit system whence
any equation would contain only pure numbers'. This
feature of the problem comes from the absence of an
unperturbed time scale; it is in contrast with the usual
situation in transport theory: for instance, in the kinetic
theory of gases, there is a smallness parameter, a'p {p is
the particle density; a is the range of the forces) which
allows a systematic expansion of the collision operator.
No such parameter exists here: J is eliminated by the
rescaling (tJ/h) and the only remaining parameter,
which is the number of neighbors, has already been
taken very large in order to derive the kinetic equations.
There is thus no well-de6ned smallness parameter
allowing us to expand (II.1); the eventual convergence
of the series (II.1) for all times will be entirely due to
the numerical factors weighting each term G;;&'"~ and
to the highly nonlinear dependence on F. The analysis
of such a convergence property seems outside the power
of the present theory.

We shall then adopt R much more naive attitude
based on physical intuition and we shall only require
two conditions:

(1) We want a theory that gives correctly the erst
tern1s in a short-time expansion:

L g (G (sn')(f ~r(e}) G (sw')(f ~r(e)))g

Xr,&-) (f)dt'. (11.5)

Hopefully, this sequence will converge to the true
cquRtlon when s ~~.Let us stress thc self-conslstcnt
character of these equations (II.4) and (II.5); for each
ts, the kernel C, is calculated as a functional of the
approximate F&"~ itself.

In the Erst approximation, ts=i, Eqs. (II.4) and
(II.5) take a very compact form which we shall discuss
in detail presently. Applying the rules of RDL (Ap-
pendix C), a simple calculation reproduced in Appendix
A gives indeed for the kernel G;;ts)(tjr) of Fig. 1
(setting now X=. 1, 4=1):

G;;1')(t~r) =2LJ(i—j)1'r'(I). (II 6)

Using the de6nition $RDL (V.13)$ for the Fourier
transform of G;;, we get immediately:

t",&»(t(r) =r,rs(I), (II &)

where we have set

I =2 Z ~'(i 2) expLic(i —J)l.

we get for the hrst approximation:

(11.10)

(II.S)i'
If we now introduce the dimensionless time 7 by the
equation

r= A/Is

r(/) = Q a.P" (J)'/h((1). (II.3)

P.—Ieh
B,r,")(r) =

~0 0

Xr &') (r')dr'. (II.11)

(2) We also require that the same theory should lead
to physically meaningful results in the lin1it of long
times.

Thc first requirement folccs us then to lctRln lQ Eq.
(II.1) the e 6rst terms of the sum; the second makes it
necessary to retain the complete functional F depend-
ence in each of the terms G&'"')(t~r)(ts'~&e); otherwise,
as discussed in RDL, the theory would become rneaning-

W'e shall now study the solution of these equations.

IH. SOLUTION OF THE FIRST APPROXIMA. TIO5'

The nonlinear character of the kernel in Eq. (II.10)
makes it diS.cult to get any rigorous mathematical
information on the direct a.f. r(r).' In order to obtain

' In this paragraph, we drop the superscript (1).
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be content with solving Eq. (III.4) and comparing it
with the exact numerical result.

Defining the Laplace transform of r (r) by

Fxo. 2. The direct
a.f. I'(v}. f'(S) = exp( Sr—)r(r)dr (III.6)

I I I

2 3 4 5 6

some hint about possible approximation methods, we
have integrated this equation numerically using an
IBM 7040 computer. The results are reported in
Fig. 2. We shall discuss the physical consequences of
this result a little later; for the moment, we just want
to stress that indeed, as was anticipated in RDL, the
autocorrelation function r(r) tends to zero, through
rapidly damped oscillations.

It is, moreover, quite easy to obtain an exact solution
of Eq. (II.10) valid for short times:

r (r) = 1 r2/2+ r4/—8 1/re/'/20—+ ~ ~ ~ . (III.1)

we immediately obtain from (III.4)

f'(S)= {S+-'Qs.exp(4S') t 1—erf( —,'S))} '. (III./)
The inversion of Eq. (III./) cannot be done analytically.
It is, however, straightforward to deduce the solution
for short times

r(r) =1—r2/2+r'/8 —17~'/720+ ", (III.8)

which reproduces exactly the four 6rst terms of the
exact solution (III.1). Moreover, for long times, the
inversion of Eq. (III.7) can be obtained by determining
numerically the poles of (III."1) closest to the imaginary
axis. We have shown that these poles S~ occur in pairs,
being complex conjugates of one another. Using tables
for the complex error function, ' we have found

The coefhcients of this expansion are determined by
expressing r(r) as a power series in r, inserting this
series into (II.10), and equating equal powers of r

We see that for short times, the expansion (III.1) re-
mains very close to the Taylor expansion of a Gaussian
function:

5 = —5'&iS",
5'= 1.08&0.01,
S"=0.99~0.01,

and the residue of r(s) at these points is

(III.9)

(III.10)

(111.11)

a,r(r) =— G,(.—.'~ r,....)r(.')d. ' (111.4)

with
GD(r

~
ro,„„)= exp( —r') . (III.5)

In principle, Eq. (III.4) may be considered as the first
step in an iterative sequence of linear approximations
to the nonlinear equation (II.10);in the second step, we
would take as the new kernel the square of the solution
of Eq. (III.4) and so on. However, the convergence of
this sequence is again difhcult to establish, and we shall

I op~as(T)=exp( r /2)
= 1 r2/2+r4/8 —15r6/720+—" (III 2)

It can be verihed that, up to 7-= 1.2, the difference be-
tween the exact solution and the Gaussian is less than
1%.But at this point the kernel Go(r

~
r), which is the

square of r(r), is already very much reduced from its
value at 1=0; indeed we have

Go(1.2 i r)/Go(0 i r) =r'(1.2)/r'(0) 0.24. (III.3)

Because of the nonlinear character of the kernel Co(r )
I')

the dominant contributions to the right-hand side of the
integro-differential equation (II.10) will thus come
mainly from short time intervals z—z',. therefore we
expect that a good approximation will be obtained by
solving instead of (II.10) the following linear equation:

t
ar-i(s) -i

Resr(s) i s~=
i

—— = 2(1—S~') '. (III.12)
as

Trivial algebraic manipulations give then

r(r) =4 exp( —S'7)

(1—S"+S"')coss"r+ 2S'S" sins "r
X

(1 St2+ SII2)2+4 (SISII)P

(r +~ ) (III.-13).
Using Eqs. (III.10) and (III.11), we get the following
formula for the asymptotic solution of Eq. (III.4):
r (r) = L0.62 cos0 99r+1 6.4 sin0. 9.9rj exp( —1.08m)

(r ~~). (III.14)

We have also estimated the distance to the imaginary
axis of the next important poles: It is larger than 2+or.
This indicates that the asymptotic expansion (III.14) is
valid for fairly short times, when the series (III.7) is still
converging: the two formulas (III.8) and (III.14) cover
thus the entire range 0&v & ~. As may be seen from
Table I, the agreement with the exact numerical solu-
tion is satisfactory. In particular, the approximation
(III.14) reproduces the strongly damped oscillation of

' M. Abranovritz and J. A. Stegun, IIuwdbook of Mathematical
FNecfiols (Dover Publications, Inc., Near York, 1965}.
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0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3,2
3.6

4.4
4.6
5.2
5.6
6.0

Exact
solutloll

1.000
0.923
0.725
0.482
0.263
0.104
0.010—0.033—0.044—0.039—0.028—0.016—0.008—0.002
0.000
0.001

Asymptotic
Eq. (III.14)

~ ~ ~

0.475
0.288
0.144
0.052
0.000—0.022—0.025—0.021—0.016—0.008—0.004—0.001
0.000

Tasxx I. Numerical value for 1'(r).

Gaussian
cLpplox.

1.000
0.923
0.726
0.487
0.278
0.135
0.056
0.020
0.006
0.001
0.000

&= —Dq'/pip, (111.19)

wheI'e we hRve lntloduced R diffusion coeS.cient D

D = -,'(m) '"n/QIp. (III.20)

LRplRce-tlansformlng~ and tulnlng back to the oldlnaly
time variable t=r/QIp, we immediately obtain the
faIniliar diffusion equation

airp(t)= —Dq'F, (t) (q-+0, t-+~). (III.21)

number limit is readily solved; indeed, we have

(I Ip—)/I p= —nq'/Ip+0(q') (q —+ 0) (111.18)

which dehnes the constant 0,.
Up to corrections of order q4, Eq. (111.17) has then

a single pole at

the exact solution, except for an underestimate of the
minimum in this oscillation.

Once F(r) is determined, there is no diKculty in
solving for F,(r) Let us .discuss separately the cases
of short times and of long times.

For small r, one easily obtains from Eqs. (II.11) and
(III.1) the following series expansion:

(Ip —Ip) r'
I', (r) =1—

2

-2(Ip —I,) (Ip—I,)'- r4
+- ——+ (III.15)

Iol 24

which is not in general simply related to the Gaussian
decay (111.7). However, it may easily be checked that
the general expression (III.15) verifies (up to order Z ')
the sum I'ule

(III.16)

where g, indicates a summation over the first Brillouin
zone. Since, when q becomes large, taking the average
of F,(r) over all orientations of the vector q is essentially
equivalent to summing over the first Brillouin zone Lsee
(A9)], it follows that the result (F,(r)), for large q
obeys a Gaussian decay for short times:

Before closing this section, let us still point out that
this diffusion equation is quite general, except for the
explicit value of D, and can be deduced from the general
kinetic equation (I.2) in the limit of small wave vector.
It is indeed straightforward to verify that

Cp(t i F)—Cp(t i F)=n'q'+O(q') (q —+ 0), (III.22)

whence rp(t) is a slowly varying function of t in this
limit. Expanding F,(t ) around t in (I.2), we then obtain

B,r, (t) = Ct'LG, (t'( I') —Gp(t'
[ r)]

(III.23)

If we assume that

(III.24)

where rg is some characteristic time independent of q,
we see that for long times t, the last term in the second
bracket of Eq. (III.23) gives a negligible contribution
of order q'. We then recover the diffusion equation
(III.21) with a coetlicient

This exact result generalizes Eq. (III.20).

For large r, we may use the same method as for F (r).
With the approximate Gaussian kernel (III.5), we
find for the LaPlace transform of rp(r):

For large q, we obtain of course the same behavior as in
(III.12). We have not, however, computed the poles of
Eq. (111.17) for arbitrary q. Yet the small-wave-

IV. HIGHER ORDER APPROXIMATIONS

In the preceding section, explicit expressions have
been obtained for F(t) and I', (t) in the approximation
that retains only the term G,;&'&(t~F) in the expansion
(II.1) for the kernel. A detailed analysis beyond this
order is very dificult, but it is possible to get a rough
estimate of the neglected terms by looking at the in-
fluence of the next term, G,,&"(t

~
F), on the behavior of

F(t). The graphs contributing to G;, &4&(t~ I') are drawn
in Fig. 1; their evaluation is sketched in Appendix A.
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For a typical simple cubic structure, with nearest-
neighbor interactions) we obtain

6's&4&(f
i
I') = —

Issue (f i
I'), (IV.1)

where the functional C (f
~

I') is defined by

Other crystallographic structures would lead to similar
results, but the advantage of the case treated in (IV.1)
is that it leads to a kinetic equation involving no
parameter; indeed, we get from (II.4) and (II.9)

In the limit of small r, Eq. (IV.3) is readily solved; we
obtain

We have written Eq. (IV.4) in such a way that the de-
parture from the Gaussian behavior is exhibited [com-
pare with (111.2)$. For arbitrary r, Eq. (IV.3) is quite
dificult to solve, even numerically, and we have not yet
undertaken this task. However, the small difference be-
tween (IV.4) and the Gaussian (III.2) (15% on the r'
term) suggests very much that, as in the preceding sec-
tion, a fair estimate of Gs "&(r~r) may be obtained by
calculating it with the Gaussian approximation for I'.
In this case, it is possible to evaluate (IV.2) numeri-
calIy; the results of this calculation are represented in
Fig. 3 together with the kernel Cs&'&(r~l'o, „„) and
the sum [Gs"&(r~l'o. ..)+Go&'&(r~l'o....)$. It is seen
that Gsf4& remains a small correction (&20%) with
respect to Cs"'& until r =0.8, where Gs&'& itself is already
considerably reduced with respect to its value at v =0.
Moreover, the integral of GeI" (r~l') from zero to
infinity is less than 20% of the corresponding integral

of Gs"'(r
~

I'). Consequently, we do not expect the solu-
tion of the corrected kinetic equation (IV.3) to be
deeply modified by the term Go(4), in particular, the ap-
proach toward equilibrium through strongly damped
oscillations will remain valid. A similar argument may
be developed for the behavior of I', (r).

I.et us still make a few remarks about the higher
order terms (e)2):First, we notice that they give con-
tributions which behave at least like v' for short times;
they will thus not affect the terms indicated in Eq.
(IV.4). Second, because of their increasing nonlinear
dependence on I'(r), they will also decrease very rapidly
for long times. 1A'e expect, thus, that these contributions
will become smaller and smaller for bigger I, over the
whole time range, ensuring thereby a rapid convergence
of the expansion (II.1).

Finally, let us recall that the diGusion equation
(III.21) is valid provided the very general condition
(III.24) is satisfied.

V. DISCUSSION

In this paper, we have obtained approximate analytic
solutions for the direct autocorrelation function I'(f) and
for the Fourier transform of the indirect a.f. I', (f). The
main results are summarized by Eqs. (III.1), (III.13)
and (III.21).

It is interesting to compare these equations with pre-
vious calculations. ' 'Let us discuss separately the cases
of large wave number and of small wave number.

To study the large-wave-number limit, we average
I",(t) over all orientations of the vector q. As remarked
in Sec. III, the result behaves like the direct a.f. I'(f)
when q becomes large. This large-momentum-transfer
problem was first treated by de Gennes, who analyzed
the so-called momenta of the autocorrelation function
defined by

(V 1)

This author noticed that for a Gaussian decay the
quantity

(V.2)
6

1~ GN
g t'r)

0
c5 +0 30 0

Pro. 3.The second
approximation to the
kernel with Gaussian
I'(v).

is equal to 1. Calculating (o&') and (o&') in the case of a
simple cubic structure with nearest neighbor inter-
actions and spin 5= ~~, he 6nds p=0.87, which is~close
to 1, and he suggests that the Gaussian will provide a
good approximation for all times. However, we have
seen here that if the Gaussian'form is well satisfied for

There is of course a slight inconsistency in taking nearest-
neighbor interactions in a simple cubic structure (Z=6} within a
theory valid in the gneiss limit S-+~. This, however, does not

. acct the conclusions of this paragraph.

'P. G. de Gennes, (a) J. Phys. Chem. Solids 4, 223 (1958);
I',b) Centre d'Etudes Nucldaires de Saclay, I rance, Rapport No.
CEA 925, 1959 (unpublished).' H. Mori and K. Kawasaki, Progr. Theoret. Phys. (Kyoto)
27, 3 (1962).

7 H. Bennett and P. Martin, Phys. Rev. 138, A608 {1965).' In formulas (II.4) of Ref. 5(a) and (II.2.6) of Ref. 5(b), the
factor (224/3+2/S(S+1)) is in error and should be replaced by
(224/3 —2/S(S+1)). The momentum calculation of de Gennes
would agree then exactly with those of Ref. 6.
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short times, the long-time behavior for I'(f) is described

by damped oscillations )see Eq. (III.13)j which cannot
be deduced from the analysis of a finite number of
rnornenta. Although neither Mori and Kawazaki nor
Bennctt and Martin considered explicitly thc large-
momentum behavior of I', (f), it is very easy to obtain
the value of p from their calculation. Mori and Kawazaki
have calculated (aP), and (M4)„by a perturbation cal-
culus, and, except for a trivial mistake of sign, this leads
to the correct value of p. Bennett and Martin derived
an integral equation for the Laplace transform of I', (/),
which is obtained by a factorization assumption on the
four-spin Green's function. Although they present their
result as exact in the high-temperature region, it is easily
verified that their integral equation leads to a value of p
which is in error by about a factor of 2. In terms of our
diagrams, the contributions retained by Bennett and
Mal tin may bc schematized Rs lndlcRtcd lrl Flg.
Iteration of this equation gives the second moment
correctly but ignores a large number of nonvanishing
graphs RlrcRdy ln thc next order.

The ease of short wave numbers is treated by de
Gcnnes by using a I.orentzian behavior with a cutoff at
a characteristic frequency z~ ', this assumption rests
largely upon the validity of a macroscopic diffusion

I i + i
--y(PermutatiOfly)l

equation
' hc wlltcs

f', (see) = 2Dq2/(co2+ (Dvs)2) i I
~

I
(r&—'

(V.3)
f'2(2(v) =0,

The constants D and v-& are then determined by identify-
ing the exact small-wave-number momenta (&o,2) and

(Ms ) wltll the corresponding Illolllell'ta computed wltll

(V.3). Together with a few other results, the values of
D and r calculated by this method are given in Table II.
It should, however, be dear that this method is not
satisfactory, because the major contribution to (co2), and
(o)4)„when calculated with Eq. (V.3), comes from large
values of co for which Eq. (V.3) is uncertain.

A more satisfactory approach is given by Mori and
Kawazaki, who first establish an exponential relation
between the small-momentum Fourier component I', (f)
and a higher autocorrelation function

I j 1 I

4

Fxo. 4. Diagrammatic description of the Rennet t-Martin equation.

Twsx,z II. Comparison between various theories
for cubic structure (Z=6; 8=)).

de Gennes
Mori Kawasaki

(fs)
Rennett MartIn

(o)
This theory

p
(Exact: 0.92)

0.87
(0.92)
(1.80}

~ ~

0.86

0.40
0.59

~ ~ 1

0.46
0.51

0.12
0.29

0.29

a Integral equation.
& Momentum method.
o First approximation.
& Second approximation.

with

e(f) =(8 s(f)8 s(0))/(8,s(0)8,'(0)}. (V.s}

They assume a rapid Gaussian decay for %(f), with a
characteristic time computed by dc GcIlncs s momen-
tum method. They then readily derive a diffusion
equa, tion for I'(/) with's

(~2) Sis

D = lim (2r/2) '~2

~0 (~4} q2

while the characteristic time rs (&o2) '".
Up to terms of order Z '," this equation is easily

shown to be identical to our erst approximation, Fq.
(III.20), as is not surprising in view of the similarity
between Eqs. (V.S) with a Gaussian form for 4'(f) on the
one hand, and the solution of the diffusion equation
(III.21) with a Gaussian approximation to determine D
from Eq. (III.25) on the other hand. Finally, Sennett
and Martin proposed two different methods to analyze
the short-wave-number limit: one is based on their
integral equation, but has not been applied to the cubic
structure discussed here; it gives, however, results
which are rather close to those obtained in the second
method, which is based on sum rules. As an intermediate
step, they derive an equation identical to (V.6), but
theil' explicit expression for the diffusion coefjj.cient
differs however from Mori and Kawazaki's va, lue be-
cause the momenta (a&2), and (~'), are again determined
by a factorization of Green's functions.

As may be seen from Table II, even the first approxi-
mation to our exact kinetic equation seems to in-
corporate within a unified formalism the more satis-
factory features of the previous theories. Moreover, lt
allows us to treat situations which were not discussed
prcvlouslyp Rs for example thc damped osclllatlons ln
the long-time behavior of I'(f). Although this latter
phenomenon is probably very difficult to observe expcri-

I' (f)=1'.(o) exp f(8.'(0)8-.'(0)) @(f')Cf' (V.4)

9 There should be a + sign (instead of —) in the second term in
the bracket of formula f(C.B), Ref. 6$; this does not, however,
affect the limit of small g considered by these authors.

"The form of D, as given in Eq. (V.6), was obtained erst in
Ref. 7."For consistency, we have not made any exclusion in calculat-
ing lattice sums in our theory; in the highly enfueoruble ouse con-
sidered in Table II, this is the origin of the difference between
p=0.86 and p,xso&

——0.92 as well as for the discrepancy between
D=0.51 and the value obtained by Mori and Kawasaki.
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mentally in a ferromagnet vvith strong exchange inter-
actions, similar behavior has been reported in nuclear
magnetic resonance rvith dipole-dipole interactions. '
There seems to be no fundamental difliculty in extend-
ing the present theory to such cases, for spin 5=2 at
least. This problem, as mell as other developments of

the present vrorI, ~ill be considered in separate
publications.
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APPENDIX: EVALUATION OF 6 " (tI I') AND 6;t' &(tII')

Applying the rules given in RDL (Appendix C), we get immediately from the first graph of Fig. 1:

G,;i'&(tIr) = —2x4[p I'(s j)[r—t "rt" rt"rt—"$8»i;,oK'b&te, ,
ox"

xr'(t)[n"n-" —n-"n' ]M;p "(M;)po" (M;) I ~,=;, (A1)

where all symbols have been defined in RDL. Note that the factor 2 in front of Eq. (A1) comes from the two
possible orientations of the arrovrs of the graph.

We perform the displacement operations and use the fact that po'&(M, )= s in the high-temperature limit; we

then obtain
G' '"(tIr) = 2~'(s —j)Z [~~;,:"'&~;,-l"'—t&~;,-h"'b~;. l ']

I
~;=lr'(t)

which immediately leads to Eq. (II.6).
The calculation of G@«&(t I r) follows parallel lines; let us denote by G,, te'& (t I

I') the contribution of the purely
transverse graph of fourth order in Fig. 1, by G,;&"&(t

I r) the contribution of the purely longitudinal graph, and

by G;;«'& (t I r) the sum of all mixed fourth-order graphs (only one of which is represented on Fig. 1). We have

G,,«(tIr) =2X4+ P P dr'{P'(s —s)P(s—j)r(t—r,)r(t—.,)r(r,—.s)r(.,)r(r,)

Xrt;,hie, oK'stir„.oK'rt;;t'&sr, oK'rt„bee, o"'qo]+, [s +s; s —+-s; j +j]+[s—+j; j-+ s—; s —+ s])M;

xpo" (Mt) po (M') po"(M.) I ~;=h (A3)

In this formula, the symbol [s —& s; s-+s; j—+ j] indicates an obvious permutation of the indices in the 6rst
brackets. Similarly, one gets

G;;«s&(tIr)=2X4X2+ p Z d"[z'(s—j)J(s—s)s(s —j)r(t—.,)r(t—„)r(„—„)r(„)r(„)
Xrt'g4r;, oK'4r;, o"'(4M, ')rt ]M po" ("M )po'&(M )po'o (M;) I »r, . (A4)

For reasons which will shortly become clear, we shall not need the explicit form of G,;«~&(t
I
I').

When the operations are performed in (A3) and in (A4), the results are

G' "'(tIr) = —4LJ'( —j)Z. ~'(' —s) —Z. I'(' —s)&'(s—j)+J'( —j)p. J'(j—s)]C (t Ir)

G «"(tIr)=sJ'(s —j)[p J(i—s)J(s—j)]c(tII'). (A6)

» thes««mu»s t"e notation «Eq (IV 2) has been used. For the particular case of a simple cubic structure
with nearest-neighbor interactions (and also for body-centered cubic structure), the sum over s vanishes identically
in (A6), and, for the same reason, G;,&"(t I r) is zero. We are thus left with a very simple result for the zero-wave
number Fourier component:

G,«&(tIr)= —P, G,,«&(tIr)=I, 'c(tIr),

I,=2 P, J'( js) exp[op(i —j)]. (AS)

"See for instance: A. Abragarn, rThe Preiietptes of tttlctear kIaggettsra (The Clarendon Press, Oxford, England, 1961), Chap. IV', p.
123.
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For explicit calculations, we have averaged (AS) over all directions of the vector g; this gives

(Is), = 2J'Z(sinqb/qb) . (A9)

Here, J is the exchange integral between two neighboring spins, and b is the lattice parameter. It may be worth-
while remarking that this usual averaging procedure, which is consistent with the experimental situation, has the
nontrivial eGect of destroying the periodicity of I~ in different Brillouin zones.
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Nuclear Hexadecayole Interactions
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The nuclear hexadecapole matrix elements for the static and the one-phonon nuclear interactions are
developed and are evaluated for dna= +3 and hm =&4 nuclear transitions involving a spin-f nucleus in a
crystal with 43m symmetry. An expression for the saturation factor for a general interaction which gives
rise to nuclear-spin transitions involving the change in the s component of the spin by any amount hm =&n
is developed and is used to derive the angular variation of the one-phonon, Am =+3 and Am =+4 nuclear
hexadecapole interactions. Finally a way to end the speculation about the observation of the hexadecapole
interaction is presented.

1. INTRODUCTION

INCE the first observation of the interaction of the
nucleus with its environment through its electric

moment, many experiments have been done to investi-
gate both the static and the time-dependent effects of
this phenomenon. In 1948, Pound' demonstrated that
the time-dependent quadrupole interaction was re-
sponsible for the relaxation of the Br~' and Br" nuclei
in solution. He then observed the static effect through
the splitting of the nuclear-resonance lines in a crystal
with lower than cubic symmetry. ' In 1956, Proctor and
Tanttila' observed externally induced Cl" quadrupole
transitions between the degenerate quadrupole levels
in NaC103.

In 1955, Wang4 postulated that an unexplained shift
in the pure quadrupole spectra in Sb"' and Sb"' was
due to the static nuclear-electric hexadecapole inter-
action. In 1966, externally induced hexadecapole transi-
tions between magnetically split In"' levels in InAs
were believed to have been observed. '

The nuclear-electric moments are coupled to their
electronic environment through the electric-field gradi-
ents of the electronic charge. To first approximation in
an ionic crystal, the electronic charge is symmetric
about the nucleus; thus there is no coupling between
the nucleus and its surrounding electrons. In this

' R. V. Pound, Phys. Rev. 73, 1247 (1948).' R. V. Pound, Phys. Rev. 79, 685 (1950).
'W. G. Proctor and W. H. Tanttila, Phys. Rev. 101, 1757

(1956).
' T. C. Wang, Phys. Rev. 99, 566 (1955).' R. J. Mahler, L. W. James, and W. H. Tanttila, Phys. Rev.

Letters 16, 259 (1966).

approximation, the electric-6eld gradients arise solely
from charges external to the ion. However, there is a
distortion from this spherical symmetry due to the
interaction with external charges and with the nuclear-
quadrupole moment, which gives rise to an additive
coupling characterized by an antishielding factor 7.
Sternheimer and others have calculated these anti-
shielding factors for both the quadrupole' " and the
hexadecapole interaction. ""In addition to the anti-
shielding factor, there is an additional contribution to
the hexadecapole coupling due to the perturbation of
the ion by the 6eld of the nuclear-quadrupole moment. '~

2. THEORY

The interaction energy of a nuclear-charge distribu-
tion p~(r~)dr~ and an electron-charge distribution
p@(r~)dr g can be written

ps (r~)
p~(rx) dr~drs.

z

Assuming the electron does not penetrate the nucleus, .

6 R. M. Sternheimer, Phys. Rev. 80, 102 (1950).
7 R. M. Sternheimer, Phys. Rev. 84, 244 (1951).
s H. M. Foley, R. M. Sternheimer, and D. Tycho, Phys. Rev.

93, 734 (1954).
~ R. M. Sternheimer and H. M. Foley, Phys. Rev. 92, 1460

(1953)."R. M. Sternheimer and H. M. Foley, Phys. Rev. 102, 731
(1956)."R.M. Sternheimer, Phys. Rev. Letters 6, 190 (1961)."R.M. Sternheimer, Phys. Rev. 123, 870 (1961)."R.M. Sternheimer, Phys. Rev. 127, 812 (1962).


