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E&', E2 —+ C, and Z1 —& V. The allowed electric-dipole
transitions which conserve energy are to Cs+ Ys,
Cs+ Ys, C4+ Ys, and C4+ Ys. Using the results of
Varsanyi and Dieke for Z&~ I'5, Y6 corrected for
index of refraction and local field effects (a cubic field
approximation and visible value of I were used) and
an overlap integral for each pair of levels of 1/(3 cm '),
Eq. (10) yields a rate of 1X10' sec ' at 7.5 A if the
oscillator strengths to C3 and C4 are each 3/10 '. Such
oscillator strengths are reasonable.

It is not possible, then, to ascertain the nature of the
ion-pair interaction. Although electric dipole-electric
quadrupole or electric quadrupole-electric quadrupole
interactions are expected, reasonable values of the
E—+ C electric-dipole oscillator strength give the transi-
tion rate. For this reason, better estimates of the
oscillator strengths involved must be obtained before
the type of interaction can be decided.

V. CONCLUSION

Energy transfer between Ho'+ ions in a LaC13 lattice
has been studied by means of careful Quorescence in-
tensity measurements. Vnequivocal direct evidence has
been found that E to C is a pair transition. The upper
limit of radiative and multiphonon rates from E to C
were found to be much less than the ion-pair rate. In a
3.5/~ concentration sample of LaCls'. Ho'+, 41% of the
ions in E decayed to C via a pair transition. Assuming
a simple model this corresponded to an interaction
range of at least 7.5 A. The concentration dependence
was linear, agreeing with the model. Adjusting the
transition rate for concentration dependence and using
the lifetime of the E state obtained by Barasch and
Dieke" for a 2% sample a pair transition rate of 1X10'
sec ' was obtained. It was not possible to ascertain
the detailed nature of the interaction.
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Starting from the von Neumann equation for the spin density matrix of a Heisenberg system, we analyze
the perturbation expansion of the spin autocorrelation function by the diagrammatic technique previously
applied to quantum gases. We demonstrate a number of theorems which allow us to express this perturbation
series in terms of renormalized graphs only; we then derive a kinetic equation for the autocorrelation func-
tion. The main feature of this equation is that the kernel, which is highly nonlinear in the autocorrelation
function itself, tends to zero in the limit of long times. The results, which are exact in the high-temperature
region and in the Weiss limit (number of neighbors Z ~ ~), allow us to consider the behavior of the auto
correlation function for times both short and long. This model is a typical example of a system with. a
discrete unperturbed spectrum showing an irreversible behavior.

I. INTRODUCTION

ODERN development in the E-body problem
-- has led to considerable progress in the under-

standing of the equilibrium properties of the Heisenberg
spin system. ' ' A qualitative description is now available
that covers the whole range from the low-temperature
spin-wave region to the high-temperature paramagnetic
region. Moreover, the Heisenberg model also oRers the
possibility of testing various approximation methods for
analyzing the phase transition at the Curie point T,.

On the other hand, except in the well-known spin-
wave region, ' very little is known about the nonequilib-

*Charge de Recherches au Fonds National de la Recherche
Scienti6que de Belgique.

See, for instance, R. Brout, I'hase Transitions (W. A. Benjamin
and Company, Inc., New York, 1965), Chaps. I, II, V and refer-
ences quoted therein.

'See also D. Mattis, The Theory of Magnetism (Harper
Row, New York, 1964).' I'. J. Dyson, Phys. Rev. 102, 1217 (1956); 102, 1Z30 (1956).

rium behavior of the Heisenberg model. However, this
problem has much interest: First, it furnishes a typical
example of a dynamical system the dissipative proper-
ties of which may not be described by a Boltzmann-
like equation; indeed, except again for spin waves, the
meaning of the concept of a "collision" between spins
cannot be guessed from what is known in other situa-
tions. Second, the knowledge of the time behavior of a
spin system is essential to analyze the numerous experi-
ments on ferromagnets, among which neutron-scattering
measurements take an important place.

In these latter experiments, a central role is played
by the so-called spin autocorrelation functions4

where S, (1) denotes the Heisenberg representation of
spin componen«(o. =s, +, —) at lattice point a, and the

4 L. Van Hove, Phys. Rev. 95, 1374 (1954).
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bracket ( ) indicates the average over the equilibrium
canonical distribution.

Pioneer work towards the evaluation of the quantity
(I.1) has been done by de Gennes' and by Mori and
Kawazaki. s However, while the calculation of (I.1)
at high temperature is straightforward for short times

t, the long-time behavior is much more difficult to ob-
tain and is usually deduced from some heuristic argu-
ment on the short-time behavior; a clear justification of
this procedure is not known.

In recent work, Bennett and Martin' derived an
approximate kinetic equation for I', s s(t), valid for all
times; however, this equation is very complicated and
they have to resort finally to the same type of approxi-
mations as were made by de Gennes, and by Mori
and Kawazaki in order to get explicit results.

In the present paper, we want to develop a systematic
resummation scheme which allows us to derive kinetic
equations for the autocorrelation functions I',b~~(t);
approximate solutions of these equations will be ob-
tained in the second paper of this series. Although the
method is quite general, we shall for simplicity limit our-
selves to the high-temperature region (tiZJ=O, where
J is the exchange integral, Z is the number of neighbors,
and P= 1/k T).We hope to discuss the finite-temperature
region, mainly around the critical temperature, in
future publications.

Using the method based on the Liouville —von
Neumann equation as developed by Prigogine and
co-workers in their study of nonequilibrium processes in
quantum gases, ' we make a systematic analysis of the
perturbative solution of Eq. (I.1) (to all orders in J);
this formalism is outlined in Sec. II.

In Sec. III, we introduce a diagram technique which
is very useful for representing the various terms of this
formal expansion; special emphasis is laid on the rules
that allow us to determine the Z dependence of a given
graph.

It is then shown that if we take the Weiss limit, '
where the number of neighbors is large, the dominant
graphs are of order J'(J'Z)", in contrast with the ferro-
magnetic region (T(T.) where the spin waves arise
from contributions of order J(JZ)".

Even with this simplifying condition, a straight-
forward perturbation calculus is not possible, except for
short times. If one considers for instance the transition
probability between two given spins, it grows like P
instead of the t dependence in usual scattering problems.
Mathematically, this difference arises because the spec-
trum of the unperturbed states of the system is com-

pletely degenerate; physically, it corresponds to the
fact that two interacting spins are fixed on. the lattice
and therefore never separate.

It is suggested then that one is not allowed to con-
sider a given finite number of spins as isolated; one has
instead to take into account that the other spins of the
system play the role of a "bath" which dissipates the
magnetization put initially on the given spins; we then
develop a renormalization scheme that expresses this
idea (Sec. IV).

In Sec. U, we derive exact kinetic equations, valid
in the Weiss limit and in the high-temperature region,
for the direct autocorrelation function LI'(t) —=4I'„'*(t)]
and for the Fourier transform I', (t) of the indirect cor-
relation function. We show that I'(t) obeys a nonlinear
non-Markoffian kinetic equation of the form:

8, 1(t) = — Gs(t —t'~ I')I'(t')dt', (I 2)

where the kernel Cs is itself a nonlinear functional of the
unknown I'(t), while we get for I',(t):

which may be considered as linear once the kernel G,
has been determined from the solution of Eq. (I.2). Let
us point out the non-Boltzmann character of this equa-
tion: in particular the I'dependence of the non-Markoffian
kernel is typical of a system with a discrete unperturbed
spectrum. Approximate solution of Eqs. (I.2) and (I.3),
as.well as a comparison with previous work, will be con-
sidered in the following paper of this series.

Finally, a few formal proofs have been relegated to
appendices.

II. THE GENERAL FORMALISM

where J(i—j) is the exchange integral between the
lattice points i and j and where the spin operators obey
the well-known commutation relations (see for instance
Refs. 1 and 2):

We consider a system of X spins ~S~ =-,'(1,2, j,
1V) fixed on the sites of a three-dimensional lattice.

In the absence of an external field, it is described by the
Heisenberg Hamiltonian (tt = 1):

a= —P J(s—j)L 'S'S+;S+S],

~ P. de Gennes, J. Chem. Phys. Solids 4, 223 (1958); see also
P. de Gennes, Centre d'Etudes Nuclbaires de Saclay, France,
Rapport No. 925, 1959 (unpublished).

'H. Mori and K. Kawazaki, Progr. Theoret. Phys. (Kyoto)
27, 529 (1962).

' H. Bennett and P. C. Martin, Phys. Rev. 138, 607 (1965).
'See for instance: I. Prigogine, Son-Eguilibrigrn Statistical

3fechanics (Interscience Publishers, Inc. , New York, 1962);
P. Resibois, Physica 27, 541 (1961).

LS,z S.+]—~S,+)Kr.

LS;+,S;—]=2S,*8K';;.

If we work in the localized spin representation

[m)=-g [ns,),

(II.2)

(II.3)
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where
S,'I m, )= m,

I m;) (m, = &-,') (II.4)

describes a state where spin i has the s component m;,
we may rewrite the autocorrelation functions (I.1) as

I'.o'(t) = g &ml ~. Im')&m'I p'(tl b)
I

m& (II 5)
I

ort e m

In this formula we have formally introduced the fol-
lowing quantity, closely related to a density matrix:

p p(t
I
b) = exp( —iHt) 5osp'p exp(iHt) (II.6)

with

In the case of a quantum gas, it has been shown that
(II.14) is the strict quantum analog of the classical
Liouville equation'; here, we have of course no such
analogy, but it remains nevertheless very useful to use
the compact form (II.14) instead of the explicit com-
mutator involved in (II.S); as we shall see later, many
properties which depend explicitly upon the fact that
we are interested in the density matrix (and not in the
wave function) are easily established in this formalism.

Using Eqs. (II.1), (II.2), (II.3), and (II.10), it is a
matter of elementary algebra to obtain the expression
for the matrix elements (II.15)

peq p PH/Tr& —PH— (II.7) (plx(M)lp'&=+(plx;;(M) lp'&,

From Eq. (II.6) we see at once that ps(tl b) obeys the
von Neumann equation which is written in the Im)
representation

i8,(mlpP(tlb)Im'&=X&ml[Hps(tlb)jim'). (II.S)

(We have introduced a counting parameter X, which we
shall set equal to 1 at the end of the calculation. )
Equation (II.S) is subject to the initial condition

where we can split the two-spin operator X;; into a
transverse and a longitudinal part

(p I
x;,(M) I

p')

=&plse;, + (M)lp; —1, p,+1, fp}'&

~~ 'I;—j,f"~ 'I,+&,I,'~ '~t»', f.f"»'

+(plX, ,**(M)lp&8K'„.„,. 8K'„.„.bK'{„} {„}(II.16)

(ml p'(o lb) lm'&=(ml~o'p" Im') (» 9) w;th

M = -', (m+m'),
(II.11)

define a new set of variables for each spin j (M = (M~
M," M„); p=(p& p," p„)). It is then an easy
matter to express Eq. (II.S) in terms of these variables;
we obtain

i8,p„s(M& tl b)

=X g [H„„.(M+ ',p')p„.s(M+ ,'(p' p);-tl b)-—
H„„(M ,'p') p„&—M ', (p' —p)—;t

I b)j, (—II-.12)—

We now rewrite Eq. (II.8) using the following defini-
tion valid for any operator A (see also Ref. 8):

(m I
A

I
m') —=A (-', (m+m')) =A „(M') . (II.10)

Here

(plx'+ (M) I p' —1, p+I, fp}'&
= —J(i—j)[qe'-'q»+'bKe~. pbK ~, pq-~*q —»

n"'+'n "~ —'bx'or;, obx"pr;, og"'0»] (II.17)
and

(p I
x,,**(M)

I
p&= —J(i—j)[p;M,+p,M,]. (».18)

Equation (II.17) expresses the fact that the transverse
part of the Heisenberg Hamiltonian describes a "Qip-
Qop" process, where the quantum numbers of spins i
and j respectively change by —1 and +1, while in Eq.
(II.18) the absence of displacement operators exhibits
the diagonal character of the longitudinal part of the
Heisenberg Hamiltonian.

Since we are interested in a system with spin
I
5

I

=-'„
the only possible values of p are p= —1, 0, +1;thus, the
only nonvanishing matrix elements in (II.17) are of the
following type:

where the summation over p,
' runs over all possible

values 1, 0, —1 (indeed, pt'= m m,"=1,0, —1).
If we now introduce a displacement operator g+I'

which acts on an arbitrary function of M in the follow-

ing way

pi=0, p,,=0:

J(i j)rt;;5K—'pr, , pb—K'~, , p, (II.19a)

q+~f(M) = f(Map/2), (II.13)

we can cast Eq. (II.12) into the following form

i~~p. '(M;tlb)=»& I3'(M)lt'&p"(M tlb) (» 14)

where the "Liouville —von Neumann" operator is de-
6ned by

&p I
&(M)

I
p'&

=q"H„„(M)q ~ q "H„„(M)q». (II.1—5)-

&1', —1, fp}'I&'t+ I0'0~ fp}'&

J(i j)P'z—pP"—g prt, t, (II.19b)

&1'0 fp}'I&'+ Io'1 fp}'&

J(i j)b"—'jr, pg—;;b" pr, . p., (II.19c)

pi ——0, p;= —1:

&0,, —1 fp}'I&'~+
I

—1', 0~, fp}'&

J(i j)bKeor pg;;—b"'~.—p, (II.1.9d)
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Eq. (II.S) may be written

Frc. 1. A simple second-order term. I'.&**(t)= P t!d'.p,*((M};tlb)
fM}

for the longitudinal component, and

(II.25)

where we have used the shortened notation

(II.20)

I'.t,
+—(t)= Q 8 ' .,p ,.((—3f};tlb), (II.26)

{M}

It should be noted that the only difference between the
four matrix elements of Eqs. (II.19a)—(II.19d) is the
position of the Kronecker delta functions 8 '~,. p and
8 '~, p. the rule is that each of these functions appears
on the side where the corresponding p number is not
vanishing.

The formal solution of Eq. (II.14) is easy to obtain; be-
cause the Heisenberg Hamiltonian is time-independent,
the time integrals are trivial to perform, and it is thus
convenient to keep the time-dependent formalism; we

get

n

p„s(M; t
l b) = P — dr"

n=p f p

XP(ttl [3'.(M)] ltt')p„(M; Olb). (II.21)

for the transverse component.
In Eq. (II.25), each M, only takes the values +2

and ——,
' [indeed, since tt, =0, m;= m, and thus

3E,=2(m;+m )=&2j; we have thus

r.,**(t)=—[p*(—;tl ub) —p*(——;tl ab) j, (II.27)

where the one-spin density matrix

p'(3l„ t
l
ub) = g po'((ll}; t

l b) (11.28)

is obtained by taking the trace over each spin except a.
Similarly, we get from Eq. (II.26)

I' b+ (t)=p (0;tlab), (II.29)

where the reduced density matrix p is defined by

p (~.;tl~b)= Z p:~.(f~};tlb) (11.30)

We have introduced the symbol

dr"f(r, r„)

As we shall need this result in Sec. IV, let us finally
write this function in a more explicit form; using Eqs.
(II.9) and (II.21) we get

d7] dr„f(rt r ); (II.22)

n t

p (~.;tl~b)= Z Zl-
!Miga! n=o ( j

X 2 &
—1., (0}'

I [3'(Wj"
I

—1 +tt ', &tt'} ')

with f(rt r )=1, we have thus

dr"= tn/tt! (II.22')

Equation (II.21) will be the starting point of our
analysis of the spin autocorrelation function. How-
ever, before attacking this problem, we wish to close
this section with a few general results which will be
useful in the following.

First, we recall the well-known fact that in the
absence of external field and above the critical point, the
symmetry of rotation of the system implies that

where

I'.,+-(t) =21'.,**(t)= —',I'.&(t), (II.23)

I', t,(t) = [I'.+—(t)+r.,'*(t)j/S(S+1) . (II.24)

Equation (II.23) is a useful relation connecting the
longitudinal and transverse components of the auto-
correlation functions.

Second, we remark that all we really need is a reduced
density matrix; indeed, using the notation (II.10),

Xbx'ttr, , ;„,p{„!"(Mt+-', , (M}'). (II.31)

III. DIAGRAM TECHNIQUE —GENERAL
THEOREMS IN THE HIGH-

TEMPERATURE LIMIT

In order to analyze the formal expansion (II.21), it is
very useful to have a diagrammatic representation for
each contribution. Let us consider for instance the
second-order contribution with p'=0 and o,=s:

2 t

p, t2~(m; tlb)=i-
&i '». 0

XZ&OI3'-'t
I p)&elm'-'t IO)»*(3d'' oIb) (III 1)

From the rule (II.16), we see that only the transverse
interactions contribute:

pott2~(tM; tlb)= — p dr2&OlX, ,+ l

—1; +1J)

SWAN

p

X&—1;, +1;lX,t+ l0) (pleo;tOlb). (III.2)
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(3)
~ 5 j ~ t 'j

(g)
~ A

(a). I'"co. 3. A typi-
cal graph of order X'
(ff ')=&. —&t {o)')

(b)

FIG. 2. The elementary vertices: (a) transverse vertices;
(b) longitudinal vertices.

Reading this contribution from right to left, we thus
start from a diagonal state p =0; a first transition brings
the system to a nondiagonal state p;= —1, ttt =+1and a
second transition brings it back to the diagonal state.
We shall represent a state with p,i= ~1 by a plain line
with an arrow pointing to the left if tt;=+1 or to the
right if tt, = —1; the contribution (III.2) will thus be
represented by the graph of Fig. 1. The contribution
associated with this graph is, using (III.2) and (II.19),

(g)2 t

po'"'(~' tl b) =
I

—.
I 2 d 'I:—J(i—i)7'

ki) '~t (,

x (I};;6"'sr.p'P'2r p'I} ")pp*(M; 0
I b) . (III.3)

An important point should be stressed: because of the
structure of the matrix elements (II.19), we see that the
bK'M, , p functions are situated between the two g;,
operators precisely as the plain lines are between the
two vertices; we can thus put each plain line in one-to-
one correspondence with a factor 8 'Mi p. This property
is quite general.

In more complicated cases, we shall have in Kq.
(II.21) a series of transitions which bring the system
through the states

I
tt') ~

I
tt") ~ ~

I
tt). Cor-

respondingly, we shall represent the initial state by a
certain number of arrowed lines corresponding to the

different p /0 and then each interaction will be repre-
sented by a vertex, either transverse or longitudinal, as
shown in Fig. 2. The difference between the loop (trans-
verse vertex) and the dots (longitudinal vertex) should
be noticed. An example of a more complicated graph
is given in Fig. 3. It is readily realized that there exists
a one-to-one correspondence between each diagram and
a term in Eq. (II.21). However, we shall not, at this
stage, give the rules to compute the contributioo
associated with a diagram because we want erst to take
advantage of the fact that we are interested only in a
reduced density matrix, as was stressed at the end of
Sec. II.

As an example, let us construct the reduced density
matrix (11.27) corresponding to the contribution (III.1)
or (III.3). We get

2 t

p*&»(M tlttb)= p — drs
f Mtr~t Z p

We see at once that this expression vanishes if both
indices i and j are difterent from a; indeed, leaving out
unimportant factors and using (II.13) and (II.20) we
have then

g P g;;8"'sr, , ob"'sr;, og;;ps*(M; 0 lb)
Mi Mg

=2 Z(~ "~" ~'*~ ')b"'~;,ob—"'~;,o-v;*po'(~; oIb)
Ms Mg

Lb sr' —g, pb M~+t, ptlj po'(M 1;/2+'1,/2; 0—
I b) —8 'ttr;y1, ob 'm, Lot};;po*(M+1;/2 1;/2; 0

I
b)7—

Mi Mg

= (nt po*(~i 0I b)7IIr;=o, sr, -o—
I r}"po'(IM; 0I b)72r;=o, sr, -o=0 ~ (III.S)

We have given this calculation in detail because it illustrates, in a very simple case, the algebra that is involved
in the present formalism. In the following, we shall be much briefer, since the technique will always be similar.

Of course, we have not the same results if either i or j is identical to u, because then no summation appears over
M; (or 3E;); we are thus left with

p*&2}(M„tl ab) =
[Srss'-s} ( i iWts

drsl J(i—G)72LI}t.bx'sr ob"'sr or}.t7

2 t

+I — Q drs[J(j =tt)72[q.;5K'Jtr, , obK'sr. , orb.7 po*(M; Olb) . (III.6)
$ jQa
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FIG. 4. Examples
of graphs with semi-
connection bonds.

Kronecker delta functions are ordered as they appear in
the graph.

(4) Multiply on the right by the initial condition
p„*(m; 0~ b).

(5) Multiply by (X/i)"J'q' dr" for a graph of order n
(6) Take the trace (g~,. ) over all spins different

from u.
(7) Sum over all possible indices different from a

and b.
As an example, we give the contribution corresponding

to Fig. 4(a):

This result can be generalized in a theorem:

Theorem I (theorem of the trace): If any vertex in the

expansion (II.Z1) involves two spins which are both dif
ferent from a and which do not appear again on the left

of this vertex, the corresponding contribution vanishes

identically.

The proof of this theorem is trivial and follows exactly
the steps indicated in Eq. (III.5).

We see, thus, that it is extremely important to know
whether a spin i which appears at a given vertex will still
interact at other vertices, even if in some intermediate
state it has a vanishing p;. In order to introduce this idea
into the diagram technique, let us define a semicoeeectioe
bord: it will be represented by a dashed line and will

appear whenever a spin is in a state p =0, between two
states where it interacts. An exception will be made for
spins b and a which will respectively start (at t =0) and
end (at time t) with such a dashed line. Examples will

be found in Fig. 4.
Theorem I finds then a very simple translation in

terms of diagrams: any graph which contains a vertex
which is neither connected nor semiconnected to its left
vanishes identically. This is the case for the diagram of
Fig. 4(b) where the starred vertex is of a vanishing type.

Although we shall soon find stronger restrictions on
the possible graphs for the high-temperature case, let
us now state the rules which allow us to establish the
connection between a given graph and its contribution
to the reduced density matrix (II.27):

(1) Draw all possible different graphs ending with a
dotted line a, consistent with the initial condition (II.9)
and with the various elementary vertices of Fig. 2,
and including all possible semiconnection bonds. Each
vertex should be either connected or semiconnected on
its left.

(2) For each graph, associate a factor bK'sr, . 0 to each
plain line.

(3) Associate an operator —I(i—j)v;, to each
transverse vertex, and a factor —2J(i—j)$~;bI~+&,bf,]
to each longitudinal vertex. ' The operators and the

QThe factor 2 in front comes from the two possibilities of a
longitudinal interaction between the same pair of spins in Eq.
(II.18).

)Xy'
p*&"&(M.; t

~
ab) = Q ~

—
(

dr4

}sre&a} k il p

X prtbtb Mg, vb Mg, OQLb jpo ((M'); 0
~
b) . (III.7)

The results we have obtained up to now are quite
general; in fact Theorem I is the analog in the spin case
of a similar result in gases, "and the rules given above
would only be slightly modified in the presence of a
magnetic field.

We shall now be more specific and establish a few
other theorems which are valid only in the absence of
external field and above the critical point. We shall even
be more specific by taking immediately the high-
temperature limit PZI=0 which we want to consider in
detail later. In this limit, the equilibrium distribution
(II.7) becomes simply

peq (1)N (III.S)

i(or j) i(orj)

J

J

".J Jr

i i

Fio. 5. Nonvanishing elementary vertices in the high-tempera-
ture limit: (a) vertices with one semiconnection bond; (b) vertices
with two semiconnection bonds.

"I.Prigogine and R, Balescu, Physica 25, 281 (1959); 25,
802 (1959).

and we thus obtain for the initial condition (II.9)
when n=s:

p„'(M; 0~ b) =M v(-,')Nb"'„, v. (III.9)

Theorem II: In the high temperature limit, th-e graphs
which give a noevaeishieg coetribltioe coetuie oely



Fn. 7. Schematic picture of the
contributions to p*(M„ t ( ob).

(a) (b) (e) (d)

Fxo. 6. Vertices not contributing in the high-temperature limit.

vertices which are at least ortce setrticolrtected to the rest of
the diagram.

In other words, if we explicitly draw the semicon-
nection bonds, the only elementary vertices which have
to be retained are those of Figs. 5(a), 5(b) where, for
simplicity, we have not drawn the arrows on the plain
lines. On the contrary, all graphs involving at least one
vertex of the type shown in Fig. 6 vanish identically.
This theorem is established by showing that whenever
a vertex of the type indicated in Fig. 6 appears in a
graph, the corresponding contribution vanishes iden-
tically. For Fig. 6(a), this is merely a restatement of
Theorem I; the other cases are briefly discussed in
Appendix A, where the calculations are always based on
identities of the type (III.5). Physically, the theorem
expresses the fact that in the absence of total magnetiza-
tion, a given spin gives no global e6ect when it inter-
acts only once with the rest of the system.

Of major importance in the further developments of
the theory are the following corollaries of Theorem II:

(1) Corollary I: All nonvanishing contributions are
of even order in Ã.

(2) Corollary II: In the limit where the number of

neighbors becomes large (Z), the dominant terms
in X'"are of order X'(X'Z)" ' for the indirect autocorrela-
tion function (aWb) and of order (X'Z)" for the direct
autocorrelation function (a= b).

The formal proof of these properties is given in Appendix

8; the result is however quite obvious once it is noticed
that each spin must at least interact twice in any non-

vanishing graph.

(3) Corollary III: The two diagonal matrix elements
of the reduced density matrix (11.2'/) are connected by
the very simple relation:

p (s t
I ab) = —p'( —s t

I
ab) = P.s*'(t) (III 1o)

%e only have to establish the first equality; the second
then follows immediately from Eq. (II.26). We first
notice that the 6rst vertex on the left in any graph is
necessarily of the type shown in I ig. 7; indeed the only
possible transitions having {p}= {0}on their left have
to involve the dashed line corresponding to particle a
(for simplicity, we choose one direction of the arrows).
No specification whatsoever is made about the remaining
interactions which are schematized by a box. %hen all

the operations involved in this box are performed, the
result is a function of the set of numbers {M};we denote

it by %({M}).Thus, using Eq. (II.19a) and leaving

aside the unimportant time factors, we find

p'(M. t
~
ab) P P L

—J(a—j)]rt.ib"'sr. ,s&"'is;,o+({M}). (III.11)

Using (II.20) and performing explicitly the displacement operations, we get

p*(M;t~ b) Q Q L
—I( —j)j{8"'. *,8 ' i,@(M„,M +-,', , M;—-'„M )

f Ms~a[
x sbK'jr. +~ s%'(Mi . . M ——' M.+-' . . M~)}. (III.12)

If M, =+-'„only the second term in (III.12) survives;
on the other hand, if 3f,= —~, only the first term re-
mains; as they are equal and of opposite sign, Eq.
(III.10) is true.

This demonstration shows very clearly the advantage
we have gained in using a formalism in which the com-
mutators are treated in a compact manner; indeed, the
property (III.10) is typically a result valid only for the
reduced density matrix, and which would be more
difficult to prove in a formalism based on the Schrodinger
equation.

IV. REORGANIZATION OP THE
PERTURBATION SCHEME

Even in the gneiss limit, it is of course an impossible
task to sum all the graphs contributing to the auto-

correlation function (I.1). Only in the limit of short
times can we get a simple exact result; indeed, as is

apparent from Eq. (II.22), each )t factor is accompanied.

by a t factor, and provided that

)~Zt'&&1 (IV.1)

X2Zt2& t (IV.2)

the series (II.21) is no longer converging, and we have
then to perform some kind of partial "resummation"'

in order to get an asymptotic series which remains
meaningful in this limit (IV.2). In order to get some hint
of an adequate resummation procedure, let us compare

the series (II.21) converges term by term. For instance,
the first contribution to I' s'*(t) is given by the graph of
I'ig. 8 and behaves like ) 2t'. However, for times such
that
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FIG. 8. The simplest contribution
to r.&-(&),

the Born approximation as pictured in Fig. 8 with the
correspondlrg Born approximation in the case of a
dilute gas, where the Boltzn1ann equation is known to
hold. In this latter case, the transition probability in a
two-particle collision is of the form

P" Xst2irb(E; Et),— (IV.3)

In contrast, in the spin problem we find

jPsyl~ g2]2 (IV.S)

Comparing Kqs. (IV.4) and (IV.S), we see that the ts

factor in the spin transition probability corresponds to
the fact that the duration of the collision between the
two neighboring spins is arbitrarily large; indeed, two
spins fixed on neighboring lattice sites remain there
forever and can thus interact at any time. On the con-

trary, in the case of a gas, two colliding molecules will

separate after a short time ~, and will not interact with
each other later on.

Yet, it is not physically satisfactory to consider two
given spins as completely isolated from the rest of the
system for such a long time t; we expect rather that
during the time interval (tt—ts) both spins a and b will

interact with the "bath" made of the remaining spins.
By this mechanism, the information that was put on
splns a and b at time t2 will dissipate ln the bath; if the
time interval (tt—ts) is larger than some time
characteristic of this dissipation, the interaction be-
tween spins a and b at time /~ will become completely
inHFicient, leaving thus an effective" transition proba-
bility of the form

E; and Ey being, respectively, the energies of the two
particles before and after the collision process. Clearly,
the delta function expressing the conservation of energy
plays the role of a collision time r, (E; Ef) ', a—nd
we thus have

one plain line and ends with the same plain line" (the
same spin index should appear on the ingoing and out-
going plam lines). An example is shown in Fig. 9(a);
in contrast, the starred part in Fig. 9(b) is not a self-

energy part because ilu.
%e have then

Theorem III:In the high temperature region (PZJ ~ 0)
and in the Weiss limit (Z —&0o), the whole series of graphs
giving the expansioe (II21)may be obtained by taking the

sum, of all skeleton graphs, where every plaie line should be

replaced by a heavy line, representieg the sum of all possi
ble self energy -parts. The corresponding analytical con

tribution is obtained by applying the rules of Sec III.
to these skeletoes, with the sole exception that to each heavy

AS8 $58'fASg Ck $= $z Ssd NSAÃg Ck I= 32) K8 NOW 8$$0c$8$8

a factor I'(tt —ts)bx'sr. ,s $cf. Eq. (II.Z3)j instead of the

factor 8 sr s assoc Lated w'ith a plain line.

The demonstration of the 6rst part of the theorem,
which ls of pur'ely topological chRlRctel ls tllvlR1 once
it is recognized that, in the %eiss limit, the contribu-
tions where one spin appearing in the self-energy also
appears elsewhere (and vice versa) are of order Z ' and

may thus be neglected. For instance, with the heavy
line of Fig. 10(a) inserted in Fig. 10(b) we obviously
generate an infinite class of graphs appearing in the
initial perturbation expansion.

The second part of the theorem is more subtle because
the heavy line, when computed according to the rules of
Sec. III, is in principle an operator, which, when inserted
in a skeleton, acts on whatever stands on its right. In
order to prove that it may be replaced by I (tt—ts) 8 'jro 0,

let us provisionally neglect the time-dependent factors
and concentrate on the matrix elements.

The generRl stlucture Of the contribution of R heRvy
line (which we shall also call a "renormalized propaga-
tor"; see footnote 11), may be calculated according to
the rules of Sec. IV; leaving out the time factors, it is an
operator which we may write formally, in the case

P'I'" X2$7-g. (IV.6)

In other words, we expect that, in the real physical
process involving the two given spins e and b, the "free
spin propagator, " as represented by the plain lines of
Fig. 8 should be replaced by the direct correlation func-
tion I'„+-(tt—ts) Lor I'ss+ (tt—ts)] which is precisely
the quantity measuring the dissipation of the informa-
tion put on spin a Lor bj at time ts. This physically
appcabng assumption ean be formal&zed ln a theorem:
let us de6ne the "skeleton" of a given graph as the
diagram which is obtained by cutting OR all the "self-

energy insertions" on the plain lines; a self-energy in-
sertion is de6ned as a part of graph which starts with

Fro. 9. Examples of skeleton: (a) a graph and its skeleton;
(b) a gMph w1Hch ls its own skeleton.

"Although we clearly expect the self-energy parts to be purely
dissipative, we shaH nevertheless use the usual nomenclature of the
N-body problem.
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pg, = 1) as

where

bK'sr. ,p+(M„{M;,})6K'~, p, (IV.7)

C=Q Q Q .LP'sr. p+(M. ,{M;.})8K'sr., p]
~ ~ M~{M; J

pp'o({M}), (IV.9)

where the dots indicate the part of the contribution C
which is not the particular insertion under consideration.

In (IV.9) we know that spins i, do not appear either
on the right or on the left of 4' because this would
lead to negligible contributions in the Weiss limit. We
may thus shift the summation over {M;,} immediately
after the first 8 'M, o, similarly the initial condition
pp({M,.})may be factored out and put on the left of the
second Kronecker delta:

C=gP" Lb" ~, P e(M.,{M;.})
~ ~ ~

Xpo"({M'.})6 '~. , o] po"({M,~'.}) (IV 10)

Using the property Eq. (A3) of Appendix A, it is
easily seen that the operator C, being on the left of
8K'M„o, does not act on the dotted part on the right.
Also the operators involving spin u which are on the
left of the 6rst bK'M. ,o do not act on %. The bracketed
quantity behaves thus like a pure number, which is

e.=b" ~, P 4(M.,{M,.})
~M;, J

X 8 'sr. ,pp"({M;.}). (IV.11)

Comparing Eqs. (IV.11) and (IV.S) with the high-
temperature limit of Eq. (II.31) (in which case only the

%(M.,{M;.})= g —
I

-o il

X(—1., {0}'IIX(M.,{M'.})]-I—1., {0}'). (IV.S)

We have factored out in (IV.7) two Kronecker functions
because any renormalized propagator has to start and
to end with a plain line u; moreover, in Eq. (IV.S),
M;. denotes the quantum number of any spin i, that ex-
plicitly appears in the self-energy insertion. If we now
consider the eBect of inserting such a renormalized prop-
agator in an arbitrary skeleton, we may express the
corresponding contribution in the very schematic
fashion:

A W

j (0)
I

+ ww am

j (b) j

+ eeI a L+ ~ ~ 1

FIG. j.i. Irreducible renormalized skeleton part for iQ j:
(a) compact form; (b) expanded form.

V. DERIVATION OF THE KINETIC EQUATIONS

I et us define the contribution corresponding to an
irreducible renormalized skeleton part; it is the operator
given by

6;;(tt—ts, M;, M, {M,,}I
I'(I"))

=P (contribution of all renormalized skeleton
parts starting at t = t2 with a dashed line j
and ending at t=ti with a dashed line i,
without any intermediate state involving

only one such line) . (V.1)

term u'=—0 survives), we see that 4, differs from

p (0; II aa) by only a factor p'p(M, +st)—= ts.

Of course, we should still prove that the time factors
that appear in +,(tt—ts) are the same as those of
p (0; tt —tsI uu); however, very similar properties have
been demonstrated in a different context" and we shall
not reproduce that part of the demonstration here.
Using Eq. (II.29) we thus have

%,(I,—t,)=21'„+ (t,—t,)—= I'(I,—t,), (IV.12)

where explicit account has been taken of the fact that
the direct autocorrelation function does not depend on
the particular spin we consider.

The results of this section may be summarized as
follows: the complete perturbation series for the auto-
correlation function may be rewritten in terms of
skeletons only, but with renormalized propagators as
given by (IV.12).

Of course, we are not able to prove strictly that, in
this new classification, the renormalized graph of Fig.
10(b) behaves as is indicated on Eq. (IV.6); indeed, the
function I"(t) itself is an unknown of the problem.
Nevertheless, it seems clear that with such renormalized
skeletons the spin problem becomes very similar to the
case of a gas, and we shall now derive exact kinetic
equations following the scheme that has proved fruitful
in quantum gases (see Ref. 8).

(a)

+

(b)

«A « 'A«Q r W 0
Ig; iQ

0

+ + i ~ ~

I

This definition also holds when i =j; moreover, the
functional dependence on I', as expressed by Theorem
IV, has been explicitly indicated. We should stress
that 6;; corresponds only to the operator part of the
graphs under consideration; no trace is taken over the
quantum numbers M;, M;, {M,,},and the state over
which 6;; acts is not specified; it is thus not given by

Fro. 10. An example illustrating Theorem III: (a) the meaning
of a heavy line; (b) example of self-energy insertions. "P.Rssibois, Phys. Fluids 6, 817 (1963).
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4 Ie eo

(o)

0 p b

Pro. 12. General
structure of F f,"(t):
(a) typical term; (b)
a negligible contribu-
tion in the gneiss
limit.

direct application of the rules of Sec. III; perhaps the
simplest formal way to de6ne it in analytical form is to
use the complete perturbation expansion for each re-
normalized propagator, in which case it becomes simply

G;,(t,—«„M;, M, , {M....}I
r(t"))

n t1

d " '(0I[~(M)j"I0)-*, (V2)
n=p z

where "irr ij" means the irreducible contribution (i.e.,
no intermediate state «i=0) involving spin i at the first
vertex and spin j at the last vertex. Illustration of these
two de6nitions is given in Fig. 11.

It should, however, be clear from the discussion of
Sec. IV that Eq. (V.2) is purely formal and that only
the compact form (V.1) is useful in analyzing the long-
time behavior of the system. We shall be content here
with the formal analytical expression (V.2) and we
shall give later, at the end of this section, the prescrip-
tions for calculating a quantity closely connected to
6;, in a form involving explicitly the functional I" de-
pendence. With the definition (V.2), it is readily seen
that the most general graph contributing to F,g**(t)
has the structure indicated in Fig. 12(a). We may write
the corresponding analytical contribution as [see also
Eq. (III.10)j:

00 tI

&. *(t)—=~(-:;tl b)=Z Z Z Z
m=p j,a l faoj} f aj«t} ~ ~ ~ fMi~g} p p

d«,„G.,(t,—«„M.= —,', M;, {M...}I
I')

XGr.,(tg —«4, M, , M., {M„}I
P) Gig(tg i—tg, Mi, Mg, {M „}I P)Mgpgeg({M}). (V3)

+ dti dtg+ P G;z(ti tg, M.=-,'—, M;I P)

where

G.,'(t, —t, ; M.=-'„M,
I r)

Xp'(M;; tgljb), (V.4)

P G.;(t, «„M.= ,', M;, {M—...}lr)-
fagj} f Ma }

Xpg" ({M .,}). (V.5)

From the formal expansion (V.2), we notice that G
necessarily ends with a vertex of the type (II.19b);
accordingly 6~ has the structure

G .Z g P [.. .])Kr )Kr~
f aisj} f M~~j}

XL—~(~'—j)j~;t g"({M-.;}) (V 6)

Note that in Eq. (V.3) no exclusion has been indicated
on the various indices j, s, l; this amounts to in-
cluding not only the dominant structures, as given for
instance in Fig. 12(a), but also some contributions of the
type of Fig. 12(b), where more than one semiconnection
bond appear between two irreducible parts. In the
Weiss limit, these terms are, however, negligible with re-
spect to the dominant ones and may thus be added
whenever it is convenient. We immediately see that 6,;.
defined by (V.1) is such that no other spin than j in the
set (i,j,{n;,})reappears in any other irreducible part on
its right; this allows us to rewrite Eq. (V.3) as

t'(-" «I&&)=«*(g;oIob)

where n; is any spin in the set (a,{a„}).Here again, the
bracketed dots denote all contributions to 6'~ which are
on the left of the last vertex; they are left unspeci6ed.
Precisely as in Eq. (IV.9), the 8K'~, g insures that all
the operators which depend on j and which appear in
the bracket do not operate on the right of this delta
function. Moreover, let us de6ne a quantity 6 by

bK'~, ghK'~.,
—

gr«;, pge&({M,.,.})p'.(M, ; tg I jb) . (V.7)

We then perform explicitly the displacement operations
implied by Eq. (II.20) and get

$Kr )Kr ~ eg({M })
x[p (-;;t.lj~)-p (--;;t, l jf)j. (v.s)

Using the important pmperty (III.10) and the identity
2pg'g(M;) = 1, we may put (V.S) in the form

4)Kr $Kr

XM«pg'g(M, )pg'g({M .,})P;g**(tg) . (V.9)

Combining Eqs. (V.4) to (V.S), and taking the deriva-
tive of I,b**(t) with respect to t, we obtain. then easily
the following equation for P,g(t) intmduced in (II.23):

t

a,r.,(t)=g G.,(t—t'I r)P, ,(t')dt', (V.10)

where G„(t—t'I P) is now an ordinary function, and not
an operator, de6ned by

G.,(tl r)
P PG.,(t;M.=-;, M, , {M...}lr)

fan'} fM~j}
XM~pg" (M;,{M....}). (V.11)
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Equation (V.10) is the exact kinetic equation for the
spin autocorrelation function of a Heisenberg system
valid in the high-temperature region and in the %eiss
limit. It shows that the evolution of r q(t) is entirely
determined by the kernel G„(t~I'), which itself is a
nonlinear functional of the direct autocorrelation

As this kernel plays a central role in the application of
the theory, it is convenient to know the prescriptions
needed to calculate it directly, without use of the
auxiliary operator 6;.Such prescriptions are, however,
very easy to obtain once the formal similarity between
Eq. (V.11) combined with (V.2) and the irreducible
contributions to r„*'(t) itself—when expressed in
terms of renormalized propagators —has been recog-
nized; except for a numerical factor 4 and for a double
time integral, "G„(tq—t2~r) is in fact identical to the
irreducible part of r„**(t~r); this is most easily seen
from (V.11) and the graphic de6nition of G, as given by
Fig. 11. For the convenience of the reader, we have
nevertheless summarized the rules for the calculation of
G„ in Appendix C.

Equation (V.10) takes a very simple form when ex-
pressed in Fourier space; let us de6ne

(V.12)

e~q(cb}

a&5

PIG. t3. Dominant
graphs for F«**(t).

0 . 0 0 a.W&W

G..(tg —t2, M., pI ..) i r)}}f.=g}2

d4n
(V.3')

)&6 ( ).. M t}0"{{3II))

Following the same steps as before, we obtain im-
mediately

t

Using Eqs. (V.13) and (V.14), together with the defini-
tion r "{t)=—4r(t), we get Anally

elusion into account because we found it more con-
venient; this leads, in (V.3), to free summations over
j, s ~ /. However, in the particular case a=b, it is
extremely simple to take these exclusions into account
because all dominant graphs are of the type of Fig. 13,
where each intermediate state is equal to a. All the other
terms, i, p, s, l . &u, which have been formally intro-
duced in Eq. (V.3) are negligible in the Weiss limit. We
may thus as well write, in this particular case,

G..= —Q G.g.
a&5

(V.14)

This latter condition is an easily demonstrated conse-
quence of the well-known sum rule

(V.15)

which is the final form for our kinetic equation.
However, because we have

Eq. (V.16) is still in principle a very complicated
integral equation because all Fourier components are
mixed by Eq. (V.17). There is, however, a simpler
method that may be used, which amounts to writing
down a separate equation for r(t); indeed. , we have men-
tioned after Eq. (V.3) that we had not taken any ex-

"The time factor is here J't, '2dv" ' because we consider the
fIrst and the last vertices as, respectively, 6xed at times $1 and I2.

We introduce (V.12) and (V.13) into (V.10), and we
use the property

8(r(t) = — Go(t'
i
I')r(t—t') dt'. (V.19)

The considerable simplification brought by the auxiliary
equation (V.19) will be appreciated; indeed, once the
single nonlinear equation for r(t) has been solved, all
other Fourier components, which are determined by
(V.16), now obey a linear non-Markman equation
which can generally be solved quite easily.

Finally, we would like to remark that, although we
have no general pI'oof of this property) wc expect) of
course, that

(V.20)

which implies in turn that

(V.21,

Ke see thus that the reclassification of the perturbatiog
series in terms of irreducible renormalized skeletons
allows us to obtain kinetic equations in which all quanti-
ties are well-behaved, in the long time limit; this is a
considerable improvement over the initial perturbation
form (II.21). It is the keystone to the possibility of
getting approximate expressions for r, (t) and r(t)
valid for both short and long times. The derivation of
such expressions will be considered in the following
paper of this series.
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APPENDIX A: DEMONSTRATION OF
THEOREM II

As an example, we shall show here that the presence
of a vertex of the type given in Fig. 6(d) gives a vanish-
ing contribution to the corresponding graph.

Using again the schematic notation used in Fig. 7,
we have pictured a graph of this type in Fig. j.4. Be-

//

/
FIG. 14. Schematic representation of a graph involving

the vertex (d) of Fig. 6.

ol

X 5K'or, ,pg, ;8K'xr, , p%'p({M.g;)) (Ai)

cause of the absence of any semiconnection bond, we
know that the operators in N~ do not involve spin j;
let us denote by 4'i({M.~,)) the operator corresponding
to this box. Similarly in the box%'2, spin i cannot appear.
We denote by Vp({M.„,}) the corresponding opera, tor,
and by 4'p({M,„,}) the function of the different M, ~;
that results when the displacement operations are
performed.

Using (II.19c) and leaving out the unimportant time
factors, we have, for this contribution,

does not appear; we get then

c p 4 ({,;))[— ('—j)]
{My~to, g}

X8 M;, 0 g [8 xr, —~ o 8 xr~+~„o]
Mj

X%'p({M.g;,;},M, =O)—=0 (AS)

which is the required result. The other cases are treated
similarly.

APPENDIX B: DEMONSTRATION OF COROL-
LARIES I AND II OF THEOREM II

The demonstration of Corollary I is almost trivial;
to any given graph we may associate the "conjugate"
graph obtained by reversing the direction of the arrow
on each plain line. In this transformation, one sees im-

mediately from (II.17) and (11.18) that we change the
sign of each matrix element, either longitudinal or
transverse. We get thus a vanishing total result if the
graph is of odd order in e.

The proof that for large Z, the indirect correlation
function is of order li'(X'Z)" ' is more elaborated.

Let us define the topological index of a vertex: It is
equal to the number of spins over which we may sum
freely at this vertex, reading the graph from left to
right. If we take into account that the number of
neighbors is Z (Z))1), this index is Z or zero as indicated
on Fig. 15. The only exception is the last vertex on the
right of each graph, where we have to introduce the
index Z ' because we impose the condition that one of
the plain lines is necessarily b.

Let us then consider an arbitrary graph of order 2n,
with npi vertices of the type indicated in Fig. 15(1),
nip vertices of type Fig. 15(2), . no7 vertices of type
Fig. 15(7). We have the following identities:

(a) The graph is of order 2n:

X & '~;,o(g " g+'~]t'"'~,
, o—%({M.~;)) (A2).

Using then the basic property

7

P np;=2n.

(b) As the graph starts with a dashed line and ends
with a dashed line, the number of vertices that create

tl"5"'~ p%'(M) = q&8 '~,p@(0), (A3)

an immediate consequence of the definition of the
Kronecker function, we have

(2)
0(2 ')

(3)

{Mtpgts}

X&K'~ o[&K'~ ~ o
—&K'~+ ox']

X@p({M,~;,;),M;=0). (A4)

0
or

(4)

Or

Among the sums over M, „„wemay of course commute
the sum over My with the operator 4'i, where spin j

I
0 "(6)

Fxo. 15. Topological index of the elementary vertices.
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two plain lines is equal to the number of vertices that
absorb two plain lines; we have thus

SOS OO ~ «»»«»«+« --+-- »+ ~ ~ ~

(~)

(82) CL

»»,pi
«+ ~ «»«+ ~ ~ ~—

(b)

mt+ms=ms+ms.

(c) Each created serniconnection line has to be ab-
sorbed later on

ms+ ms+ 2mb+ m7 ——mt+ m4+ 2mb+ mr .

(d) The order of the graph is

FIG. 16. Renormalization of the internal dashed line in a basic
irreducible skeleton part: (a) renormalized dashed lines; (b) re-

(83) normalized basic irreducible skeleton part.

0=X2~ZmI+m2 —j.

Solving (81), (82), and (83) for mt+ms, we get

(84)

mt+ms n ——', (—m-b+ms+mr) . (85)

As m~, m2„m3 mv are by definition positive numbers,
we see that the maximum order

0 $2nga —1 (86)

APPENDIX C: RULES FOR
CALCULATING G~b(t i

I')

As indicated in Sec. IV, the rules for computing
G,b(t

~

I') in terms of renormalized propagators are easily
obtained from those for I',b(/). However, before giving
these prescriptions, let us remark that we may perform
without any difFiculty the renormalization of all the
internal dashed lines of a given irreducible skeleton part;
this will reduce considerably the number of graphs and
will also insure a faster convergence of the expansion for
the kernel G, b(t

~

I').
Indeed, let us define a basic irreducible skeleton part

as an irreducible skeleton part with no self-energy parts
on the dashed lines. We have then the analog of Theorem
III, which is

Theorem III': The sum of all irreducible skeleton
parts is obtained from all basic irreducible skeleton

provided it is possible to take m5=m6=mv ——0, i.e. to
neglect all graphs with more than one dashed line on
any vertex. It is easily verified that such a choice is
indeed, consistent with conditions (81)—(83); Corollary
II is thus demonstrated for the indirect case (rbWb) A.
similar proof can be given for the direct correlation
function (a= b).

4( ls)e d"—2

for a graph with 2rI, vertices.

(6) Take the trace (P~,. ) over all spins different
from a.

(7) Sum over all indices different from a and b.

parts by replacing each dashed line with the renor-
malized dashed line of Fig. 16(a). The corresponding
analytical contribution is obtained by associating a
factor I'(tt —ts) to each renormalized dashed line start-
ing at t2 and ending at tj,

The demonstration of this theorem follows exactly the
proof of Theorem III, Sec. IV, and will not be repro-
duced here. An example of application is given in Fig. 16.
Using this theorem and the results of Sec. V, we obtain
the following rules for calculating G.b(~,—~,

~
r).

(1) Draw all possible renormalized basic irreducible
skeleton parts starting with a dashed line b and ending
with a dashed line a.

(2) Associate a factor I'(tt —ts)8 'sr, , s to a heavy line
with index i starting at t= t2 and ending at t= t~, simi-

larly, associate a factor I'(tt —ts) to an internal renor-
malized dashed line.

(3) Associate a factor I J(i —J)ri;,—] to each trans-
verse vertex and a factor [ 2J(z j)(IzP—I,+Iz;M—;)j
to each longitudinal vertex. The operators g;; and the
Kronecker deltas are ordered as they appear in the
graph.

(4) Multiply on the right by

~s o"(W})Lpo"(&')=z (z=1" &)j.

(5) Multiply on the left by


