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High-speed sample-rotation studies of nuclear relaxation processes of Na" in powdered NaC1 are pre-
sented. A qualitative theory of the free-induction-decay shape under sample rotation is compared with
experiment. The principal effects of sample rotation on the central line component for NaC1 occur at rotation
frequencies below the root-mean-square second moment in frequency units, in agreement with previous
theories. First-order quadrupolar broadening cari be eliminated provided suSciently high rotation rates can
be achieved.

INTRODUCTION

~ 'UCLEAR magnetic resonance (NMR) is a useful
tool for the study of the electric and magnetic

environment of nuclei within a solid. However, unlike
motionally narrowed liquids, the NMR absorption line
shape of solids is usually determined by dipole-dipole
in, teractions. This dipolar broadening often obscures
the more interesting features of the lineshape thus
limiting the usefulness of nuclear resonance.

By rotating a solid sample at high angular velocities,
it is possible to "motionally narrow" the absorption
line. That is, the effect of dipole-d, ipole interactions can
be greatly reduced by sample rotation. In addition,
some spin-lattice relaxation processes can be affected
by sample rotation.

The effect of sample rotation on the free-induction-
decay process and spin-lattice relaxation time for Na2'

in powdered NaCl are reported along with a discussiog
of the relaxation processes.

THEORY

A detailed theory of the effect of high-speed sample
rotation on the nuclear resonate, ce absorption lineshape
of a nuclear pair has been given by Drietlein and
Kessemeier. ' More recently, Clough and Gray, ' and
Kessemeier' have investigated sample rotation effects
on nuclear magnetic relaxation processes using a
stochastic approach in the theory. In this section a
more qualitative approach is taken resorting to a
phenomenological presentation.

The principal contributions to the resonance line-
width of a solid at room temperature are the dipole-
dipole interaction and the interaction of the nuclear
electric quadrupole moments with the crystalline elec-
tric field gradients.

The interaction Hamiltonian for a spin i may be
written as a sum of a magnetic dipolar term K; and
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with

A;, = (1—3 cos'8g)I„S„,
8;,= —

e (1—3 cos'8, ,) (I+,5,+I;S+,),
C;,=D,,*=—ee sin28;, e '~'&'(I. ,S+;+I+;S„), .

E;;=Ii;;*=—
4 sin'0;;e "&'~5+,.I+, ,

where 8;; and g;, are the polar and azimuthal angles of
the internuclear vector r;;. Only the first two terms will

be retained leaving the truncated Hamiltonian. The
neglected terms would only be important if the sample
rotation rate were of the order of the Larmor frequency.

Again using operators associated with the Zeeman
frame, but expressiong the electric field gradients in the
crystalline principal axis system, 3C,o is given by' [see
Appendix, Eq. (A13)]

X &=El V ~[-'(3I,'—I 2) (3 cos'8 —1)
+ee(I+,I„+I„I+,) sin28e '&

+eeI+P sin'8e '&+c.c.]
+ (V„~—V s')[——,

' (3I, 2—I 2) sin'8 cos2$

+ 2t (I„I+;+I+;I„)(i sin8 sin2$e '&

+,'sin28 cos2&e -'&)
——,'I+/(-', (1+cos'8) cos2&e "&

+i cos8 sin2&e mr&)+c.c.]),
with

(2)

K=
4I (2I—1)

and where 8, p, and f are the Eulerian angles of the
crystalline principal axes in the Zeeman frame.

If the sample is rotated about a direction inclined
at an angle 0' with the external magnetic field at rota-

4 J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).
e C. P. Slichter, Principles of Mugaetic Resonalce (Harper 8r

Row, New York, 1963), p. 172.
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an electric quadrupolar term X,@. Using operators
associated with the Zeeman frame, X, is given by

~'"=Z &'V*7 (r.r) '

X$&;,+&,+&' +D.~+& ~+I"' ], (1)
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tional velocity 0, the interaction Hamiltonians become
time-dependent. (See Appendix for transformation
equations). The truncated dipolar Hamiltonian becomes

X, '(t) =P y,y, PP(r„.) '[A, ,(t)+8;,(t)], (3)
jets

with

A;, (t)+B,, (t) = —', [I„S„—-,'(I+,S,—+I;S„)
[(1—3 cos'0~) (1—3 cos'8 ')

+3 sin20' sin28, , ' cos(Qt+P;, ')

+3 sin'0~ sin'8;, ' cos2(Qt+P;, ')],
where 8,,' and P; are the polar and azimuthal angles
of the internuclear vector r;, at t=0.

Under sample rotation, the quadrupolar term diagonal
in the Zeeman representation is given by

DC;@'(&)= ~~K(3I ' I')(V [—(1—3 cos'O~) (1—3 cos'8)

+3 sin20~ sin28 cos (Qt+f)
+3 sin'0~ sin'8 cos2(Qt+f)]
+ (V ~—V ~[(1—3 cos'0~) (1—3 cos'8)

+sin20'(~~ sin28 cosP cos(Qt+P)
+sin8 sin2& sin(Qt+g)
—sin'0(-', (1+cos'8) cos2& cos2(Qt+f)

+cos8 sin2$ sin2(Q+tf)]) . (4)

Line-Shape EBects

It has been observed experimentally by Andrew,
Bradbury, and Eades' that the resonance spectrum of
Na" in a rotated crystal of NaCl for 0= 0~, consists of a
narrowed central portion and side spectra of decreasing
amplitude spaced at integral multiples of the rotation
rate. The formation of the side spectra is attributed to
the time-dependent terms in the Hamiltonians of
equations (3) and (4). Since the free-induction-decay
curve is the Fourier transform of the resonance spec-
trum, some elementary considerations of the spectral
lineshape should lead to a qualitative measure of the
free-induction-decay structure.

For simplicity, it is assumed that the central portion
and side spectra have the same general lineshape f(M),
where the 6rst side spectra are reduced in amplitude
by the factor —,'a(1, the second reduced by the factor
—,'b&-,'u, and all others are negligible. Assuming the side
spectra to be sufficiently removed from the center
portion so there is no overlap, the Fourier transform of
the sum of the lines will equal the sum of the Fourier
transforms of each line taken separately. %e also
assume the center portion and side spectra to be inde-
pendent, i.e., there is no coupling between them. Shift-
ing the center frequency coo to the origin, the free-
induction decay G(t) is then

If the period of rotation (Q ') is short compared to the
lifetime of a spin state, so that a given nucleus has
ample time to "see" all orientations, the time-depend-
ent terms in the Hamiltonian can be averaged to zero.
In this case the interaction Hamiltonians become

GP) =
I f(~)+2~f(~+Q)+k~f(~ Q)—

+-,'bf((o+2Q)+-,'bf((o —2Q)]e'"'dry (7)

&( (I+;S,+I;S,)](1 3cos'0') (1—3 co—s'8,,'), (5)

and

(3'.,o(t))= —,'E (3I„'—I,') (V... +V„; —V )
)& (1—3 cos'0) (1—3 cos'8) . (6)

In both equations (5) and (6), the time-averaged
Hamilton, ians can be made to vanish if 0+ is chosen such
that (1—3 cos'0.)=0. It is interesting to note that
in the quadrupolar case no reference is made to the
symmetry of the field gradient. The residual linewidth
is due to either isotropic interactions or interactions
which have a different angular dependence from those
discussed above.

A second case of interest occurs when the rotation
axis is perpendicular to the applied magnetic 6eld
(0~=90'). The magnetic dipolar Hamiltonian under
rotation becomes —', of that for the static case and thus
one could expect the resonance line to be narrowed by
a factor of 2 for pure dipolar interaction. Likewise if
the sample has electric 6eld gradients with cylindrical
symmetry (V„;~=V»P), then X;o' is reduced by a
factor of two at 0~=90'.

G(0) . (9)

' E. R. Andrew, A. Bradbury, and R. G. Eades, Nature 1S2,
1659 (1958).

~A. Abragam, The I'rimcip/es of Nuclear Magnetism (Oxford
University Press, London, 1961),p. 110.

Denoting as f(t) the Fourier transform of the center
portion f(co), we have

G(/) =f(t)[1+acosQt+b cos2Qt].

Thus the free-induction-decay curve consists of
"wiggles" called "spinning beats" of frequency 0 and
20, with initial amplitude a and b, respectively, super-
imposed on the Fourier transform of the central line,
f(~)

Note that for 0+=90', the cosQt terms in the Hamil-
tonian [Eqs. (3) and (4)] are absent; thus only side
spectra spaced at even multiples of the rotation rate 0
are present. In this case, the spinning beats super-
imposed on the decay curve f(t) have frequency 2Q

only, and are smaller in initial amplitude than for
0~=0~, since b(a

The second moment of the resonance line is invariant
under sample rotation and is given by'
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From Eqs. (8) and (9), the second moment under
sample rotation becomes

a+4b
3ls ——

Q'+ms�(Q),

1+a+b
(10)

where ms(Q) is the second moment of the central com-
ponent only. It should be pointed out that a and b are
also functions of 0 and their form depends on the inter-
actions present in the sample. However, in the limit of
Q~ ~, the first term in Eq. (10) should approach a
constant value. The difference between this constant
and M2 gives the second moment of the central line
component.

The fourth moment of the absorption line in terms
of the free induction decay function is given by

&4= GO.

From Eqs. (8) and (11), M4 becomes

a+16b a+4b
M4= Q'+6ms Q'+m4,

1+a+b 1+a+b

where m4 is the fourth moment of the central line com-
ponent under rotation. 3f4 is not invariant under sample
rotation, thereby making it dificult to discuss the effect
of rotational velocity on m4.

Impurity Relaxed Solids

In an impurity relaxed solid, energy is transferred
from one nucleus to another via energy-conserving
mutual spin-Qips as described by the Hamiltonian'

X;;=—'y'b'(r, ,) 'LI;I;+I;I,](3 cos'8,,—1).

A few nuclei interact with neighboring paramagnetic
impurities via interactions which do not conserve
energy, such as those described by the Hamiltonian

X;,= ——,spy, )ss (r,,)—'P~;S,]sin28;, e+'e

In a typical solid at room temperature, the former
interaction is much weaker than the latter, and thus the
rate of energy transfer from the spin system to the
lattice is governed solely by the diffusion rate." This
is called diffusion-limited relaxation. Since T~ is then
solely governed by the interaction proportional to
(3 cos'8—1)', for this case, we should expect Ti to
increase dramatically as the sample is rotated at
O'= O', . At the angle 0~=90', we have seen that the
interaction giving rise to diffusion is reduced by -„
thus Tj should also increase at this angle.

N. Bloembergen, Physica 15, 386 (1949).
I' S. M. Day, E. Otsuka, and B. Josephson, Jr., Phys. Rev.

137, A108 (1965).I H. Rorschach, Physica 30, 38 (1964).
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FIG. 1.Nylon sample roton 6lled with powdered Nacl capable of
rotation rates of over 3000 Hz. All dimensions are in mils.

EXPEMMENTAL APPARATUS AND PROCEDURE

The pulsed free-induction spectrometer was con-
ventional in design. A continuous rf signal was gated,
amplified, and sent to the sample coil which served as
both the transmitter and receiver coil. The transmitter
was capable of providing a 90' pulse for Na" in less
than 15 @sec. The receiver recovered completely in
10 @sec following a pulse. All data were taken using
10.5 MHz. The free-induction-decay curves were
photographed from the oscilloscope. A number of
curves were superposed and a smooth curve drawn.
Because of the nonlinear characteristics of the detector
circuit, it was necessary to make a diode correction.

The powdered NaCl sample was contained in a rotor
shown in Fig. 1. The cylindrical axis of the rotor was
colinear with the cylindrical axis of the sample coil.
The rotor was machined from nylon and the end cap
was sealed to the main body with Kodak 910 contact
adhesive. Many rotors were made of various sizes and
shapes and it was found that rotors with a diameter-to-
length ratio larger than 1 were most stable. Various
materials were tried. for the rotor. Teflon was found to
be a poor material because it flowed outward at pro-
longed spinning rates above 1.5 kHz. Lucite worked
well up to 2.5 kHz, but tended to explode above this

» L. C. Hebel and C. P. Slichter, Phys. Rev. 113, 1504 (1939).

Quadrupole Relaxed Solids

The transition probability for a spin to transfer
energy to the lattice via the electric quadrupole inter-
action should not be influenced by sample rotation
unless the rotational frequency approaches the Larmor
frequency. However, T& could be affected by the de-
coupling of the spins due to sample rotation if T2 be-
came the order of T~. In this case, the spin temperature
treatment of Hebel and Slichter" would not be valid
and the approach to equilibrium of the spin system to
the lattice would not be given by a single time constant.
In no experiment reported to date has T2 approached
T~ under sample rotation, thus it would be expected
that T& due to quadrupolar relaxation, should be in-
variant under sample rotation.
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25- No significant departure from a single exponential
curve was observed.
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Pro. 2. Free-induction-decay curve of Na2' in powdered NaCl for
0/2n =0 and 1450 Hz with O~=O", =cos '(t/&3).

rate. Nylon proved to be the best material as no observ-
able distortion occurred and no samples exploded. The
rotor was driven by a single air jet. The gas pressure
was regulated between 0 and 80 psi. To obtain 2.7
kHz a pressure of 60 psi was used.

Considerable care was taken in setting the magnetic
field and the pulse duration. It was found that the field
had to be set within 0.25 G of the resonant value. The
setting of the angle 0+ between the rotation direction
and the magnetic field was within 1' of the desired
value.

RESULTS

Shown in Fig. 2 and 3 are the free-induction-decay
curves at O~= 0', for Q/2~= 1450, and 2400 Hz, respec-
tively. Shown also for comparison is the free-induction-
decay curve for 0=0. For 0+=90', the free-induction-
decay curves for 0'/2~=0, 1100, 2000, and 2700 Hz
are shown in Fig. 4. Shown in Fig. 5 are calculated curves
of f(t) for Q/2m. = 1450, 2000, and 2400 Hz. These curves
represent the Fourier transform of the center line of the
resonance spectrum in the absence of side spectra. They
were obtained by curve fitting from the equation

f(t) =G(t)$1+a cosQt+b cos2Qtf ',
using various trial values of a and b until a smooth
curve was obtained, where G(t) is the free-induction-
decay curve for Q/2~= 1450, 2000, and 2450 Hz.

The growth of the magnetization to its equilibrium
value was plotted by measuring the amplitude of the
free-induction decay from a 90' pulse at 10-sec inter-
vals up to 120 sec after an initial 90' pulse. The average
value of many pictures taken at each 10-sec interval
was diode-corrected and plotted. A smooth curve
through these points represents the growth curve with
characteristic time Tj. Measurements were made at
O'= 0', for Q/2m =0 and 2000 Hz. For Q=O, Ti was
15%2 sec, while for Q/27r =2000 Hz, Ti was 20+3 sec.

DISCUSSION OF RESULTS

From Fig. 2 and 3, it is clear that the spin-spin
interaction is severely weakened by sample rotation
at 0~=0.. In addition, the spinning beats have the
correct frequency. From Fig. 5 the most significant
narrowing of the central line occurs for rotation rates
below Q/2m. = 1400 Hz and does not change significantly
up to Q/2~=2400 Hz. That is, a plateau appears to
occur in the linewidth as a function of rotation rate.
The theoretical root-mean-square second moment of
NaCl due to dipolar interactions is about 800 Hz.
Thus, the rotation frequencies employed in the experi-
ment should have been high enough to essentially
eliminate dipolar broadening. However, the sample
employed in the experiment was a powder, which means
significant quadrupolar broadening was present. This
was confirmed by comparing the free-induction-decay
signal of a single crystal of NaCl to that of the unrotated
powder. Consequently, the resonance line may have
been too broad for the rotational frequencies employed
to electively motionally narrow the entire resonance
line.

Using the values of a and b from Fig. 5, the values of
(a+4b/1+ a+b) (Q/2~)' LEq. (10)j are 0.8)& 10'
1.5X10' and 1.6&(10' Hz' at Q/2m. =1400, 2000, and
2400 Hz, respectively. The contribution to the total
second moment M2 due to the sidebands appears to
have almost leveled off at Q/2~ = 2400 Hz. Making the
uncertain assumption that the second moment asso-
ciated with the side bands at Q/2~=2400 Hz is equal
to the second moment of the entire line, qualitative
information can be obtained for the effect of rotation on
the fourth moment M4. By neglecting m4 in equation
(12) and using the values of u and b given in Fig. 5,
the values of M4 are 8X10' 15X10 and 21X10 Hz

25"
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FIG. 3. Free-induction-decay curve of Na" in powdered NaCl for
Qj2x=0 and 2400 Hz with Q~=Q~, =cos '(1/V3).
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at Q/2+=1400, 2000, and 2400 Hz, respectively. This
shows rather dramatically that the eRect of sample
rotation is to make the resonance line become Lorentzian
as 0 is increased. Furthermore, the central line com-
ponent becomes Lorentzian as 0 is increased as is
evident from the form of f(t) in Fig. 5. In addition the
intensity of the central component increases as the
intensity of the side bands decrease with an increase
in Q. This is not shown in Fig. 5 as the curves were
normalized to the same initial height to better show the
change in shape with rotation rate. However, it is
clear from Kq. (8) that since G(0) is independent of Q,

f(0) must increase as (1+a+5) decreases.
No satisfactory explanation exists for the increase

of T~ for the rotated sample except possibly that the
relaxation may be due to electronic paramagnetic
impurities for the static sample and due to the electric
quadrupole interaction for the rotated sample. Cer-
tainly T& is very small compared to Tj, so that the spin
temperature concept should be valid.
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FIG. 4. Free-induction-decay curves of Na" in powdered NaCl for
Qj2~=0, 1100, 2000, and 2700 Hz with O~=90'.

CONCLUSIONS

The eRect of sample rotation on the free-induction-
decay curves of Na" in NaCl can be explained qualita-
tively. At rotation frequencies several times the un-
rotated linewidth, further increase in the rotation rate
has little eRect on the second moment of the central
line. Thus there is a broadening interaction which is
essentially rotationally invariant in powdered NaCl. It
has been shown that electric quadrupole broadening
can be diminished by sample rotation regardless of
symmetry provided the sample rotation rate can be
made large enough.

Finally, by refining the experimental procedure and
increasing the rotation rate, it should be possible to
study rotationally invariant interactions in solids
normally obscured by dipolar and quadrupolar
interactions.

25-

20

LLJ
O

I5

Z

0/2m a b

400 .3I6 .064

000 .300 .049

2400 .206 .034

IO
O
UJ
N

X
oz

500 1000 I500 2000 2500 3000
t (microseconds)

FIG. 5. Calculated free-induction-decay curve f(t) of central line
for 0j2m = 1450, 2000, and 2600 Hz with O~ = O~, =cos '«'1 j&3).

ACKNOWLEDGMENTS

The authors wish to thank Dr. Horst Kessemeier for
several helpful discussions and for kindly giving us a
copy of his thesis. We are also indebted to David Sloop
and Darrell Hutchins for assistance in conducting the
experiment.

x= x' cosO~ —s' sinO~,

s=s' cosO'+x' sinO.
(A1)

The internuclear unit vector then becomes, in the
unprimed system,

r=x sin8(t) cosP(t)+g sin8(t) sing(t)+z cos8(t), (A2)

and in the primed system,

r =x' sin8' co"s(Qt+Q')+g' sin8' sin(Qt+Q')
+z' cos8'. (A3)

From (A1) and (A2), r' becomes

r"=x[cosO' sin8' cos(Qt+P') —sinO' cos8;

+g sin8' sin(Qt+P')
+i[coso~ cos8'+sinO~ sin8' cos(Qt+P') j. (A4)

Using (A2) and (A4), the appropriate angular factors
are easily obtained:

1—3 cos'8(t) =1—3[r z)' (A5)

sin8(t) cos8(t)e+'&&'~= [r z][r" (x+ig) j, (A6)

APPENDIX

Transformation of Dipolar Hamiltonian

The time dependence of the internuclear vector r,;
is needed. We perform a coordinate transformation
from the laboratory frame (8(t), P(t)) in which the
axis of rotation is along the polar axis s'. The following
transformation is employed:
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and

sin 8(1)e+s'&&'& = Lt' (z+ig)]s.
The operators in the principal axis system (X,V,Z) can

(A7) be written in terms of the system in which the axis of
rotation is the polar axis (x',y', s') as follows:

Transformation of the Electric
Quadrupolar Hamiltonian and

I i'= cos8I,'+i e'& sin8I' +tse '& sin8I+', (A9)

In terms of the principal axes X, F, Z of the tensor
which describes the electric field gradient, the quadru-
polar Hamiltonian may be written as

E=
4I(2I—1)

I+P i—si——n8e'&I, '+ie'&cocos'(8/2)e '&I+'+
—sin'(8/2) e'&I ']. (A10)

Here 8, P, P are the Eulerian angles. (See Goldstein"
for figure. ) For sample rotation at angular velocity
0, Q=Qt+P'. Using the transformation (A1) between
the x', y', s' coordinates and the system (x,y, s) in
which the external 6eld IIO is along the polar axis, the
operators in the principal-axis system become

I,~=I,[c os Ocos8+sinO' sin8 sing]+I+[ —tssinO' cos8 sti —sin8(cosg+i cosO' sing)]
+I L

—tssinO' cos8+sti sin8(cosg —i cosO' sinlt)], (A11)
and

I~~=I,e'~{ i cosO~ sin—8+sinO~Lcoss(8/2)e'& sin'(8/2)e '&])
+I~e'&P'i sinO~ sin8+ts cos'(8/2) (1+cosO')e'& ——', sin'(8/2) (1—cosO~)e '&]

+I e'ePsti sinO~ sin8 —-,'cos'(8/2)(1 —cosO~)e'&+-', sin'(8/2)(1+cosO')e '&] (A12)

Recalling that I," I„'= is[I+—'+I '] and using (A11) and (A12), X& becomes

K
BCo=—V«~{(3IP—I')L(1—3 cos O~) (1—3 cos'8)+3 sin20~ sin28 cosf+3 sin'0 sin'8 cos2$]

—3 (I+I,+I I+))sin20 (1——, sin'8) —cos20~ sin28 cosl{+i cosO sin28 sing —s sin20' sin'8 cos2$+ i sinO~ sin'8 sin2$]

+3I+')sin'0(1 —ss sin'8) ——,
' sin20' sin28 cosf+i sinO' sin28 sinP+st(1+cos'0')sin'8 cos2$—i cosO' sin'8sin2$]

K
+cc)+—(V —V ){(3Is—I')((1—3 cos'0') sin'8 cos2&+sin20~(-, sin28 cosp cosp+sin8 sin2$ sinit)

4

—sinsO~(s (1+cos'8) cos2& cos2$+cos8 sin2$ sin2$)]+ (I,I++I+I,)[, sin20' sin'8 cos2&

+2 cos20~(sin8 sin2& sing+-,'sin28 cos2& coslt) 2i cosO—'(st sin28 cos2& sing —sin8 sin2& cosset)

—sin20'(-', (1+cos'8) cos2$ cos2$+cos8 sin2$ sin2$)+2i sinO'(-', (1+cos'8) cos2$ sin2$ —cos8 sin2$ cos2$)]

+I+sf——,
' sin'0" sin'8 cos2$+2i sinO'(-,'sin28 cos2$ sinit —sin8 sin2$ cosf)

—sin20~ (sin8 sin2$ sing+ st sin28 cos 2g cosf) —(1+cos'0') (s (1+cos'8) cos2$ cos2$+ cos8 sin2$ sin2$)

j2i cosO'(ts (1+cos'8) cos2$ sin2$ —cos8 sin2$ cos2$)]+c.c.) . (A13)

Equation (2) is obtained by setting 0'= 0 in (A13).

"H. Goldstein, Classccal3Eechoaics (Addison-Wesley Publishing Company, Inc. , Reading, Massachusetts, 1950), p. 10/.


