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A general nonperturbation problem, described by the Hamiltonian X, is considered. Approximate creation
operators 8;t are defined as operators which satisfy the Hamiltonian commutator equations LX,8;tg=au;8, t
+R;t, where co; are the creation energies, and the remainder operators R;t are small in the sense that statisti-
cal averages involving the R;t are small. A zeroth approximation is to neglect the R;~. In this case, a straight-
forward derivation provides general relations between statistical averages such as (8;tQ) and (8;tQ+Q8;t),
where 0 is any operator. The usual boson and fermion occupation numbers are a trivial result of these
zeroth-order relations. Corrections to the general zeroth-order relations arise from the R;'f; such corrections
are considered in the spirit of perturbation theory. An explicit first-order correction is obtained for the
averages (8;t8;), and this correction is related to a self-consistent energy-renormalization procedure. The
present method is similar to the method of thermodynamic Green's functions in that the derivations given
here do not require evaluation of any state vectors or of the partition function. The general results are
applied to the Heisenberg ferromagnet problem. At low temperatures, the zeroth-order relations give the
Bloch spin-wave results, and an approximate evaluation of the first-order contribution gives the leading
term in Dyson's T4 correction to the spontaneous magnetization. For arbitrary temperatures, the zeroth-
order relations give the Tyablikov equations for (S*),and Callen's results are obtained from the first-order
corrections. These examples illustrate the simplicity of calculating statistical averages of functions of the
8;t, 8; operators by the present method.

where co; are real, positive numbers and R;t are "small"
operators. Several comments about (1.1) are in order.
Firstly, the e,t, 8; need not be good boson or fermion
operators, i.e., we need not be concerned about the
commutators or anticommutators among these oper-
ators. The index i represents any labeling appropriate
to the satisfaction of (1.1). Secondly, we require o&;)0;
if ~;&0, this can always be satisfied since the Hermitian
conjugate of (1.1) is

(1.2)

Finally, the definition of small for the operators R;t is
that any statistical average involving R,t should be
small. Denoting statistical averages by ( ), we require

(R,to) = small, (1.3)

*This work was supported by the U. S. Atomic Energy Com-
mission.

I. IN'TRODUCTION

E consider a general nonperturbation problem

~ ~

~

~

described by the Hermitian Hamiltonian X.The
object is to define creation operators for X, in terms of
the commutators of these operators with X, and then to
derive expressions relating statistical averages of func-
tions of the creation operators. These expressions can
then be used to calculate the statistical average of any
Hermitian operator representing an observable of the
problem.

To begin with, assume that we can 6nd one or more
approximate creation operators 8,~ which satisfy the
Hamiltonian commutator equation

Pc,e,t]= (u,g,t+E,~,

where 0 is any operator. Obviously the condition (1.3)
will depend on 0 and also on the values of the thermo-
dynamic variables, such as the temperature. As an
example, one might consider the operator (2 —(A))
as small, for any 3, and use this as a basis to de6ne
suitably small R;~. In practice, our procedure is to treat
the effects of the R;t as a perturbation, and then make
an a posteriori check to see if the E;t do indeed give
small contributions to the statistical average which is
to be calculated.

In Sec. I of the preceding paper (this paper is referred
to as I in the following), we noted three circumstances
which keep the Hamiltonian commutator equations
(1.1) from providing a complete solution of the problem.
These difFiculties were avoided in I by relying heavily
on the spirit of perturbation theory. These circum-
stances also give no difFiculty in the present theory; the
essential reason is that we deal here with operator equa-
tions without requiring their evaluation in a particular
representation. This is discussed more fully at the end
of Sec. II.

A powerful modern method for treating nonperturba-
tion problems is the method of thermodynamic Green's
functions. ' 4 In application of this method it is generally
necessary to carry out infinite self-energy sums, or else
to decouple the Dyson equation by means of an approxi-
mation. In the present method, the counterpart of
decoupling is the identification of the R, of (1.1) as
being small. We wish to stress, however, that this identi-
fication is not strictly analogous to decoupling; indeed,

' T. Matsubara, Progr. Theoret. Phys. (Kyoto) 14, 351 (1955).' P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).' D. N. Zubarev, Usp. Fiz. Nauk 71, '71 (1960) [English transl. :
Soviet Phys. —Usp. 3, 320 (1960)g.

4 L. P. KadanoQ and G. Baym, Quantum Statistical Mechanics
(W. A. Benjamin, Inc. , New York, 1962).

26i



262 D UANE C. WALLACE

we are able to make use of the remainders 8;~ to calcu-
late corrections to the zeroth approximations.

In Sec. II we develop the basic equation which relates
statistical averages of functions of the 8;~, 8; operators,
and then derive a perturbation term based on the E;~.
The usual boson and fermion occupation numbers are a
trivial result of the zeroth-order equation. The method
is illustrated by an application to the Heisenberg
ferromagnet in Sec. III, where the appropriate approxi-
mations are found to lead directly to Bloch spin waves,
the Tyablikov result, and the Callen result, respectively.
Some concluding remarks are presented in Sec. IV.

[X,8;t] =re,8,t, M,)0. (2 1)

Equation (2.1) represents all the information we have
about the 8;~ operators. For the present discussion, it is
of no consequence whether (2.1) is an exact equality,
representing an exactly solvable problem, or whether
(2.1) is an approximation.

The commutator of 8;t with exp(nX), where n is a
number, may be calculated directly with the aid of (2.1).
The first step is to prove the relation

II. GENERAL THEORY

A. Zeroth Order

Basic Equation

Let us first see what we can learn about the 8,~

operators in the case that the E;~ may be neglected.
Then we write, in place of (1.1),'

~'(~) =[-p(u )~1]-'
Then (2.7), and its counterpart for 8;, become

(2 g)

(2.9a)

(Q8;)=y;(+) ([8,,0] ) . (2.9b)

Equations (2.6) and (2.9) are forms of the zeroth-order
basic equation of our theory. Note that the pair (2.9),
as well as the pair (2.6), are not necessarily Hermitian
conjugates of one another, since 0 is not necessarily
Hermitian.

Bosoms aed Fermi ops

Let the operators 8,t, 8; satisfy, in addition to (2.1),
the boson commutators

[8,,8,'] =0; [8;,8;.t] = 8,,'. (2.10)

Then (2.9), with 0=8, , gives the usual boson results

(8,t8,') =y, (—)8,,', (2.11a)

(8,8,,)=O. (2.11b)

In particular, (2.11a) gives the boson statistical-average
occupation number

It is useful to cast (2.6) into forms involving com-
mutators and anticommutators. For this purpose,
(2.6a) can be rewritten in the form

[exp(P(o;)a1](8,tQ)= (08,ta8,"0). (2.7)

We introduce the notation

Xn8.t 8.t(X+ro;)", as=0, 1, 2 (2.2) (8,t8,)= [exp(Pro, )—1] '. (2.12)

Z= Tr exp( —PX); P= (ET) '. (2.4)

With the aid of (2.3) and the cyclic-permutation
theorem for traces, we have

(8,tQ)=Z ' Tr8;tQ exp( —PX),
=Z 'TrQ exp( —PX)8,t,
= exp( —Pro, )Z ' Tr08," exp( —PX). (2.5)

From (2.1), the same derivation also holds with 8;t
replaced by 8;, and or; replaced by —or;. All of these
results are stated in the compact form

this follows by induction for any e) 1. Then, with the
aid of (2.2) and the power series for exp(nX), we find

exp(nX)8;t=exp(neo;)8, t exp(nX). (2.3)

Now the basic equation is obtained simply by calculat-
ing the statistical average (8;tQ) for any operator 0.
The partition function Z is

In principle, the basic equation can be used to calcu-
late the statistical average of any function of the 8;~, 8;
operators. As a further example, use (2.9a) with
0= 8,'~8,'.8;. to obtain

(8,t8, t8; 8; )=P,(—)([8, t8, 8,',8;t]). (2.13)

From the commutators (2.10), the right-hand side is
evaluated to give

(8,'8,'»;-8;- )=~'(-)~' (-)
X [8,, 8,'; +8;; 8;;"]. (2.14)

The usual derivation of statistical averages such as
(2.11) and (2.14) for bosons is based on a knowledge of
how the boson operators transform the wave functions;
here we have required only the boson commutators.

Let us now suppose the 8,~, 8; are fermion operators;
that is, they satisfy, in addition to (2.1), the fermion
anticommutators

(8,tQ) = exp( —P~,) (08,t),

(08;)= exp( —Pro~) (8,0) .
(2.6a)

(2.6b)

[8,,8,'],=0; [8,,8;.t],=8,,'. (2.15)

Then (2.9), with 0= 8,', gives the usual fermion results

'In Sec. II only we use the customary notation fA,B7~
=A j3+BA. In other sections we deal only with commutators,
and omit the ~ subscript.

(2.16a)

(2.16b)
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g y= Z;0;te, . (2.19)

Then with the aid of (2.1) and the boson commutators
(2.10), we have

In particular, the fermion statistical-average occupation
1s

(HpH;}= Le~(p~;)+ 1]-'. (2.17)

In order to evaluate a four-operator statistical average,
it is convenient to start with (2.6a) for 8, with
Q=O;.to;"0; ".The right-hand side is easily evaluated
with the aid of the anticommutators (2.15), to get back
the four-operator average plus some two-operator aver-
ages. The two-operator averages are evaluated with
(2.16a), and the result is

(HPH,"8'-8. -)=~'(+)~"(+)
Xt 8;, 8;, —8,, 8, ,' ]. (2.18)

Again, we have not required the evaluation of operators
in any representation in calculating the fermion statisti-
cal averages (2.16) and (2.18).

The above calculations hold for systems composed of
bosons, fermions, or both. In addition these calculations
hold for a grand canonical ensemble simply by replacing
co; by or, —p, , where p is a chemical potential. To show
this for a system of bosons, for example, let Ey be the
total number of bosons, given by

B. Statistical Perturbation

Basic Eqlatioe

We now consider the remainder terms in the Hamil-
tonian commutator equations (1.1).

LX 8 t]= ce 8 t+R t &o;)0.

This equation can be written in the form

XH,t = 8;t (X+(o~)+RP,

and by induction it is easy to prove

n—1

X"8P=HP(3C+co,)"+Q X"RP(X+(o )" ' '
@=0

(2.25)

(2.26)

n= 1, 2, . (2.27)

With the aid of the power series for exp( —PX), (2.27)
gives directly

the aid of (2.23) and its Hermitian conjugate, these
correlation functions are given by

(Hp(t)0}= exp(i~, t)g;(&) ([0,8p]+), (2.24a)

(08;(t))=e~(—i~,t)y, (a) (LH, ,Q]„). (2.24b)

Here 0 is any operator, and these equations are not
necessarily Hermitian conjugates of one another.

[X ubNg, HP] —= ((o,—pg)HP. (2.20)
exp( —P3C) HP = exp( —'Pcu, )HP exp( —PX)

Time Dependent Co-rrelation Functions

The object here is to express time-dependent correla-
tion functions in terms of statistical averages of zero-
time comrnutators. In the Heisenberg picture, with A= 1
and BC independent of time,

8,'(t) = exp(ixt) 8,' exp( —~'Xt), (2.22)

where HP=HP(0). Since the HP satisfy (2.1), then (2.3)
gives

(2.23)HP(t) = exp(ice, t)HP.

Now for any operators A and B,

Similarly for fermions, with Ef given by an expression
analogous to (2.19) and with the aid of (2.1) and (2.15),

LX—ptNt, 8,'] = (co,—pt)HP. (2.21)

Thus for a grand canonical ensemble, when BC is re-
placed by X—uN, the basic equations (2.6) and (2.9)
hold with &o; replaced by &o,—u. In order for (2.20) and
(2.21) to hold for a system of bosons plus fermions, the
boson operators must commute with Ey and the fermion
operators must commute with Xq.

n—l

+P (1/n!)(—P)- P X RP(X+~,).——. (2.28)
n=l

Finally, we calculate the statistical average (HpQ), for
any operator 0, just as in the derivation of (2.6) above.
The result is

(HPQ}= exp( —P~;)(QHP}+Z ' TrQ g (1/n!) (—P)"
n=l

n—1

X g X"RP(X+(o,)"—&-'. (2.29)

Equation (2.29) is still exact, and is a primitive form
of the basic equation with the remainders R; included.
The second term on the right-hand side would be dificult
to evaluate in general. However, to the extent that the
R,t are small, this term is small and can be evaluated by
a zeroth-order approximation. A useful form of the basic
equation (2.29) is obtained for the special case 0=8;.
An approximate evaluation of the second term on the
right, henceforth called the perturbation term, is then
carried out with the aid of the Hermitian conjugate of
(2.27):

(~(t)&(t ))= (~(t—t )&} H,X"=(X+(o,)"8+0(R ) (2.30)

so it is suKciently general to calculate the single-time With the aid of (2.30) and the cyclic permutation
functions (Hp(t)0) and (08,(t)). From (2.9), and with theorem for traces, the zeroth-order evaluation of the
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perturbation term is as follows:

n—1

Z—'TrH, P (1/e!)(—P)" Q X"R"(X+(a)" i '
n=l

that equation becomes

&8 8;)=~ '(~) &[8',8"].)~P[~ '(~)~1]
X ((R;t—»,8;t)8,), (2.33)

where
n—1

Z ' Tr Q (1/ii!) (—P)" P X"Rt(X+~ )" ~' 4i'(+) = (em[p(~'+~i')]+1) ' (2.36)

Now we determine or~; so that the perturbation term in
(2.35) vanishes. This condition is

=Z-'Tr P (1/n!)(—P)" P X&R;"8 X" & '
n 1 &(R,t—~„H,t) 8,)=0, (2.37)

n—1

+0(R tR,) or solving for ~l;,

=Z—i Tr P (1/ii!)(—P)~ P RiH X~—i+0(R.tR )
n=l

~„=(R,tH, )/&H, tH,). (2.38)

= —PZ ' TrR, iH, exp( —PX)+0(R,tR,) .

The basic equation (2.29) finally becomes

(2.31)
Thus, with a»; given by (2.38), the first-order basic
equation for &8;tH;) reduces to a zeroth-order basic equa-
tion with renormalized energies:

(8/8, )= exp( —Po),) &8,8;t)—P(R;"8;)+0(R,tR;) . (2.32)

The perturbation aspect of (2.32) is evident. If we

can consider R;~ as being of order ~, where e is a number
small compared to I, then the perturbation term in
(2.32) is of order e, while the error is of order e'. Further-
more, in the spirit of perturbation theory, we can use
the zeroth-order basic equation (2.6) or (2.9), with
Q,=R,t, to evaluate the perturbation term. Such pro-
cedure gives the right-hand side of (2.32) correct to
order ~.

It is useful to cast (2.32) into a form containing com-

mutators and anticommutators. This is done exactly
as in the derivation of (2.9); the result is

+0(R,tR;) . (2.33)

The Hermitian conjugate of (2.33) is the same equa-
tion to zeroth order. To first order, we then expect
&R,tH;) = &H,tR,).

Energy Renormali2'ation

In the treatment of perturbation problems in I, we
developed the idea of renormalizing the creation
operators and particle energies so as to satisfy the
Hamiltonian commutator equations to a higher order.
There we found that we could calculate particle energies
to one order higher than the creation operators were
determined. An analogous calculation can be carried
out in the present theory to get first-order energy cor-
rections ~l,. To do this, rewrite the Hamiltonian com-
mutator equations (1.1) in the form

[X,H;t] = (a),+(v i,)H,t+ (R,t —(Oi;8;t); (o~+~0i;)0. (2.34)

In view of (2.34), the above derivations of various forms
of the basic equation can all be carried out with eo;

replaced by io,+~i; and R,t replaced by RP —o»,8$.
In particular, dropping terms of order R;tR, in (2.33),

&8"'8')=4»'(+) &LH' 8"]+) (2 39)

In principle, the coupled equations (2.38) and (2.39)
must be solved simultaneously. The self-consistent
results for (8;tH;) must still be regarded as of first order,
however, since terms of second and higher orders in
R;t, R; have been dropped from (2.33). In practice,
therefore, the use of (2.39) to calculate (8;tH, ) is justified
if or~; is small compared to or;, in this case, it is reasonable
to evaluate (2.38) in zeroth order. We stress the point
that col; has been designed to take care of first-order
terms in the particular average (8;tH;); in order to remove
first-order terms in &H,tQ), for any 0, coi; is, in general, a
function of 0.

Comments

The basic premiss of the present method is that, while
the Hamiltonian may not provide a convenient expan-
sion parameter, we can nevertheless manufacture a
statistical perturbation parameter in the sense that
statistical averages involving R,~, E.; are small. Such a
procedure will depend intimately on the problem to be
treated, on the values of thermodynamic variables, and
perhaps even on the particular operator for which one
desires to compute the statistical average.

In I, we noted the following circumstances which keep
the creation operators g,t alone, which are found to
satisfy (1.1), from providing a complete solution to X.

(i) We need at least one eigenfunction to start with.
(ii) There is no obvious way of finding all the 8;t,

and hence getting the complete set of eigenfunctions.
(iii) H,tf does not have to be an eigenfunction of X

just because f is; H,tf can be zero.

In the above derivations we have made no reference
to wave functions. Thus the present method allows the
calculation of statistical averages without any knowl-

edge of the eigenfunctions of X. In addition, we have
worked entirely with operator equations, so the circum-
stance 8;ted=0, which might arise for some function f,
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causes no difficulty. This takes care of any problems due
to (i) or (iii) above. Finally, the basic equations hold
for any number of 0,t which might be found to satisfy
the Hamiltonian commutator equations. In practice,
however, the method will be most useful if a suKcient
number of 8;t are found to span the space of K, so that
any desired operator can be represented as a function of
the 8;t, 0;, and the statistical average of the operator
may be calculated from the basic equation. This re-
quirement is not dificult to satisfy in practice; doing so
removes any problems due to (ii) above.

We now proceed to demonstrate the application of
this method by a treatment of the Heisenberg ferro-
magnet in the following section.

where Z'„is over r„which are nearest-neighbors to the
origin (the origin is r„=0).Then we have

JQ J—Q) Jo—iSJ) (3 &)

(3 g)

[As,As.t]=S 'Bs o,. (3.10a)

[Ak, Bg )= N'As+g—, [Apt, Bs j=N 'As g t, (3.10b)

[As,As j= [By,Bo j=0. (3.10c)

where 8 is the number of nearest neighbors.
In terms of the transformed operators, the definition

of the problem becomes

X= gpH—NBo Z~J),—(NB~B ~+2SA)PAk); (3.9)

III. APPLICATION TO THE HEISENBERG
FERRO MAGNET

A. Definition of the Problem

A useful equation for S=-,' is

S '=S—S S+ S=-'

Transforming (3.11) gives

(3.11)

The Heisenberg Hamiltonian for a ferromagnetic
monatomic lattice with isotropic nearest-neighbor
exchange is

X= gyHZ„S„—' JZ'„„S„—S„. (3.1)

[S„+,S )=2S 'b

[S„+,S„*j=HS„+8„„,
[S„+,S„.+]= [S„',S„.*]= 0.

(3.2a)

(3.2b)

(3.2c)

It is convenient for all the following calculations to
work with Fourier transforms of the spin operators.
These are defined by

Apt ——N &(2S) '~'Z„S„-exp(ik r„), (3.3)

As N&(2S) '~ Z„S„+——exp( —ik r„) (3.4)

Here g is the spectroscopic splitting factor for the local-
ized spins, p is the Bohr magneton, H is the magnitude
of the external field, the index e labels the spin sites in
the lattice, S„is the spin vector at site I (in units of 0),
S„*is the s component of S„,and J is the nearest-
neighbor exchange constant. We take J&0, H in the s
direction with H)0 when in the +s direction, and
Z'„„.goes over all e but only over rl,

' which are nearest
neighbors to n. This Hamiltonian is the same as that
used by Dyson, ' except that his H is in the —s direction
and his J is twice the present J. The definition of the
problem is completed by the spin commutators

B.Approximations for Low Temperature

CorITJergerlce Factor

The low-temperature convergence factor is Pi„defined
by (3.20) below. Each independent sum over p& con-
tributes a factor proportional to T'I', so we say p& is of
order T't'. From this, we can use the zeroth-order basic
equation repeatedly to conclude that a statistical aver-
age involving e creation operators and n annihilation
operators, in normal order, is of order T'"~'. A much
more detailed study indicates that this is true for e(&E
as long as there are no low-lying statistically important
bound states.

An operator power series for S„'for arbitrary S is7

S„'=S—S„—S„+— (3.14)

Bs——Sb(k) —N 'Zs Ag s As, S=-', . (3.12)

Finally, from (3.9) and (3.10) we derive an equation
which is the starting point for our calculations:

[X,Apt]=gpHAgt+2Zs. (Js s —Js )As.tBg. g. (3.13)

The A~t are of course the Bloch-spin-wave creation
operators; the Hamiltonian commutator equation (3.13)
suggests than an approximation to their energies is gIJH.
The "remainder" in (3.13) is large, however, and in all
the following approximate calculations the zeroth-order
energies are taken to include part of the diagonal terms
in this remainder.

B&——N 'Z„S„'exp( ik r„),— (3.5)
the transform of (3.14) is

Jj,——JZ'„exp(ik r„), (3.6)

' F. J. Dyson, Phys. Rev. 102, 1217 (1956); 102, 1230 (1956).

where r„is the position vector of the site m, k is a wave
vector, E is the number of spins in the crystal, and S is
the magnitude of the spin vectors. We also define the
functions J& by

Bg ——SB(k)—N 'Zs.As. stA~. — (3.15)

Here and in the following the notation +. means
higher order operator terms, and hence terms which
contribute of higher order in Pj, to the statistical aver-
ages. Equation (3.15) is an appropriate "low-tempera-

' T. Morita and T. Tanaka, Phys. Rev. 138, A1395 (1965).
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cpk
——

gVH+ 2S(Jp Jk) .— (3.17)

Btoch Spiv Wanes

The zeroth approximation for low temperature is to
take the leading term in (3.16) and use the zeroth-
order ba, sic equation (2.9). This gives

[X,A k ]= ppkAk

(A ktA k) =4k ([Ak,A k"]),
where we use the simplified notation

yk ——[exp(Ppik) —1] '.

(3.18)

(3.19)

(3.20)

From the commutators (3.10a) and the expansion

(3.15), [Ak,Akt]= 1— , so to zeroth order (3.19)
gives

(3.21)(AktAk) =4k.

We now multiply (3.21) by N 'Zk, and use (3.15) to
get the leading term for the left-hand side, with the
result

S—(Bp)=N 'Zkgk. (3.22)

Noting that (Bp)= (S ), the statistical-average s com-

ponent of spin per atom, (3.22) may be written

(S )=S—C,

C N'Z=ghk

(3.23)

(3.24)

Equations (3.23) and (3.24) are the Bloch result, '
as corrected by Dyson' for terms of higher order than
T'I', for the low-temperature magnetization. Evaluation
of the integral for primitive cubic lattices gives

C =Z g'"+-'n. vZptpg'"+n'v'ppZp, g'"+, (3.25)

where we have used Dyson's' notation. In particular,
v and co are dimensionless parameters which depend on

the lattice structure, and

g= (3ET/4m vJS'o) ' Zp= g m Pe v"~ x (3.26)
en=i

It is of interest now to examine the contribution of terms
which have been neglected in this calculation.

Statistical Pertgrbatiort for B/och Spiri Wanes

The remainder operators of (3.16) are given by

Rkt ——2N 'Zkk (Jk.—Jk. k)Ak. tAk k+k Ak ) (3.27)

' F. Bloch, Z. Physik 61, 206 (1930); 74, 295 (1932).

ture" expansion; the leading term is just the ground-
state value (S *=S).For S= p, the higher order terms
in (3.14) and (3.15) vanish. With (3.15), the Hamilton-
ian commutator equation (3.13) is transformed to a
low-temperature expansion.

[X)Akt]=cpkAkt+2N 'Zk k (Jk —Jk k)

XAk'Ak" k+k'Ak" + ) (3.16)

(Rk Ak)=4k([Ak, Rk ]). (3.29)

This evaluation gives the correct order of T for (RktAk),
but not the correct codFicient; see the discussion at the
end of the present Sec. IIIB. Carrying out the com-
mutator in (3.29), commuting the spin-wave operators
to normal order, and dropping terms higher than
quadratic in the operators (since the commutator is
already multiplied by pk), gives

(Rk"Ak) = 24kN '&k k" (Jk —Jk -k) (Ak-'Ak")
&([g(k'—k)+g(k' —k")—N 'S ']. (3.30)

According to (3.21), the zeroth-order evaluation of
(Ak"tAk ) is pk . The remaining double integral in the
perturbation term is evaluated as follows:

—PN 'Zk(/k+1) (RktAk)

~kk' (4'k +4k)4'k' (Jk+ Jk' Jk k
—Jp)

= ($n'vS )ZptpZp pg (3.31)

Referring now to the commutator term in (3.28), it is
no longer consistent to keep only the leading term. For
with the aid of (3.15), we find

([Ak,Ak ])=S '(Bp)= 1—S 'N 'Zg~(Ak~ Ak~) —.

=1—S 'C—

The commutator term then becomes

(3.32)

N '&k4k([Ak, Ak']) =C' —S 'C' — (3 33)

The higher order terms here are zero for S= ~~, and of
order T'" for S&-,'.

Let us now take S=-', for simplicity; the left-hand
side of (3.28) is then S—(S'). If S)-,', the left-hand side
contains additional terms of lowest order T'. Gathering
up the terms evaluated above, (3.28) yields

(S )=S C'+S C' —( n vS )ZptpZptpg S= p . (3.34)

This result is quite instructive and is discussed below.

inter pretati oe

The correction to (S*) due to the perturbation term
is similar to Dyson's' accurate result [his Q is approxi-
mated by 1 in (3.34)], and is the same as the leading

the neglected higher order terms (i.e., five-operator
terms in Rkt) contribute to (S') of order higher than T4.

The first-order basic equation (2.33) can be written for
(AktAk) and summed over k to give

N 'Zk(AktAk)=N —
'Zk4tk([Ak, Akt])

PN ~k(Q k+1) (Rk'Ak) ~(3.28)

The perturbation term on the right-hand side of (3.28)
contains four-operator statistical averages which are
diKcult to evaluate accurately. An approximate evalua-
tion, which is satisfactory for the present purposes, is
obtained by using the zeroth-order basic equation (2.9)
to write
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term of the perturbation expansion in 5 ', as obtained

by Oguchi. ' However, the commutator term in the basic
equation contributes a spurious term of lowest order T',
namely, the term S 'O'. This is the famous Green's
function T' term. ""The above derivation clearly
shows that the physical origin of the spurious term is
the departure of the Bloch spin waves from good bosons,
i.e., the failure of the boson commutators for the Ai,~, Ai,
operators. This failure of the boson commutators is
just the kinematical interaction. '

From this comment, it might be expected that if we
assume the Bloch spin waves are good bosons, and use
boson statistics together with a perturbation based on
the Hamiltonian, then the C' term will go away. This
procedure is justified by Dyson's' proof that kinematical
effects are negligible at low temperatures. Thus one can
treat X—Z&~&A&~A& as a perturbation and use ordinary
perturbation theory for bosons, or treat the R&t of
(3.27) as a perturbation and use the Hamiltonian per-
turbation theory of I for bosons. In either case, the C'
term does not appear, as expected. This is essentially
the procedure used by Ke6er and Loudon" and by
Tahir-Kheli and ter Haar" in arriving at the perturba-
tion term in (3.34), without having the C' term show up.

In this connection, we have carried out a straight-
forward renormalization of the spin-wave operators, by
the method of undetermined coeKcients as developed
in I. These renormalized operators are independent
bosons, to the order required to compute (S*)correct to
order T4. This calculation is beyond the scope of the
present paper, and will be presented later.

A final remark is in order regarding the evaluation of
four-operator statistical averages at low temperature.
In (3.29) a sum of four-operator terms is expressed as a
sum of the indicated commutators. A representative
four-operator term is thus evaluated as follows:

We wish to go no further into the problems associated
with Bloch spin-wave operators, since these difhculties
are easily avoided with the renormalized operators
mentioned above.

5 '= (5')+[5 ' (5')] (3.36)

and considering the [S '—(S')] as small operators.
This is analogous to the low-temperature approxima-
tions, where S„'=Swas used. In view of the definition
(3.5) for Bk, (3.36) gives directly

8 = (5')8(k)+[8 —(5')b(k)]. (3.37)

Now with (3.37) the Hamiltonian commutator equa-
tions (3.13) become

where

[K,Ak ]=pkAkt+I'kt, (3.38)

pk go+2 (S—'—)(Jp Jk), — (3.39)

Pkt=2Zk (Jk k—Jk.)Ak [Bk k —(5')b(k' —k)]. (3.40)

We first carry out a zeroth-order calculation by
neglecting the remainder operators I'~~. The zeroth-
order basic equation for (AktAk) is

(AktAk) =Pk([Ak, Akt]); (3.41)

pk=[exp(ppk) —1] '. (3.42)

C. Approximations for Arbitrary Temperature

TyaMikoo A pproxirriatiom

Tyablikov's' decoupling of the higher order Green's
function amounts to replacing S„*by (5') in certain
four-operator statistical averages. We introduce the
same approximation into our operator equations by
writing

(Ak' Ak"—k'+k Ak"Ak)

=A([Ak&Ak Ak ~—w+k Ak«])
= ykyk, [b(k' —k)+ b(k' —k")—E—'S-'] (3.35) (AktAk) =5 '(5')Pk. (3.43)

The commutator term in (3.41) can be evaluated
exactly in terms of (Bp)= (5') to give

We have made a detailed study of this procedure and
conclude that it gives only the correct order of T for the
four-operator average. The right-hand side of (3.35) is a
zeroth-order evaluation; the appropriate perturbation
term contributes of the same order, the error in the
perturbation term is of the same order, and so forth.
The evaluation (3.35) is better than a strictly boson
evaluation, such as given by (2.14) above for exact
bosons, because of the term E '5 ' in (3.35). For
example, this term, which results from commuting the
spin-wave operators to normal order, makes the average
(S„S„S„+S„+)vanish for S= —',, as it must.

9 T. Oguchi, Phys. Rev. 117, 117 (1960).
S. V. Tyablikov, Ukr. Math. Zh. 11, 287 (1959)."R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88 (1962)."F. KeBer and R. Loudon, J.Appl. Phys. 32, 2S (1961).

'3 R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 95 (1962).

%=X 'Zkfk. (3.45)

Equations (3.44) and (3.45), together with (3.42) and
(3.39), are just the Tyablikov coupled equations for
(S*) for 5=-,'.

Tahir-Kheli and ter Haar" have extended the Tyabli-
kov approximation to higher spins. We wish to demon-
strate the generality of the present method by deriving
their implicit equations for (5*). For arbitrary S we
want to compute ((5„)p(5„+)"),for any power p&1.
Define Q„by

(3.46)

Let us first take S=-', . Multiplying (3.43) by
using (3.12) for Bp, and rearranging terms gives

(S')(1+S '4) =S, for S=—,'; (3.44)
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so that
&(5=)"(S.+)")= &Q.S-') (3 47)

(5') (1+5-%'i)=5, for S= —', ;

+1 + Zkglk ~

(3.58)

(3.59)
In view of (3.38), we can use the zeroth-order basic
equation (2.9) for an arbitrary operator Q=Q„to write

(Q„Ak) =fk ([Ak,Q„]), (3.48)

(Q„S„+)=% ([S„+,Q„]),
where, according to (3.45) and (3.42),

%=A" 'zk[exp(i4k) —1] '.

(3.50)

(3.51)

Equations (3.50) and (3.51), together with (3.39) for
ek, is the set of equations for (S') which were obtained
by Tahir-Kheli and ter Haar" by the Green's-function
method (their Eqs. (3.11), (3.13), and (3.14), together
with their (2.8) for [S„+,Q„]).We should like to empha-
size the simplicity of the present derivations.

We can now show how the Tyablikov decoupling
approximation leads to a vanishing energy correction
kik. According to (2.38), the energy renormalization is
given by .ik= (PktA k) &A ktAk)- . (3.52)

From (3.40), (PktAk) contains a sum of factors of the
form

(Ak. tBk kAk) —&5*)b(k'—k)(Ak. tAk). (3.53)

For the first term in (3.53) the Tyablikov approxima-
tion is

&Ak. tBk. kAk)=(Bk k)(Ak tAk)= (5*)b(k'—k)
X (Ak tAk) . (3.54)

Thus all terms like (3.53) vanish when (3.54) is used,
and hence (PktAk) vanishes and so does haik.

Caller A ppro@i ritation

Callen" has observed that (in the language of the
present paper) alternate approximations for &PktAk)
lead to diGerent results for e». We will take S= ~ for
simplicity. For renormalized energies, the basic equa-
tion (2.39) gives

(AktAk)=gik([Ak, Ak')); (3.55)

haik ——{exp Dt (kk+ haik))
—1) '. (3.56)

Just as in the derivation of (3.43)-(3.45) above, we find

(A ktA k)=5-'(5')haik, . (3.57)

'4 H. B. Callen, Phys. Rev. 130, 890 (1963).

where i' is given by (3.42). With the definition (3.4)
of A1„it follows that

[Ak,Q„)=$'t'(25) 't'[5„+,Q„]exp( —ik r„), (3.49)

since the general commutator [S„.+,Q„]contains a
ti„„.Mul. tiplying (3.48) by 1V 't'(25)'t' exp(ik r„)and
summing over k, with the aid of (3.49) and the inverse
of (3.4), gives &P"A.)=A. (LA.,P"]). (3.61)

A representative four-operator term is then evaluated
as follows:

(A k ~tA k«k~+ktA k»A k)

=4ik([Ak, Ak'Ak -k+k'Ak"])
|1'ikS (Ak" k'+k Bk -k'Ak" +-Ak' Bk' k"Ak"—

E'Ak"tAk"—)
=PikS—'(5')(Ak"tA„-)[b(k'—k)+ b(k' —k")

-& '&5*) '] (3 62)

where the last line follows from the Tyablikov-type
approximation (3.54). With (3.62) and (3.57), the right-
hand side of (3.61) is easily evaluated and is then simpli-
fied with the aid of (3.58). The result for haik is nonzero;
we denote this value by ~», where

~ik=2S '&5')X 'Zk (Jk —Jk k)Pik. (3.63)

Equation (3.63) can be obtained more simply from
(3.61) by leaving Pkt in the form (3.40), instead of
transforming to (3.60), and then approximating averages
of the form (BkB k); we have given the above derivation
since the correspondence with Callen's work is more
easily seen.

The approximate calculation of ~™1j,is equivalent to
Callen's treatment for the case when his parameter
a=1.' On the other hand, the calculation discussed in
(3.52)—(3.54) corresponds to +=0. More specifically,
since Bk is given by (3.12) for 5= —',, we can write

Bk=n[58(k) —E 'Zk Ak ktAk. )+(1—n)Bk, (3.64)

where n is any number. This expression is analogous to
Eq. (12) of Callen" for 5„'.If we now use (3.64) for
Bk. k in (3.40) and go through the above derivations,
the result for e» is obviously

&» 0' » ~ (3.65)

Callen has presented arguments for choosing a =S '(5*)
for S=-,'. For this case, the complete energies are

kk+ haik =gtiH+2 (S')(Jo—Jk)+2[S '(S'))'
X1V 'Zk (Jk —Jk. k)fik . (3.66)

We now turn to the evaluation of e», as given by
(3.52) along with (3.40) for Pkt. For S= ~, Bk is given
by (3.12);with this expression for Bk. k, (3.40) becomes

Pkt=2(S —(5*))(J0—Jk)Akt+2E Zk k (Jk~ —Jk' —k)

+Ay~ Ag~~ g~+k Ak . (3.60)

In calculating (PktAk) we are again faced with four-
operator statistical averages; our procedure is to use a
zeroth-order basic equation for the case of renormalized
energies:
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Equations (3.58) and (3.59), together with (3.56) and
(3.66), are the same as Callen's" Eqs. (49)-(52) for the
case 5=-', .

It is interesting to note that ~ik of (3.63) is small
compared to e~ at low temperatures, but not at high
temperatures. To show the failure at high T, assume
fll'st 'tllat Elk((kk, so tllat 1//1k leak. Now as H ~0,
(S*)-+0 and hence ek-+0 along with (S*). However,
in order to satisfy (3.58) under these conditions, we
Qnd that fk —+~ in such a way that (S')fk remains
finite. Then replacing fik. by fk in (3.63), it is seen that
~~~ remains 6nite, and hence ~~~&«i, cannot hold. Kc
further conclude that if o is taken to be proportional to
LS '(S'))", then eik=n~ik will approach zero at least
as fast as (S') for N&1. The perturbation treatment is
thus justi6ed for e& 1, at least within the framework of
the approximations made in evaluating (PktAk).

IV. CONCLUDDTG REMARKS

The utility of the present method will depend on two
factors. First, the remainder operators E,~ of the
Hamiltonian commutator equations must be small
enough to be reasonably treated as a statisticalperturba-
tion. Second, in order to calculate the statistical average
of any operator corresponding to an observable of the
problem, a sufhcient number of creation and annihila-
tion operators 8,t, 8; must be found to represent the
observable. This latter requirement is not dificult to
satisfy in practice; note that one has the same require-
ment in applying the Green's-function method to
calculating observables.

The statistical perturbation theory which we have
derived bears a great resemblance to the method of
thermodynamic Green's functions' ' in actual applica-
tion. %e believe that the present method has two ad-
vantages. In the first place, for a given problem, one

makes an obvious approximation in saying that the
R,t operators are small, and hence gains more physical
insight than is OGered by the decoupling of higher order
Green's functions. In the second place, the perturbation
term in the basic equation can be evaluated to give an
estimate, of the accuracy of the zeroth-order results;
further, if this term is indeed small, it can be considered
as R correction to the zeroth-order results.

Referring to the general derivation of Sec. II, and
particularly to the derivation of the perturbation equa-
tion (2.32), there are two obvious possibilities for trying
to improve the zeroth- and 6rst-order approximations of
this theory. These are (a) develop the perturbation
term of (2.29), which is still exact, into a power series
ln thc E;, 8; opcI'Rtois by 1cpcRtcd commutation of
these operators with X, and (b) renormalize the 0;t
operators so as to make the E.;t even smaller„especially
for those E;t which contribute most to the statistical
mechanics. The 6rst possibility is represented by the
basic equations (2.32) and (2.33), where the perturba-
tion term is just the leading term in a power-series
cxpRnslon. However, thc second possibility sccIQs to
OGcr the most promise, In the low-temperature Heisen-
berg-ferromagnet problem, for example, the develop-
ment of the perturbation term for Sloch spin-wave
operators leads to an inhnitc series of contributions
which appear to be all of the same order, while the
operator renormalization removes all of such contribu-
tions in a one-step procedure.
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