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A general system composed of many weakly interacting bosons and/or fermions is considered. The object
is to develop a procedure for renormalizing the single-particle creation operators, so as to remove the inter-
actions to successively higher orders of perturbation. The basic idea is that creation operators 8;t must
satisfy the Hamiltonian commutator equations t

3'.,8;'ted=co;8;~, where X is the Hamiltonian and co; are the
particle energies. For the many-weakly-interacting-particle system, the zeroth-order boson and fermion
creation operators satisfy these equations to zeroth order. It is shown that if the creation operators are re-
normalized so as to satisfy the Hamiltonian commutator equations to order m, and also to satisfy the
appropriate boson commutators and fermion anticommutators to order m, then the problem is solved to
order m. In particular, the vectors formed by operating on the ground state with the renormalized creation
operators, according to the usual boson and fermion occupation-number representation, are eigenvectors
of 3'. and are orthonormal, all to order m. A procedure is otained for ending the (m+1)-order contributions
to the particle creation energies, in terms of the m-order operators. Explicit 6rst-order calculations of these
general results are provided for a system of bosons and a system of fermions, and these first-order results
are shown to include similar results of Rayleigh-Schrodinger perturbation theory, the random-phase approxi-
mation, and the method. of thermodynamic Green s functions. The problem of anharmonic lattice dynamics
is studied in detail, and a method of undetermined coeKcients is used to renormalize the phonon creation
operators to erst order. The phonon energies are calculated to second order, and this calculation shows that
the interactions between renormalized phonons cannot be removed in second order. Statistical averages
of the phonon energies give the energy shifts and lifetimes which have been calculated previously by various
propagator techniques. In addition, the renormalized energies are used to calculate the temperature-
dependent part of the Helmholtz free energy correct to second order. As a final example, electron-phonon
interactions in a normal metal are studied. The electron and phonon creation operators are renormalized to
Grst order, the particle energies are calculated to second order, and statistical averages of the particle
energies recover the usual thermodynamic Green s-function results for energy shifts and lifetimes. These
examples show the simplicity by which the renormalization procedure obtains a great amount of detailed
information about the single-particle nature of a many-particle system.

I. INTRODUCTION

E consider a perturbation problem with Hamil-
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tonian given by X =Xs+X&, where Xs is solved
exactly in terms of noninteracting bosons and fermions,
and Xi((XO. The object is to develop a procedure for
renormalizing the single-particle creation operators and
energies, keeping the single-particle quantum numbers
6xed. Within the spirit of perturbation theory, this
procedure turns out to be straightforward and gives
directly the renormalized particle energies and life-
times. The theory also shows to what order of perturba-
tion a given Hamiltonian can be diagonalized in terms
of particles which are labeled by the zeroth-order
quantum numbers. Finally, the renormalization pro-
cedure greatly simplihes the derivation of statistical
averages, and clears up a diKculty which has been
encountered in the use of temperature-dependent
energy levels.

The starting point of the present work is the observa-
tion that if LX,8t]=a&8t for some operator 8t and num-
ber re, then 8' is an eigenfunction of X if P is an
eigenfunction of X. Previous workers have applied this
idea to nonperturbation problems, thinking of 0~ as a
creation operator for 3'.. Suhl and Werthamer' studied
the electron-gas problem, referring to the method as a

*This work was supported by the U. S. Atomic Energy
Commission.' H. H. Snhl and N. R. Werthamer, Phys. Rev. 122, 359 (1961).

higher random-phase approximation. Korringa' studied
spin waves in the S=—,

' antiferromagnet, calling the
procedure an operator method. Anderson' studied the
problem of superconductivity, again referring to the
procedure as a random-phase approximation. Pines4

calls it the equation-of-motion method in discussing
the application to the electron gas.

Here we take advantage of the simpli6cation offered

by perturbation problems, and try to develop this idea
into a rigorous theory. Let us re-examine the basic idea.
Suppose we have found a number of operators 8;t such
that

[X,8;t]= a&,8;t,

where a&; are real, positive numbers. Then if Xit =Ef,
(1.1) leads to

(1 2)X8,tf = (E+rd,)8;tf.

(i) We need at least one eigenfunction to start with;
(ii) There is no obvious way of finding all the 8;t and

hence getting the complete set of eigenfunctions, or for

2 J. Korringa, Phys. Rev. 125, 1972 (1962).' P. W. Anderson, Phys. Rev. 112, 1900 (1958).
D. Pines, Elementary Excitations in Solids (W. A. Benjamin,

Inc. , New York, 1964).

Now (1.1) alone does not serve as a prescription for
6nding the solutions of X because of the following
circumstances:
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that matter, any subset which may be required for a
particular calculation;

(iii) tt;tf does not have to be an eigenfunction of X;
it can be zero.

For perturbation problems, however, these difFiculties
can be avoided by assuming that the complete set of
solutions of Ko is available. We then try to improve
each creation operator of Xo by satisfying the Hamil-
tonian commutator equations (1.1) to a higher order.
Ke also find it necessary to satisfy the appropriate
creation and annihilation operator commutators and
anticommutators to the same order. In this way the
theory naturally gives single-particle-creation energies
and system-excitation energies, but not the corrected
ground-state energy (at least not directly). Thus the
procedure is particularly valuable for calculating the
temperature-dependent parts of statistical averages.

In Sec. II we show that the problem is solved to a
given order if the Hamiltonian commutator equations,
as well as the particle commutators and anticommu-
tators, are satisfied to that order. This is followed by a
derivation of the particle-creation energies and the
system Helmholtz free energy to the next higher order.
First-order calculations for specific examples are
discussed in more detail in Sec. III, and the general
first-order results are compared with other standard
perturbation methods. The method is applied to the
problem of anharmonic lattice dynamics in Sec. IV, and
the phonon energies and lifetimes, as well as the system
free energy, are calculated to second order. In Sec. V
we study electron-phonon interactions in normal
metals, and calculate the renormalized phonon and
election energy levels to second order. Some concluding
remarks are given in Sec. VI.

IL GENERAL THEORY

A. Zeroth-Order Occupation-Number Representation

The zeroth-order Hamiltonian Xo describes a system
of noninteracting particles occupying single-particle
states. Each single-particle state is labeled by a set of
quantum numbers; the set is denoted by ~ for boson
states, 'A for fermion states. For definiteness we might
think of particles in a box, with periodic boundary
conditions, so that the single-particle states are
momentum-like eigenstates.

We introduce the occupation-number representation
in the usual way. ' The complete, orthonormal set of
eigenfunctions of Ko is composed of appropriately sym-
metrized products of single-particle functions. Each
system eigenfunction is placed in one-to-one correspond-
ence with a state vector

I m„mi, (0)) which

specifies the number of particles in each single-particle
state. Here e„=0, 1, 2, , nq ——0, 1, and the (0) in the

'See, e.g. , F. Mandl, Introduction to Quuntgm F~ield Theory
(Interscience Publishers, Inc., ¹wYork, 1959).

state vector indicates a zeroth-order vector, i.e., an

eigenvector of Xo, The order of the set of e„is arbitrary,
while the order of the set of n~ is 6xed according to some

prescribed arrangement of the quantum numbers
. The state vectors form a complete ortho-

normal set:

( n„' .ei,' ~ (0) I
~, ~i, . (0))

=II.~(~.',~.) II~ ~(~~',~i), (2 1)

It is now possible to define a set of zeroth-order boson
creation operators Ao„t and a set of zeroth-order
fermion creation operators CN, t such that the following

properties C(2.3)—(2.7)7 are satisfied.
Traesforrlati ons.

Ap tl rt Ni, (0))
= (n +1)'~'I I +1 rid, (0))

Ao I
n ei, (0))

= (e )'"I n —1 n), (0))

C,&tl" N. " n~ "(0)&
= (1—ipz) (—1)""

I
n. 1i, (0)),

Cpi,
I

n„ni, (0))
=rig( —1)»l rt„0i, . (0)),

(2 3)

where pi, is the sum of ni, which stand to the left of

the n~ position.
Commltators arId aeticommutators.

C~o.,~oe7=0, Po.,&o.'7=&.. ;

CCm) Cox'7+ =0
& CCpyyCpgi 7+= Bii i l

C~o„Coi7= C~o„Coit7=0 (2 4)

Here and throughout the paper we use the notation

CA,B7 for a commutator, and )A,B]+ for an anti-
commutator.

Groled state. We can always arrange things so that
the lowest energy state of Xo is the vacuum

I
"o. "0~" (o))=Io(o)).

Then we find

~p. lo(o)&=Co~ 10(o)&=o (2.5)

Hamiltoeiae. The Hamiltonian can be written in

the form

&o=Go+&.oioAo. &o.+&),pion, Co) Co~, (2.6)

where Go is the zeroth-order ground-state energy and

coo, Goo), are the single-particle energies.
State vectors. The properly normalized state vectors

are given by

I mg (0))
=II (~ ~) '"(~o.')""II~ (C»')""I0(0)), (2 7)



152 HAM ILTONIAN PERTURBATION METHOD 249

where the order of the Cp),~ operators is the same as the
prescribed ordering of the set X, ) ', ~ ~ ~ .

From (2.3) it follows that the Hilbert space is

separable into boson and fermion subspaces; indeed it
is further separable to single-particle subspaces. Also
from (2.3), the state vectors are eigenvectors of the
number operators Ap„~Ap„, Cp),~Cp), with eigenvalues

e„,n~, respectively. In addition these operators, together
with Xp, form a complete set of commuting operators,
since the simultaneous eigenvectors are completely
determined (aside from phase factors). '

In subsequent development we wish to make use
of a lemma which amounts to the equivalence of
two definitions of a number, namely, any operator ISI

which commutes with all A p„, A p„Cg,~, C~, is a number
in the space of Xp. That is, if [8,Ap„]=[8,Ap„]
= [8 Cpg~] = [8 Cpy] =0 then 8 is a number when

operating on any
~

e„ lz (0)). To show this,
6rst operate on ~0(0)) with the commutators [8,Ap.],
[8,Cp&,], and use (2.5) to get the relations Ap„8)0(0))
= Cpy8 0(0))=0. This shows that 8~ 0(0)) is a multiple
(including zero) of ~0(0)), since ~0(0)) is the only
vector which satishes (2.5) for all ~, X. Then operating
on any

~
m„nq (0)), 8 can be commuted through

the Ap„~, Cput to operate on ~0(0)), according to the
form of the state vectors given by (2.7). Thus 8 is a
number in the space of Xp.

From (2.4) and (2.6), it follows that all the A p„~, Cput

satisfy the Hamiltonian commutator equation (1.1).

The operators Ap„~0~, Cp),~0~ in these examples all
fail to satisfy the boson commutator or fermion anti-
commutator relations. Also note that the Ap„~, Cp),~ are
arbitrary to a multiplicative constant of modulus 1;
this is merely an eigenvector phase factor.

B. Higher Order Creation Operators
and Particle Energies

Let the Hamiltonian be written as

where
X—Xp+Xg+Xp+ '

Xp~=Xp, Xy~=X], ' ' '

(2.10)

Xj EXp)X2 6Xp)' ' '
~

Here e is the expansion parameter, a real positive
number ((1, and means "is of order. " We assume
the validity of perturbation theory, so that all eigen-
functions are analytic functions of e for small e. Suppose
for each operator Ap„~, Cpq~, we find an ".mth-order-
correct" operator A„~, C),~ of the form

A„t=Ap„~+Ay„~+ +A„,t,
C~t =Cp~t+Cu, t+ +C„d,

(2.11a)

(2.11b)

where Ap„~, Cp),~ 1, Al„~, C~),~ ~ ~ ~ ~ such that the
Hamiltonian commutator equations are satisfied to
order e", that is

[Xp,A p„~]=cop,A p,t,

[Xp,Cp),']=~g,Cpd,

(2.8a)

(2.8b)

[X,A.t]=or„A „~+0(p™+1)

[X,C),']=p Ã~'+0(p"+'),

(2.12a)

(2.12b)

where orp„, cog, are all real and positive. We know that
A p ~, Cpy~ are all of the creation operators, and operating
on the vacuum they give all the eigenvectors. As was

pointed out in Sec. I, however, we do not know this
from (2.8) alone. For example, for any operator Qt such
that [Xp,Qt] = ruQ~ with &v any number (including zero),
then also

[Xp)Apg Q ]= ((up„+co)A p„Q

[Xp,Cg,tQt] = ((opy+(a) CpgtQi.

(2.9a)

(2.9b)

' P. A. M. Dirac, The I'rinci p/es of Quantum Mechanics
(Clarendon Press, Oxford, England, 1947), 3rd ed.

Obviously Ap„~0~, Cp&~0~ are not the correct creation
operators. Interesting examples which illustrate the
difficulties listed in Sec. I are obtained by taking Q~ as
Ap„~ or Cp)~. When operating on the vacuum, Ap„~Ap„~

leads only to states with even e„, while Cp),~Cp),~ gives
zero when operating on any eigenstate. Taking Q~ as
a number operator, we note that A p,~A p. ~A p. ,
Cpq Cpq Cpq. are operators which satisfy (1.1);however,
these operators give zero when operating on the vacuum
and on many other eigenvectors, while in other cases
they give another (unnormalized) eigenvector.

with a&., &uq real positive numbers. The notation 0(p )
stands for a quantity of order p . From (2.12) we know

that if P is an mth-order-correct eigenfunction of X,
with energy E, then A„tg, Cztf are also mth-order
eigenfunctions of X, with energies E+&o„,E+&oq,
respectively. The possibility A„ted=0 or C&~/=0 is
ruled out because these analytic functions are not zero
when &=0. Thus the mth-order eigenvectors of X are

~ ~ og 0 ~ eg) ~ ~ ~ m

=rr, ( ..)- "(A.')- rr. (C ')""I0( )), (2.13)

where ~0(m)) is the mth-order-correct ground state. In
addition, these are all of the mth-order eigenvectors,
since the set is in a one-to-one correspondence with the
complete zeroth-order set.

Regarding orthonormality, we expect that different
vectors of the set (2.13) are orthogonal to order p,
even if they represent degenerate states, since they are
obtained as perturbation corrections to completely
specified orthogonal zeroth-order states. The vectors
may not be properly normalized, however, the error
being possibly of order e. Thus, it should always be
possible to satisfy the appropriate particle commutators
and anticommutators; we take these as a further con-
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~ ~ OgO ~ Og)I ~ I+ ~ ~ IgO ~ Ig) ~ ~ 0'g
=II ~(~ ',~ ) IIi ~(~~',~ )+o( "+')

X=G(m)+Z„&v„A „tA „+Z),oui, Ci,tC),+0(p"+'), (2.16)

where G(m) is the mth-order-correct ground-state
energy, given also by

G(m) =Gp+Gi+ ' ' '+G . (2.17)

It also follows that the conditions

A„l 0(m)) =0(p™+1) C~
I 0(m)) =0(p"+') (2.18)

(0(m) I 0(m)) = 1+0( ™+1) (2.19)

are necessarily satisfied by the normalized mth-order
ground state IO(m)), and further that these conditions
determine the state uniquely. In order to prove the
necessity of (2.18), take the Hermitian conjugate of
(2.12) to get

[X,A „7=—oi.A „+0(p +')

[X,Ci,j=—~K'i+0(p-+') (2 2ob)

Thus to order p, if
I 0(m)) is an eigenstate of X with

energy G(m), then either A„IO(m)) and C&, IO(m)) are
eigenstates with energies G(m) —&o„, G(m) —&o&„respec-
tively, or else A„IO(m))=0 and Cil0(m))=0. Since
G(m) is the lowest energy and cu„, o&i are positive, the
second alternative must hold. To show that (2.18) and
(2.19) determine

I 0(m)), start with m= 1 and write the
first-order-correct ground state IO(1)) as IO(0))+lgi),
where

I gi) p. The zeroth-order equations are satisfied,
according to (2.5). The first-order equations are

Ap„l gi)+A i, I 0(0))=0, (2.21a)

Coil gi)+Cii, I 0(0))=0, (2.21b)

and for normalization

(o(o) lg )+(g Io(o))=o. (2.22)

Equations (2.21) determine the product of every
( m„ei (0)l, except ( 0„$ (0)l, with

I gi), in terms of the matrix elements of Ai„, Cii in the
zeroth-order representation. Then (2.22) determines
the product of (0(0) I

with Igi), so that Igi) is deter-
mined. This procedure can now be carried out for terms
of order p', p, to show that IO(m)) is determined by
the conditions (2.18) and (2.19).

If the problem is solved to order m, that is, if (2.12)
and (2.14) are satisfied, the particle energies are of the

dition to be satisfied by the mth-order operators:

[A.,A ..7= 0(p"+'), [A „,A „,t7 = g„„,+0(p"+i);

[Cg,Ci.7~=0(p™+I), [Ci„Ci,.t]~=8„,,+0(p™yl). (2.14)

[A„,Cij and [A„,Cit 7 are of order p™+1.

If (2.12) and (2.14) are satisfied, it follows directly
that the eigenvectors (2.13) are orthonormal to order
m and the Hamiltonian is diagonal to order m:

cv„=pop„+Xi„+ ' ' '+cd (2.23a)

pox= pooz+oiix+ ' ' +oil& (2.23b)

where Ny GMp coU, tippy, and so on. It is possible to
calculate the next higher order contributions to the
particle energies, namely M~&,„and co +j,&, without
finding the (m+1) th-order contributions to the creation
operators. Let us carry out this calculation first for the
boson energies.

With A„t given by (2.11a), assume that A~i, „t
exists such that

[X,A „t+A~i,.t7
=(&„+op~i„)(A,„+A +i„)+0(p +'). ( .2 )

In view of (2.12a), the terms of order 0, 1, , m in
this equation are already satisfied; the (m+1)-order
terms are

[Xp,A~, „t7+[X,,A„„'7+ +[X~i,Ao.']
=pip„A~\, & +oii„A~„t+' ' +to~i, „Ao„t. (2.25)

This operator equation may be evaluated in any repre-
sentation; we evaluate it in the zeroth-order repre-
sentation. In particular, if we take the matrix element
('''@+1'' n& '(0)l Eq (225)

I
'''ip ' ip&'''(0))

the terms containing A~~, „~ cancel. Then, treating
or~i, „as a number, we find from (2;25)

( e„+1 ng (0) I
[x„A„„tj

+[Xp,A i,.'7+" +[Xiii,Ao.'7
—

My A 402 A ]

Ai 'I e ipse (0))
= (ipse+ 1)'"~m+1K(2 ,26)

The same procedure goes through for fermions, where
the matrix elements are further restricted to

( 0„1i (0) I
Equation

I ip„Q, (0)) .
The result is

( ~p 1), (0) I [xi C ),'7
+[Xo~C~ i,y 7+ ' ' '+[X~yl&Cp), 7
—i. y~mz~ —+nc~c,)—
—~,C,~'I" ~ " Oi "(0))

= (—1)""~-+i,~ (2 27)

Equations (2.26) and (2.27) are useful tools of the
present theory. If the problem is solvable to order m+1,
in terms of particles with the quantum numbers ~, ),
then these equations give the correct (m+1)th-order
contributions to the particle energies, without requiring
the (m+1)th-order solutions. If the energies so calcu-
lated are numbers, independent of the state vectors in
the matrix elements, then it is probable that the
problem is indeed solvable to order m+1 in terms of
such particles. On the other hand, if the energies so
calculated depend on the state vectors in the matrix
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elements, then it is certain that the operators A +~,,t,
C~&,i,t do not exist such as to satisfy the (m+1)th-
order Hamiltonian commutator equations [Eq. (2.24)
and its counterpart for Cit]. This situation is illustrated
in the problems which are treated in Secs. IV and V
below.

C. Interpretation of Higher Order Energies

Regardless of the form of &o +i ., &a~i,q, Eqs. (2.26)
and (2.27) give the same result as Rayleigh-Schrodinger
perturbation theory for the (m+1) th-order contribution
to the energy difference between the appropriate states.
To prove this, we assume that (2.12) and (2.14) are
satisfied, so that the eigenstates are given by the mth-
order occupation number representation (2.13), and
derive (2.26) and (2.27) from Rayleigh-Schrodinger
theory. The derivation is lengthy, so we merely sketch
it here for bosons only.

Let E( n„(m)) be the energy of the state
(m)), and letE~i( n„. )bethe (m+1)th-

order contribution to the energy of the (m+1)th-order
state which is derived from

~

n„(m)). Then,
requiring the Schrodinger equation be satisfied and
requiring normalization, to order m+1, leads to the
equation

( n„(m) ~X—8( .n„(m))~ n„. (m))
(. . .n . . . )+0(&m+2)

Now write this equation over for n„+1 to give an
equation for E„+&( n„+1 )—E„+&( n. .).
Then use the properties of the mth-order solution:

n„+1 (m)) = (n,+1)—'"A„t
~

n, (m)),
( n. (m)

~

= (n„+1) '~'( n +1 (m) ~A„t,

&( .n„+1 (m)) =E( n„(m))+a)„,
where A„~, A„, or„only contain terms to order m,
according to (2.11) and (2.23). This leads to the
equation

Z, ( "n„+1 ") Z, (" "n)+0. (.™+2)

= (n„+1) '~'( n„+1 (m)
~
[K,A„t]

—0r„A„t~ n„. (m)).

In view of the mth-order solution, the operator in

the matrix element here vanishes for terms of order

0, 1, , m. Thus, equating (m+1)th-order terms in
this equation picks out (m+1)th-order terms in the
operator and zeroth-order terms in the vectors, and
establishes the relation

&a~i,„——E~i( n,„+1 .)—E„~i( n„) (2.28)

where &o +2 „ is given by (2.26). Similarly, for fermions
we find

or~i i,=E +i( 1i, )—E~i( oy ) (2 29)

where &a~i, i, is given by (2.27).

In deriving (2.28) and (2.29), we have assumed that
X can be diagonalized to order m, bit not necessarily to

order m+1, in terms of particles with quantum num-

bers ~, ). These equations thus provide the interpreta-
tion that ~„, co), are creation energies for fundamental
excitations of the system to one order higher than the
order to which interactions can be removed between
these excitations. This is, of course, equivalent to
diagonalizing X to order m and using first-order

perturbation to calculate (m+1) th-order energy
differences.

Now if (2.12) a,nd (2.14) are satisfied, with ~., &ui, real

to order m, then (2.28) and (2.29) show that so~i, ,
and ~ +&,z are real and the states are stationary to order

m+1. However, in carrying out the renormalization

procedure in real problems, we have to introduce com-

plex energies to avoid certain divergences (see Secs. IV
and V below). Indeed, we find, as one would expect,
that if the interactions between particles cannot be
removed in order m+1, then or~i, „, ra~i i, are complex.
I et us take BC to be independent of time, set 5=1, and

use the Heisenberg equation of motion to calculate the
time derivative of the mth-order propagation operators.

(d/dt)A „(t)A„2(0)= i[A,A „(t)]A„"(0), (2.30)

where the time argument is in parentheses. Diagonal
elements of (2.30) can be evaluated to order m+1 in

the (m+1) th-order representation by using (2.20a)
and (2.26); the result is

i[x,A„(t)]A„t(0)
i(co.+(o„—„i,„')A„(t)A„t(0)+0(c"+2). (2.31)

Integration of (2.30) then gives, to order m+1,

A„(t)A„t(0)
=exp[ —i(io„+id~i, „*)t]A„(0)A„t(0). (2.32)

The same procedure goes for the fermion operators:

Ci, (t)C&t (0) =exp[—i(~+~~i,q*)t]Ci, (0)Cqt (0) . (2.33)

Thus if a particle is created at t=0, the state has an
attenuation constant of —Im~~~, „* or —Imm+1, )

Similarly, if a particle is destroyed at t=0, the state
has an attenuation constant of Imago~~, „or Im~~~, q.

Note that (2.32) and (2.33) are diagonu/ representa-

tions; this is appropriate for calculating state lifetimes.

A final remark is in order here. It is a well-known

result of Rayleigh-Schrodinger perturbation theory
that if the eigenvectors of X are found to e, the

eigenvalues of 3C can be calculated to order e' +'. It is

not our intention to use this result in the present

work; we simply wish to calculate the particle-creation
energies to one order higher than we find the particle-
creation operators.
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Z= Tre &+ (2.34)

in the (m+1) th-order representation of X; here
P=(KT) '. The eigenvalues of X follow from the
mth-order solution as discussed above:

E( n„ng. ) =G(m)+Z„n„&o„+Zinioii,
+& +i( n„ni, .)+0(o~'). (2.35)

Here E( .n, ni, ).is the energy of the state which is
derived from the zeroth-order state

~
n. ni (0));

G(m) is the mth-order-correct ground-state energy;
co„and co), are the mth-order-correct creation energies of
the form of (2.23), and E„+i( „n&,n) is the
(m+1)th-order contribution to the energy of the state.
E +~ is a function of the or~~, „and ~~~,)„but is not
necessarily of the form Z.n.00~i,„+Zingo~i, i., this
circumstance is made clear in the examples of Secs. IV
and V. The partition function is conveniently calculated
by expanding the exponential for E~& contributions
small compared to E(m) contributions; the result is

Z =Z (m) [1 PE~—i)+0(o~+'), (2.36)

where Z(m) is the mth-order-correct partition function,
calculated from the mth-order-correct energies E(m),
and E~i is the statistical average of the (m+1) th-order
contributions to the system energy levels.

The Helmholtz free energy is defined by

F= —P-' lnZ. (2.37)

From (2.36), F is given correct to order m+1 according
to

D. Statistical Mechanics

We wish to obtain an expression for the partition
function Z which is correct to order m+1, if the problem
is solved to order m. Thus we evaluate

[Ap„,Ai. ]+[Ai„,Ap. )=0,
[A p„,A i..t]+[A i„,A Q„.t)=0. (3.8)

If (3.7) and (3.8) are satisfied, then X is diagonal to
first order in terms of the renormalized creation and
annihilation operators. We can carry out a direct proof
as follows. Define X as

III. ILLUSTRATIVE FIRST-ORDER
CALCULATIONS

A. Many-Boson System

The problem is defined by the Hamiltonian and the
boson commutators:

X=Xo+Xi+' ' ' ' XQ=GQ+Z. oio Ao. Ao, (3.1)

[A,„,A,„.]=0, [A,„,A,„,t]= b„„.. (3.2)

The form of X~ need not be specified here, except that
Xi] K$

From (2.26), the first-order energy corrections are
given by

( n +1 . (0)~[xi Ap t]~ n, (0))
= (n„+1)'"poi„. (3.3)

With &oi„given by (3.3), assume that we can find first-
order operators A~„~ such that the Hamiltonian com-
mutator equations and the boson commutator equations
are satisfied to first order. That is,

[X,A „t)=QQ„A „t+0(o'); (3.4)

[A „A„.]=0(o'), [A „,A „.t)= b«, +0(o'), (3.5)
with

A ~ =A os +A is, pic =&A~+ op i ~ ~ (3 6)

The zeroth-order terms in (3.4), (3.5) are satisfied;
equating first-order terms gives the following require-
ments for A~„t.

[X„A,„&]+[X„Ap„t)=~Q„A,„&+~,„Ao„t; (3.7)

F=F(m)+E~i. (2.38) Go+~a(~pox+pole) (Ape +Ala ) (A o.+A 1~) ~ (3 9)

Finally, let us add G„+i, the (m+1)th-order contribu-
tion to the ground-state energy, to F(m), subtract the
same from E~~, and write out the boson and fermion
contributions to F(m).

F=G(m+1)+P ' P„in[1—exp( —
P&u,))

—P
—' Pi, in[1+exp( —Ppo),)]

+ (Em+1 Gm+1) ~ (2.39)

This is a particularly useful form to use in conjunction
with the present theory. The renormalization procedure
gives directly the excitation energies, and hence co„, co&,

and contributions to (E~i G+i) in the form of—
~~~,„,~~~,~. Thus the temperature-dependent part of
the free energy is easily calculated. In addition, since
(E~i G~i) is of order m+—1, a zeroth-order average
may be used in computing this quantity to order m+1.

Then
X—X=Xi—Xi+0(o'), (3.10)

X=X+Gi+0(o') (3.12)

where

Xi=&,[oui,AQ, Ao~+~0~(AQ, Ai~+Ai~ Ao~)) ~ (3 11)

A short calculation, with the aid of (3.1), (3.2), and
(3.8), yields

[xi—xi,Ap„t)= [xi,Ap„t]+ [xQ,Ai„t)
—&i»~ o»

—+o»~ i» ~

But this vanishes by (3.7). Similarly, since Xi and Xi
are Hermitian, [Xi—Xi,AQ„) vanishes. Thus, by the
lemma of Sec. IIA above, 3'.~

—K~ is a number; this
number is of order e and is presumably 6&, the first-order
contribution to the ground-state energy. We can then
write
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There is still some arbitrariness in the A~„operators.
Any operator Bi„t can be added to Ai, t, and (3.7) and
(3.8) will still be satisfied if

[XO&Bl» 7 pip»Blc

[A p„,Bi„.7+[Bi„,A p„7=0,
[A p„,Bi„'"7+[Bi„,A p„.t7 =0.

(3.13)

The conditions (3.13) are satisfied by Bi.t of the forms

Bg„t——ib„A p„t)

~ltt ~A ptt ~tt'btttt'A ptt' A ptt' )

(3 14)

and so forth, where b„, b„„are real numbers of order e,
with b„=b„.„. Such arbitrariness in the first-order
creation operators does not affect the co~„, of course,
since 0&i„ is independent of Ai.t according to (3.3). In
addition, the operators Bl.t of the forms (3.14) give
zero contribution to Xi of (3.11), and hence give no
contribution to the ground-state energy and do not
change the relation (3.12).

[Col&Clv 7++[Cli&Cov7+

[Cpi&Cii& 7++ [Cii&Cps& +=0. (3.19)

With the aid of these equations we can show that
K—3C commutes, to order e, with all the Cg„Cp),~,

where X is analogous to (3.9). Thus X—X is a number
of order e, and K can be written

X—(G0+Gi) ++i (0&0»+001k)

X (Co~'+CnP) (Cgi+C ),)+0( ') . (3.20)

Also the C~yt are arbitrary to an additive operator of
the form id~Cput with d~ a real number of order e, this
arbitrariness is merely an eigenvector phase factor.

C. Comparison with Other Methods

Raylei gh-Schrodinger Perturbatiorl, Theory

In any problem where perturbation theory is valid,
any method must reproduce the Rayleigh-Schrodinger
energy levels. We have already shown in Sec. IIC that
the present method gives the same result as Rayleigh-

B. Many-Fermion System

The problem is dehned by the Hamiltonian and the
fermion anticommuta, tors:

X=X0+Xl+ ' ' ' Xp Gp++ip&oiCoi Col (3 15)

[Cpi,CO), 7+=0, [Cpi, CO),'7+= &),i' (3 16)

The first-order energy corrections are given by

(" 1," (0)I[X„C»'7l" 0, "(0))
= (—1)""~ii (3 17)

The first-order operators C&zt are now required to
satisfy the counterparts of (3.7) and (3.8):

[XO,Cu'7+[Xi, C0),'7=000iCn, '+~oCpi', (3.18)

(Ap„+A,„)I 0(1))=0(O') . (3.22)

Write the first-order-correct ground state 0(1)) as
IO(0))+ jgl); the zeroth-order conditions Ap„0(0))=0
are presumed to be satisfied and the first-order terms
in (3.22) are

A p„ I gi)+A i„j0(0))=0. (3.23)

Now take the Hermitian conjugate of (3.7) to get

[X0 Al 7+[Xi A0 7 0&0 Ai 0&1/0 ~ (3 24)

Operate with (3.24) on IO(0)), use (3.23), and take the
product with ( io„.(0) I

to get

(' ' 'll ' ' ' (0) I (Gp —0&p„—Xp)Ap„j gi)
= (' ll„' ' ' (0) IAO»X& IO(0)) . (3.25)

Then operate with Xp and Ap„on ( lo„(0)j to
produce ( n„+1 (0) I, and finally obtain the
equation

( "+1 "(o)lgl)

( . e„+1 (0)IX l0(0))
(3.26)

Gp —E( m+1 (0))

Equations (3.26) for all ( lo„+1 (0)j, along with
the normalization conditions, determine

I gl) to be just
the Rayleigh-Schrodinger first-order correction to the
ground state. '

Ramdom Phase A pproximati-om

In this method' ' the procedure is to linearize the
equation of motion for a creation operator, say Ap, t. In
the Heisenberg picture, with 6=1, this equation is

(d/dt)A p„' i[X&A p„t7 —— (3.2. 7)

For a perturbation problem we have [XO,A p„t7 = 0&O„A p„t,

and (3.27) to first order is

(d/dt)Ap„t= t'Opp Ap I+i [Xi&AO»t7 ~ (3.28)
V See, e.g., L. I. Schi8, QNuetgm Mechanics (McGraw-Hill

Book Company, Inc. , New York, 1955), 2nd ed.

Schrodinger for the difference between system energy
levels. A particularly simple illustration of this theorem
is the first-order examples treated above. Operating
with the Ap„t in (3.3), or with the Cput in (3.17), gives
the ordinary first-order equations for energy differences:

0&i
——(. io +1 (0) IXil ol +1 (0))

"(o)lxll" &" (0)) (321a)

»i=(" 1i" (0)IXll" 1i" (0))
—( 0i (0) I

Xl
I

0i (0)) . (3.21b)

We have also shown that the conditions (2.18), (2.19)
determine the mth-order ground state uniquely. Let us
take the many-boson example and show that the first-
order ground state so determined is just the Rayleigh-
Schrodinger 6rst-order ground state. The conditions
(2.18) are
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Now the linearization procedure consists of picking
terms out of the right-hand side which contain an Ao„t,
and replacing the operators which multiply the Ao.t by
an expectation value (matrix element or statistical
average). This is equivalent to calculating rot„according
to (3.3), or oork according to (3.17). We remark that,
for perturbation problems, the present work provides
a derivation of this linearization procedure, and also
provides detailed interpretation of the creation energies
so obtained.

Thermodynamic Green's-Function 3fethod

Perhaps the most direct procedure is to compare our
renormalized energies with the self-energies of the
Green's-function method. For a perturbation problem
the &or„and tork of (3.3) and (3.17), respectively, are the
same as first-order Hartree-Fock results. 4 But the first-
order Hartree-Fock energies have been shown to be the
same as the first-order contribution to the temperature-
independent self-energies, ' and the statistical averages
of the first-order Hartree-Fock energies have been
shown to be the same as the first-order contribution to
the temperature-dependent self-energies. ' Thus in first-
order we recover the temperature-dependent energy
shifts of the thermodynamic Green's-function method
by taking statistical averages of co&„, co&),.

In the following two sections we give detailed calcu-
lations of renormalized energies to second order; in
each case the statistical average of the renormalized
energies agrees with the thermodynamic Green's-
function self-energies.

IV. APPLICATION TO ANHARMONIC
LATTICE DYNAMICS

A. Definition of the Problem

The Hamiltonian is the sum of the kinetic energy KK
and the potential energy U, which are given in terms of
the positions and velocities of the ions as follows:

&E= s 2 Mt(tt;)',
n, p

Here n labels a unit cell, j an ion in the unit cell, i is a
Cartesian coordinate, p stands for a pair (j,i), M; is the
mass of an ion of type j, u; is the displacement of ion
(sij ) from its equilibrium position, and n„; is the time
derivative of u;. There are 1V unit cells in the crystal
and J ions per unit cell. Uo is the static lattice potential
energy, and the A, 8, and C coefficients are defined
by (4.3)—(4.5). The definition of the problem is corn-
pleted by the commutators

[M,o2„o,u„.r. j= i7i8„„—.pro, (4 6)

Lu„„u„...j=Lu o,u ., j=0. (4.7)

We have taken the trouble to express the problem in
the primitive form (4.1)—(4.7) so as to make clear our
definitions. Detailed discussion of the diagonalization
of K, to second order in displacements, may be found
in any standard text' ";we outline the transformations
below. The traveling-wave operators q~, are introduced
by the Fourier transform

u r ——isr' '"Zk, ,qk, ek r, exp(ik r„,), (4.8)

where k are the wave vectors, s is the polarization index,
r„, is the equilibrium position of ion (n,j), and vk, „are
components of the eigenvectors of the secular equation. "
The creation and annihilation operators are then defined
by

qk, ——(t'4/2M, (ok,)'"(Ak,+A k,t), (4.9)

rfk, i (t'took——,/2M, )'ts(A k,t Ak, )—, (4.10)

where M, =Z, JIIf;, i.e., the total mass of one unit cell,
and ~k, are the traveling-wave frequencies. As a final
step we introduce the abbreviation te for (k,s), with —t4

for (—k,s), and de6ne the following Fourier transforms
of the 8, C coefficients.

8„„„"=$(1/3!)(i'4/21VM. )'"( „„.„")-'"$

X P ~np, n'p', rr"p"&k, ps&k', p'rr'&k", prrs"
nm'n"
pp p

XexpLi(k r„,+k' r„, +k" r„.,')]; (4.11)

C„„„"„~= L (1/4!) (t'4/2MII, )i (co„&o„co„"&o„~) ' tsj
U= &o+ &s+ &s+ U4,

TT 1~ 2 g ~ A mp, n'p'Nnpgn'p
ff A 4PP

PS= (1/3!) P grrr rrrrr Orrrrrurrlurrrrrurrrrrrr

pp p

V4 ——(1/4!) Q C„,„., „o"„
grll

p t ~ op

(4 2)

(4.3)

(44)

Coo rrrr rrr orX
n ~ .n'"
p ~ ~ r p

I II

XPQ pgPQI prgrPPII prl8'IPgrlr I lr8 lrr

XexpLi(k r,+k' r„.;.+k" r„,
+k rrr»rs'r»)]. (4.12)

We now introduce a subscript 0 to denote un-
renormalized energies 6~0„and operators Ao„t and write

Xurrrurrrrrurrrrlrrurrrrrlrrr . (4.$)

'D. J. Thouless, The Quantum 3fechanics of Jttfany-Body
Systems (Academic Press Inc. , New York, 1961).' L. P. Kadano8 and G. Baym, Quantum Statistical Mechanics
(W. A. Benjamin, Inc., New York, 1962).

' M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Clarendon Press, Ltd. , Oxford, England, 1954)."R. E. Peierls, Qttarttttrlt Theory of Sobds (Clarendon Press,
Oxford, England, 1955).

"See, e.g., D. C. Wallace, Phys. Rev. 131, 2046 (1963).
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the statement of the problem in anal form

X=Xp+Xi+Xp,
Xp ——Gp+Z „hoip„A p„tA p„,

Go= +0+ p+choppK y

X,=Z„„.„"8„„.„"(Ap„+Ap „t)
X(Ao +Ao-"')(Ao" +Ao—" '),

Xp =Z„„.„..„..C„„„.,„„.(A p„+A p „t)(A p„+A p .t)
X(A,„„+A, „„t)(Ap„„,+A~„-.t).

The phonon commutators are

[Ap. ,Ap. .]=0,
[A p„,A p„.t]=b„„..

(4.13)

(4.14)

~K K ~KK K ~A'PK )

2A~K K K CKK K K ~ ~++PK ~

(4.15)

Thus, compared to the phonon operator term in Kp, BC~

is of order e and 3'.2 is of order e', this is the basis for
our perturbation treatment. The static lattice binding
energy Up is of course large compared to EA(op, .

B.First-Order Phonon Operators

From (4.13) and (4.14), a direct calculation shows
that the zeroth-order Hamiltonian commutator equa-
tions are satisfied.

From the derivation of (4.13), it follows that Xp, Xi, Xz
are each Hermitian, that cop„=cop „, and that B...",
C„„„"„~are completely symmetric in their indices, and
8„„.„"*=8„, „., K. ,C„K „.K".*=C „, „., „", „...Wealso
note that 8„„.„~ contains a b(k+k'+k") and C„„.„"„"
contains a b(k+k'+k" +k'").

The expansion parameter in this problem is a root-
mean-square displacement divided by a lattice param-
eter."Denoting this by e, we have the following orders
of magnitude

ApK, Ap„t

~1K ~K K ~KK K bRK K Aoa'Ape"A

+%K K AOK Ap —K +VK1 K Ao—K AOKt

+fKK K Ap —K Ap K )) (4.20)

where the n, P, g, i are coefficients to be determined.
It is more convenient here not to put all the operators
in normal order, although it would not affect the
results to do so. Now the commutator [Xp,Ai„t] is
found to be

[Xp)A 1K ] +K K BKK K

X[ ~~"—" (hoop" +hollo" )Ao"Ao"
—P„„.„-(hoop„.—hoop. ")Ao. Ao, -t
+g„„„~(hoop„—hoop ~ )A o, tA o

+i az x" (h~'px'+ho~ps")Ap —x' Ao—8' ]' (4.21)

In order to satisfy (4.19), the coefficients of like
operators must be equated; this gives equations for the
n, P, q, f coefficients. Because of vanishing denominators,
however, certain of these coefficients cannot be defined.
We avoid this difficulty by introducing the positive
real infinitesimals y„, and satisfying, instead of (4.19),
the following equation:

[Xp,Ai„t]+[Xi,Ap, ]= (h(vo„—op„)Ai„t. (4.22)

Then, with the aid of (4.17), (4.20), and (4.21), the
conditions (4.22) lead directly to the following results:

3 (havoc+ hoops'+hNOa" t7r)

Px~'c" =3 (hopox+h&og' h~og" &vs)
(4.23)

gas'a" 3(hoops honor'+h~ox" tv')

[see also (3.7)]. In view of (4.18), these equations are

[Xo,A i„t]+[Xi,A p„t]= heep„A, „t. (4.19)

From (4.1'I) we expect A i„t to be of second order in the
A p„A p„t operators; indeed if A &,

t is of second order
in Ap„,Ap„, then each term in (4.19) is of second order
in the operators. We therefore take the general form

[Xp,A p„t]= h~pp„A p„. (4.16) f xc'a" = 3(h&o~ hoop~' h&px" &T~)

For first-order energies we need the commutators
[Xi,Ap,t]; with the aid of the symmetry of the J3„„.„"
this is

harqK =0. (4.18)

We now wish to find A&„t so as to satisfy the Hamil-
tonian commutator equations (2.12a) to first order

"L. Van Hove, Solid-State and Molecular Theory Group
Technical Report No. 11, 1959 (unpublished).

[Xi)Ap„]=3Z„,„„B„„,„„
X (Ap +Ap „)(Ap„+Ap „ t) . (4.17)

The right-hand side of (4.17) gives no contribution to
the matrix elements in (2.26) for the first-order energies
[see also (3.3) for the many-boson case in first order].
Thus

Some remarks concerning this procedure are in order.
It is generally not possible to take the limit y, —& 0 in
operator expressions, such as A~„~, on account of the
highly singular nature of the creation and annihilation
operators. However, omitting consideration of the
modes for which o&p„——0 (uniform translation of the
entire crystal), then p„ in the numerator on the right-
hand side of (4.22) can be taken to be arbitrarily small
compared to Scop„. Our rationale is that we have satisfied
(4.19) to a degree of approximation which is better
than any order of perturbation which we will consider.
After statistical averages are taken, when all operators
are replaced by smoothly varying functions of the wave
vectors, the limit y„—+0 can be taken. Finally, we
point out that the sign chosen here for y„ is such as to
produce decaying states from the (complex) second-
order energies.
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Let us now investigate the first-order phonon com-
mutators to see if the renormalized operators are good
boson operators. In view of the zeroth-order commu-
tators (4.14), the first-order requirements are

[AD„,Ai, .)+[Ai„,AO, )=0,
[A O„,A i„.t)+[A i„,A O„.t)=0. (4 24)

These commutators are linear in the A0„, A0„~ operators;
the first equation of (4.24) is satisfied if and only if

+K KK' r+K'K K &KK'K +KK' K 0
p

l Fi
K KK M/K K K PKK K QKK K

The second of (4.24) is satisfied if and only if

(4.25)

C. Second-Order Energies

The second-order contributions to the phonon
energies are given by (2.26); since the first-order
contributions are zero, this becomes

&" e„+1" (0)([x„A,„&)

+[xm,Ap„t)i N„(0))
= (n„+1)'i'hcosg. (4.30)

PK K K+9K KK +iKK K +egg K

(4.26)
i K'K" K+f'K'KK" +egg'K" +Pgg" g' =0 ~

Conditions (4.25), (4.26) are all satisfied if and only
if y„ is independent of ~. Thus take

(4.27)

The first-order commutator conditions (4.24) are
satisfied by (4.27) for arbitrary p, and hence in the
limit y —+ 0.

It is of interest to check the form of K in terms of
the renormalized phonon operators. For this purpose
de6ne 3C according to

X=Go+Z„@iog(A Ogt+A igt) (A 0„+Ai„). (4.28)

The zeroth-order terms of SC are equal to X0', we denote
the Grst-order terms of K by F1.A direct but lengthy
calculation gives the following result:

~1 ~1 & Y~KK K ~KK K (PKK K ~0—K ~0—K ~OK'~fA fA

—p„„„Ap „.tAp„AO„). (4.29)

To obtain (4.29), we have dropped a number of terms
which are of relative order E ' and have taken y —& 0
in some terms whose denominator never vanishes. Thus
the Hamiltonian is not diagonal to erst order, in terms
of the renormalized phonon operators, on account of
those terms in (4.29) for which the energy part of the
denominator vanishes. This causes no difhculties in the
remaining calculations. We note that the statistical
average of K1—K1 vanishes when y~ 0. Also, since
there is no constant term in (4.29), there is no first-order
correction to the ground-state energy.

The calculation of the commutators in (4.30) is straight-
forward. After evaluating the matrix element, and using
the symmetries of 8„„„., C„„.„"K... the result is

h(vg, =12Z„C„, „,„, „(n„+e„+1)
6ZK'K" (+KK'K"+ K-K', —, K"[—&KK'K" (Ng'+NK" +1)

+PgKlgtl (N gl I Sgl)+gggtgtl (8 KI ggll)

fgglg (ri~t+N —K I+1))+~K,—K, K ~g,—K,—K

x (~„„„.—i.„„„.)(~„-+~,-+1)). (4.31)

E( ~ n„( )0) =Gp+Z„e„hero„. (4.32)

Now since the hco2„depend on all the n„., the second-
order contributions to the system energies are not
simply Z„n„koo2„. In particular, for a term in A~2. of the
form Z„S„„.e„., where SK„.are numbers, the contribution
to the system energy is ~Z„„S„„.m„e„.; the ~ avoids

counting each particle contribution twice. Note that
this does not give the diagonal terms (n„m, terms)
correctly, but such terms are of relative order E '. In
general, for a term which is summed over r different
occupation numbers, one needs a factor (r!) '. Thus,
because of the interactions between the renormalized

particles, the system energies are not simply the sum
of the particle energies. The system energies, correct
to second order, are thus

E( n„. (2))= (Go+G2)+Z„e„h(op„
+6Z„„.C„, „,„., „.(e„.+N „.+2)n„
—3Z„„.„"{a„„.„-a „, „., „-[~„„.„-(n„.+~„-+2)e„
+p„„.„-(n „- N„.)e.+~„„.„"(e;—n„-)0„—
—i....-(e ..+N .-+2)N.)+a.. .,..a.", „-. ..

X(g„„„,—i„„„,)(~„„+~„„+2)~„). (4.33)

Here G~ is the second-order contribution to the ground-
state energy; we do not calculate this here.

In deriving (4.31) we have dropped a number of terms
which are of relative order iV '. It is customary (see,
e.g., the references discussed in Sec. IVD below) to
omit the term containing 8„, „,„8„., „. , „. Since
3„„„"contains a 8(k+k'+k"), this term contains a
b(k'), and hence should be dropped for acoustic modes;
thus the 2, contained in Z„ is only over optic modes
for this last term in AM2„.

From the form of hco2„ it is obvious that we have gone
as far as we can with the renormalization procedure.
According to the comments at the end of Sec. IIB, the
interactions between phonons cannot be removed in
second order. In other words, true normal modes for
this problem, at least correct to second order, cannot
belong to the simple quantum numbers ~.

Before proceeding to take the statistical average of the
phonon energies, let us calculate the system energy
levels. In view of (4.13) and (4.14) the system energies,
correct to order A~0„are simply
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D. Statistical Mechanics

Phonon Energies

In order to calculate Aorm„correct to second order, it
is only necessary to use a zeroth-order average. This
means replacing each n„by n„, where

limit p ~ 0 with the aid of the symbolic identity

i i
lim = mirror(x).o' oui y (x),

(4.35)

The subscript p means to take the principal part of the
integral (or sum) in which this function appears. The
result of this calculation is as follows:

n„= )exp(Phroo„) —1) '.
bros„= Ah, +ihF„, (4.36)

It is also useful to note n„=n „.We can now take the where 6„,F„are real.

hh, =12Z„C„, „,„, , (2n„+1)—18h 'Z„„B„„„.B „, „

(n„.+n„"+1) (n„.—n„-) (n„.+n„-+1)
&OK OK +OK P 'MOK 0» 0» 22 +0» 0» MO»" y 0» 0»' &OK" y-

—36& 'ZR~R«BCKKB, —K", .",—K(2,—r4"+1)(room') 1 (4 37)

X{(n, +n„+1)[b(roo, oo,„&o,„.)—g(ro—,„+ro,„,—+re,„.,)j
+ (B„—rr„)Lb(too„+roo„—roo„)—8(too Mo +&os ")])~ (4 38)

The statistical averages of the second-order phonon energies are naturally interpreted in terms of inelastic
neutron scattering experiments. Since this experiment sees a statistical average, the neutrons will create (or
destroy) renormalized phonons with energy t's(&oo, +A„) and with lifetime l'„

Helmholts Free Energy

From the general equation (2.39) above, the free energy is given to second order by

F= (Go+Go)+P 'Z„ in/1 —exp( —Phooo„)j+(Es—Gs) . (4.39)

Here (Es—Gs) is the statistical average of the second-order contribution to the excitation energy of the system
and hence, correct to second order, is just the zeroth-order statistical average of the double- and triple-sum terms
on the right-hand side of (4.33).After replacing all r4 by n„, we take the limit 7~ 0 and calculate the real part as
the anharmonic contribution to the temperature dependent part of the free energy; the result is

Re(Es—Gs)=12Z„„.C„, „,„., „(n,n„+n„)—18h—'Z„„.„,.B„„„„B,
(n„n„.+n„)

X
—OK O» O»" ~

(n„n. .+n„.n„-—n„n„.+n;.)-
0» 0»r —0»rr P

—36h 'Z„„„B„,„,„B„,„,. (n„n;+n„)(roo. ) '. (4.40)

Comparisors with I'resiols Work

With regard to the statistical average phonon
energies, the expressions (4.37), (4.38) above for
hh„, AF„agree with the diagonal elements of the self-

energy terms calculated by Kokkedee" by diagram-
summation techniques. They also agree with the
phonon energy shifts and lifetimes calculated by
Maradudin and Fein' by phonon propagators. Finally,
the present results agree with the diagonal elements of
the self-energy terms calculated by Cowley" by
thermodynamic Green's functions.

"J.J. J. Kokkedee, Physica 268, 374 (192)."A. A. Maradudin and A. E. Fein, Phys. Rev. 128& 2589 (1962)."R.A. Cowley, Advan. Phys. 12, 421 (1963).

The expression (4.40) for the temperature-dependent
part of the anharmonic free energy agrees with the
previous calculations" "; in most of these references
the last term in (4.40) is omitted.

Cowley" gives considerable discussion to the fact
that his quasiharmonic calculation does not give the
correct answer. Since his quasiharmonic calculation
consists of adding the second-order term Z„(n„+rs)hh„
to the harmonic free energy, it is immediately obvious

"W. Ludwig, J. Phys. Chem. Solids 4, 283 (1958).
"A. A. Maradndin P. A. Flinn, and R. A. Coldwell-Horsfall,

Ann. Phys. (N. Y.) 1,337 (1961)."J.M. Keller and D. C. Wallace, Phys. Rev. 126, 1275 (1962)."D. C. Wallace, Phys. Rev. 133, A153 (1964) .
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in view of the discussion following (4.32) why this
procedure does not give the right answer. We strongly
caution against the use of such temperature-dependent
energy levels, along with the customary statistics, in
calculating the partition function or quantities derived
from it. Such procedure is not within the scope of
ordinary statistical-mechanics derivations. The present
method obtains the appropriate quantum-mechanical
energies, and hence avoids difhculties associated with
temperature-dependent energy levels.

X=Kp+3Cr, (5 1)

~o ——Z, e,.C,.C,.+Zs, h"saAss As, ) (5.2)

Rr ——Zs, ,Vs, (As, +A s,t)Z, C,+s,,tC„. (5.3)

Here g is the electron wave vector, which takes on all
values, 0- is the electron spin, k is the phonon wave
vector, which lies in the first zone, and s is the phonon
polarization. The electron energies are eq, the phonon
energies are Igcok„and the interaction potential coeffi-
cients are Vl„. The creation and annihilation operators
are all of order 1, while the perturbation parameter is
contained in the small coefficients Vi„.

This Hamiltonian is the same as that used by Pines. 4

Also, the present Hamiltonian reduces to the one used

by Frohlich" if we take free-electron energies for e~„
restrict phonon polarizations to longitudinal acoustic
modes, and take elastic wave energies for A&~, . The
above Hamiltonian is also the same as Migdal's, "
except that he omits the Z, in 3'.o and Kj. Finally, this
Hamiltonian is the same as that used by Nakajima
and Watabe "

Umklapp processes are included (implicitly) by
allowing the Zk in X',~ to go over all values, i.e., extended
zones. Such processes can be separated out explicitly
at any time in the following calculations. In addition,
we generalize the usual treatments by allowing an
arbitrary number of atoms per unit cell, so that the
index s includes optic modes. The present method en-
counters no difficulty from this generalization. In this

"H. Frohlich, Proc. Roy. Soc. (London) A215, 291 (1952).
"A. B. Migdal, Zh. Eksperim. i Teor. Fiz. 34, 1438 (1958)

LEnglish transl. : Soviet Phys. —JETP 7, 996 (1958)7. Migdal
claims the problem cannot be treated by perturbation methods.
However, Migdal decouples the Dyson equation on the basis of
the smallness of the inverse nuclear mass which appears in the
interaction coefBcients Vp, , this procedure is then equivalent to
the present perturbation treatment and to the other treatments
referred to here."S.Nakajima and M. W'atabe, Progr. Theoret. Phys. (Kyoto)
29, 341 (1963,).

V. APPLICATION TO ELECTRON-PHONON
INTERACTIONS

A. DeQnition of the Problem

I,et us consider normal metals and treat the electron-
phonon interactions as a perturbation. The Hamiltonian
for this problem is

connection, Bardeen's24 derivation of the interaction
coefficients shows that for longitudinal acoustic modes

Vi,„~0 as k —+ 0. Also, the requirement 3.'i is Hermitian
leads to V~, = V ~,*.

. It is convenient to use the following abbreviations:

s=(k, s), with —~=(—k,s);

X=(q,a.), with —X=(—q, a);
z+s= (q+k, a).

(5.4)

After abbreviating this way, care is required in using
indices such as A+a, especially in a Kronecker delta
such as b),+„,q, . Generally, this delta can be used to
eliminate a sum over X or ) ', but not ~. In other words,
as indicated by (5.4), X+s means only the k from ~; in

the following calculations this k is usually in the ex-

tended zone scheme since it arises from X~. Introducing
a subscript 0 for unrenormalized energies and operators,
the problem is defined as follows:

~p ~xeoxCpx Cox+~K""0 Ao Ao

~r =+ V.(Ao.+Ao-')~), Co"+.'Co";

(5.5)

(5.6)

[Ap„,Ap„,j= [Ap„,C»]= [Ao„,Cog']= [Co)„Cpg.j+=0,

[Ao„,Ao„.t)=5„„,[Cp)„Cp), t]+=b)x . (5.7)

PCp, Ap„'j=h(op. Ao.t,

[&o,Cost/= eo'Co't

(5 g)

(5.9)

The commutators of Xj with the zeroth-order creation
operators are

[BCr,Ap„tj= V„ZyCp),~„tCpg,

[&r,Cod]=&.V.(Ao.+Ao—.t)Co)+.t ~

(5.10)

(5.»)

From the general equations (2.26) and (2.27), we see

that the first-order contributions to the phonon energies

and electron energies are all zero for the commutators

(5.10) and (5.11)
Itl«= &u, =0 (5.12)

Just as in the case of lattice dynamics above, we take
general forms for the first-order contributions to the
creation operators which contain operators like those
which appear on the right-hand side of (5.10) and (5.11).

Ay« = V«~&&),«co)+«COL)

Cu'='. V.(n,~Ao.+t.) Ao ')C»+',
(5.13)

(5.14)

where n~„, g„~, |„~ are coe%cients to be determined.

"j.Bardeen, Phys. Rev. 52, 688 (1937).

B. Renormalization

From (5.5) and (5.7), the zeroth-order Hamiltonian

commutator equations are found to be satisfied:
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gxx = (po& +~&os pox+a ~Vx)

=(pox, fippo pox+ i7z)

(5.19)

It is now necessary to satisfy the particle com-
mutators and anticommutators, Kqs. (2.14), to first
order. The zeroth-order terms are given by (5.7). For
the phonons, the first-order requirements are

[A p, A i ]+['A i,A p„]=0,
(5.20)

[Ap„,Ai„.t]+[Ai„,Ap„ t]=0.
The commutators in (5.20) are all zero since Ai„, Ai„t
contain only zeroth-order electron operators. The first-
order electron anticommutator requirements are

[COL Cli']++ [Cia COY]+
(5.21)

[CoxyClx' ]++[ClxqCpx' ]+
A direct calculation shows that (5.21) are satisfied if
and only if p& are independent of ). Finally, the first-
order conditions for the phonon-electron commutators
are

[A o.,Cii]+ [A i„,Coi] =0,
[A o.,Ci ']+[A i.,Coi'] =o

(5.22)

These conditions are satisfied if and only if all
y„=y~=y; henceforth we take

(5.23)

Now the renormalized phonons and electrons have good
coinmutators and anticommutators to first order. This
is true for any p, and hence for p —+ 0.

The last step in our renormalization program for this
problem is to calculate the second-order energies
according to the general equations (2.26) and (2.27).

The commutators with Xo are then given by

P4,A i~ ]= V~&&&i~(posy~ —ooi)Co)+i( Cox, (5.15)

[&o,CaP] =&.V.[(po)+.—popo. )rl.~A o.

+ (poi+.+&oio.)f.iAo.t]-Coi~.t (5 16)

We now write down the first-order terms in the Hamil-
tonian commutator equations (2.12). It is again neces-
sary to introduce positive infinitesimal numbers y„, y~,
just as in the lattice dynamics case, so that all the
n, g, f' coefIicients are defined. In other words, we write
the first-order Hamiltonian commutator equations in
the form

[Xi,A p„']+[Xp,A,„']= (scop„—iy, )Ai„t, (5.17)

P4)Coi')+[~o)Cu']= (po), —ops)Cii', (5.18)

where the terms involving first-order energies do not
appear because of (5.12). In order to satisfy these
equations, the coefFicients of like operators are equated;
with the aid of the commutators from (5.10), (5.11) and
(5.15), (5.16), and the definitions (5.13), (5.14), this
leads to the equations for the n, p, f' coefficients

(fipios+ po& poi~x ivy)

C. Statistical Averages

The statistical averages of A~2„and e2), are obtained
correct to second order by using zeroth-order averages.
Thus with

n„= [exp (Phpip„) —1]-',
fr=[exp(Pood)+1] ',

the averages of (5.24) and (5.25) are simply

hoio„——V„V „Zga),.(f),—f),p.),
p,i=Z„V„V „[q„),(n„+fi+„)+t „),(n„+1—fi~„)

+(f. -~. )~(k)&.1. (5.»)

(5.26)

(5.27)

For this purpose it is only necessary to calculate

[3li,Ai. ]and [Xi,Ci&, ], and take the indicated matrix
elements. To avoid confusion, we use fj, for the number

of electrons with quantum number X in a given state of
the system, and continue to use n„ for the number of
phonons. The results are as follows:

hopo„= V.V „Zion„(fj,—fg+.„), (5.24)

=Z„v.v, )g„(n„+f „)+t'„(n „+1 f —„)
+ (l.i—n, i)&(k)~~ fi ] (5.25)

Note that if umklapp processes are included, the Z~

contained in the Z„must be over all possible k (extended
zones). Of particular interest is the last term in ooi, the
term containing h(k). It is reasonable to take V„=O
for k=0 acoustic modes, and hence this term contributes
only for optic modes. Also Zi fz =X„the total number
of electrons in the system; this will be used to replace
Zi. f&, in the following.

Let us pause for a moment to see what has been
accomplished. The renormalized phonons and electrons
have creation operators Ap„t+Ai„t and Cpit+Ciit,
respectively. According to (5.13), a dressed phonon is

accompanied by a set of electron-hole pairs; in each
pair the electron-hole momentum difference (wave-
vector difference) is the same as the momentum of the
phonon. According to (5.14), a dressed electron is

accompanied by two sets of particle pairs. One type of
pair consists of an electron plus an added phonon, the
total momentum of the pair being the same as that of
the electron; the second type of pair consists of an
electron plus a removed phonon, the momentum differ-

ence of the pair being the same as that of the electron.
These dressed particles are the first-order-correct non-

interacting particles of the system. In addition, the
creation energies of these phonons and electrons are
Acpp„+hG)p„and pp), +ppi, correct to second order. If the
system is in a given quantum state, this is the energy
required to create one such particle. Since from (5.24)
and (5.25) the second-order creation energy contribu-
tions depend on the quantum state, i.e., depend on all
the n„, fj„ then we know that the interactions among
the particles cannot be removed in second order. Thus
we have gone as far as we can with the renormalization
procedure for the particles with quantum numbers ~, ) .
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It is now possible to take the limit y —+0 and obtain
the real and imaginary parts, and thus the energy shifts
and particle lifetimes. This is not necessary here.

We now compare these results with previous calcu-
lations. For the special case considered by Frohlich, "
namely longitudinal-acoustic phonons with energy
proportional to wave vector, the real part of hcv2„agrees
with his Eq. (2.36) for the correction to the sound
velocity. (To get this agreement it is necessary to take
his parameter F„=O and use the principal part of his
sum. ) Note that our (5.27), as well as Frohlich's ex-
pression, contains a sum over spins. The phonon self-

energy terms which Migdal2' has calculated by thermo-
dynamic Green's functions are the same as (5.27)
above, except that he omits the sum over spins. More
specifically, the sign of the self-energy is the opposite of
ho&2„, but the interpretation leads to the same energy
shifts and lifetimes. Nakajima and Watabe" have
calculated electron self-energies by the thermodynamic
Green's-function method; if we drop the last term in
(5.28) for ~~q, namely the optic-mode term, then c2q

agrees with their self-energy. Actually, the imaginary
parts of ~2), and their self-energies have opposite signs,
but again the interpretations are such as to give the
same energy shifts and lifetimes.

VI. CONCLUDING REMARKS

The present method of treating many-particle per-
turbation problems is recommended because it gives
more information than any currently available method,
and also because of its extreme simplicity. We shall
elaborate on these two points.

To begin with, the procedure we have developed gives
renormalized single-particle creation and annihilation
operators. These operators represent the true normal
modes of the system up to the order to which the
operators can be determined. In addition they have a
simple physical interpretation in terms of dressed
particles. The procedure also gives the energy required
to create (or destroy) a single particle when the system
is in a given quantum state. This information is more

fundamental than the statistical averages of the
particle-creation energies; it is the statistical averages
which are found by the thermodynamic Green's-function
method. We stress this point by noting that one can
always take the statistical average of the particle
energies of the present theory, but these energies cannot
be found in general from the statistical averages.
Furthermore, with the aid of the present particle-
creation energies, the system energy levels can be found
correctly, and there is no difBculty with temperature-
dependent energy levels in the statistical mechanics.
Finally, the present method shows directly to what
order of perturbation the interactions can be removed
between renormalized particles which are characterized.
by the zeroth-order quantum numbers.

The present method is not only simple, it is extremely
simple. The renormalized operators and energies are
obtained by direct and short calculations. In addition,
after the problem is solved to order m (m includes 0),
statistical functions are obtained to order m+1 by
procedures which are essentially first-order-perturbation
procedures. After having calculated the free energy for
an anharmonic crystal to second order by ordinary
perturbation expansions to second order, "and also by
the present method in Sec. IV above, we are able to say
that the present calculation is simpler by an order of
magnitude.

The value of the present method is amply illustrated
by the calculations of Secs. IV and V above. We expect
that the renormalized particles are also useful in the
treatment of transport problems, although such appli-
cations are not considered here. In the following paper
we try to develop the Hamiltonian commutator equa-
tions into a method for treating more dificult non-
perturbation problems.
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