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Spontaneous Magnetization in Idealized Ferromagnets*
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An attempt is made to clarify the concept of "spontaneous magnetization" in idealized ferromagnets such
as the Ising and Heisenberg models. Some definitions in common use are discussed; their equivalence is not
obvious. It is shown that a value based upon the probability distribution of the total magnetization cannot
exceed the spontaneous magnetization based on bulk thermodynamic properties when the magnetization and
exchange operators commute. A convexity argument shows that a definition of spontaneous magnetization
based on minima in the (bulk) free energy is not applicable to systems with short-range interactions. Refer-
ence is made to difficulties arising when magnetization and exchange operators do not commute.

OE=gp Q S,'.
i

(3)

In these expressions y, 8, and g are numerical constants,
p is the Bohr magneton, and the "exchange" constants
J;;depend only on the relative locations of atoms i and

*Research supported in part by the National Science Founda-
tion and the U. S. QSce of Naval Research.

152

I. INTRODUCTION

IMPLIFIED models of physical systems play a

~

~

~

~

major role in the eBort to understand the micro-
scopic basis of phase transitions. Among these models
certain idealized ferromagnets have an important place.
For many years the Ising and Heisenberg models, in
particular, have been investigated both because of
their (presumed) relevance to real ferro- and antiferro-
magnets and also, because of their (relative) mathemat-
ical simplicity, in the hope that they might provide
insight into liquid-vapor phase transitions, order-
disorder transitions in solids, the 'A transition in liquid
helium, etc.

In such models the occurence of a phase transition is
closely connected with the existence of spontaneous
magnetization, a state in which the elementary magnetic
moments line up parallel to each other without assist-
ance from an external magnetic field. Although the
concept is relatively simple, a precise statistical
definition thereof (not to mention an exact calculation)
poses several difficulties. As a matter of fact, more than
one definition of spontaneous magnetization is in
current use, and it is far from clear that different
definitions are equivalent. Our purpose in this paper is
to state as precisely as possible some of these definitions
and, in certain cases, point out relationships among
them.

We shall focus our attention on a model system
consisting of a regular lattice of E atoms, each with
angular momentum S (in units of h) located in a
constant external magnetic field H directed along the Z
axis and described by a Hamiltonian

K Xp HBR )
with

Xo———2 Q J;;[S;*S,*+y(S;*S;+hSpS, i)j, (2)

j. If r;, is the distance from atom i to atom j, we shall
assume that J;, is bounded by D/(r;;)~+', where iE is the
dimensionality of the lattice and D and c are positive
constants. The case where J;; is a constant J if atoms i
and j are nearest neighbors and zero otherwise is often
used in actual calculations. For y=0 one has the
so-called Ising interaction, whereas 5=y=1 gives the
Heisenberg or vector coupling.

Spontaneous magnetization is present if, with H=0,
5K in some sense attains a nonzero value proportional to
the size of the system under consideration. It is clear
that simply taking the average ('5K) in zero magnetic
field will not do. The symmetry of Xp insures that
positive and negative values of 5R are equally likely,
and hence the average is identically zero at any temper-
ature. This fact has been used to argue that equilibrium
statistical mechanics is incapable of predicting spon-
taneous magnetization. We are of the opinion that
other ways of looking at the problem, some of which

are introduced in Sec. II below, nevertheless allow a
sensible definition of spontaneous magnetization for
the idealized system described in (1)—(3).

The Hamiltonian (1) as a model of a "real" magnetic
system is oversimplified in several ways. In the first
place we have assumed that the electrons responsible
for magnetic properties are localized on particular
lattice sites and that a spin Hamiltonian gives an
adequate description of the relevant energy states.
Within this framework we have omitted the magnetic
dipole-dipole interaction between di6erent atoms —a
simplification of considerable importance, as it presum-

ably allows us to discuss spontaneous magnetization
without concern for domain structure. On the other
hand, single-atom anisotropy terms, in particular if

they commute with 5R, could be added to Xp without
substantially altering our discussion. Finally we shall

pay particular attention to the case 8=1, for then the
exchange Xp and magnetization BR commute. This is
not necessary for the definitions in Sec. II, but plays
an essential part in the discussions in Secs. III and IV.

The system (1)—(3) in the case S=i~and 7=0
provides a model for certain order-disorder transitions
as well as a lattice model for a classical gas. ' With y&0

' G. F. Newell and E. %. Montroll, Rev. Mod. Phys. 25, 353
(1953l.
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one has a quantum lattice gas of Bose particles. '
Spontaneous magnetization in the ferromagnet is
connected with a phase transition (usually identified
as liquid-vapor) in the corresponding "gas," whereas
the requirement that 5K and BCp commute corresponds to
particle conservation. '

In Sec. II we discuss, with no attempt at complete-
ness, some definitions of spontaneous magnetization
which are in use at present, both from the point of
view of formal rigor and "intuitive" appeal. An inequal-

ity relating the first two definitions is derived in Sec. III.
The implications for the second and third definitions of
a convexity theorem (an abbreviated proof of which

occupies Appendix A) for the free energy are discussed
in Sec. IV. Finally, Sec. V contains applications to the
Ising (y=0) and Heisenberg (p=5=1) models.

II. DEFINITIONS OF SPONTANEOUS
MAGNETIZATION

A. External Magnetic Field

Let us consider the average magnetization per atom,

mar(H) =X '(5R)H=X ' Tr[SRe ese]/Tr[e ~se], (4)

for a crystal containing N atoms, with 3C defined in

(1) and P = (k T) ' the inverse temperature. The
spontaneous magnetization mp shall be the limit as H
goes to zero through positive values of the average
magnetization per atom in the limit of an infinite
system:

(5)
H~p+ N~

where by lim(X —+ ~) we shall always mean the
limit of a sequence of crystals of suitable shape (e.g.,
cubes) for which "surface" energies are negligible
compared with "volume" energies. ' This limit is
necessary since for finite X (see Appendix 3), mar(H)
is a smooth (in fact analytic) function for —~ (H( ~
which vanishes at H=O.

The definition (5) has several advantages from a
formal point of view when applied to systems here
considered. For instance, the limit always exists and is
independent of the usual type of boundary condition.
To see this, we note that the free energy per atom,

f (H)=$ 'P ' ln Tr[e ~t« ~siti], (6)

related to the magnetization through

ma (H) = —(8fry/BH) r,
is convex upwards in H. Further,

f(H)= limfs (H),

~ T.Matsubara and H. Matsuda, Progr. Theoret. Phys. (Kyoto)
16, 416 (1956};16, 569 (1956).

3 T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952).
4 R. B. Grif5ths, J. Math. Phys. 5, 1215 (1964).

hp

FIG. 1. Possible prob-
ability distribution for the
magnetization.

which is known to exist under fairly general conditions
on interactions and boundary conditions, is also convex
upwards. 4 Thus

limmrr(H) =m(H) = —(Bf/BH)r

holds at all points where the right side is continuous. '
The fact that m(H) has a left (and right) hand limit at
every point guarantees the existence of (5).

The arguments of the preceding paragraph are valid
whether or not 5K and Xp confute. For example, with
a suitable change in the definition of 5R, (5) serves to
define the sublattice magnetization of a Heisenberg
antiferromagnet.

The objection is sometimes made that the N —& ~
limit is "unphysical" since experiments are always
performed on finite systems. We have discussed this
objection elsewhere' and believe the N~ ~ limit is
justified as a method of calculating bulk (as opposed
to surface) thermodynamic quantities. Nonetheless,
one must concede that the cost of formal rigor is some
loss of physical insight, since (5) is obtained by tak-
ing two limits, the order of which cannot in general be
interchanged.

B. Probability Distribution for 5K in Zero Field

Let PM(=PMt) be the projection, operator onto the
subspace spanned by all eigenfunctions of BR with
eigenvalue M. The probability PM of finding the system
with total magnetic moment M in a field H is given by

pM(H) (PM)H y

where ( )rr is defined as in (4). For H=O and a suffi-

ciently low temperature one might suppose the prob-
ability distribution for m=N 'M would have the form
shown schematically in Fig. 1: two sharp peaks at
m=~m„each with a width going to zero as N —+ ~.
Were this the case, the spontaneous magnetization
could be defined as m, or as

where j is some number greater than 0 (typically,
j=1 or 2) and ( )s denotes a thermal average, as in

(4), with H=O.
The definition (11)has disadvantages from the view-

point of formal rigor. There is no guarantee that for

~ Ref. 4, Appendix A.
s R. B. Griffiths, J. Math. Phys. 6, 1447 i1965l.
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FIG. 2. Bulk free energy
a(m) for (a) mean-fl. eld
model Hamiltonian (14)
and (b) Heisenberg-Ising
Hamiltonian (2), with pos-
sible behavior of aN(m) for
Qnite N shown by dotted
curves.

large Ã the probability distribution has the form we
have suggested —for the Heisenberg interaction, y=b
=1, it certainly does not (see Sec. V). We have not
been able to show that the limit (11) exists, or that it
is independent of boundary conditions and insensitive
to sample shape in the same sense as (5).

On the other hand, this definition (when it works) has
a simple intuitive significance: If one were at some time
to perform a "measurement" of the average magnetiza-
tion for a large system, one would, with high probability,
find a value near +m, or —m, ; other values (including
zero) would be much less likely. "Measurement" must
be understood in the idealized sense used in textbook
expositions of quantum mechanics [that is, corre-
sponding to the probability distribution psr(0)] and
not necessarily in the sense of ordinary laboratory
procedures.

A relation between p~(0) and ms defined in (5) is
proved in Sec. III under the assumption that 5K and Xo
commute. It would be valuable to know what relation-

ship exists, if any, in cases where 9R and Xo do not
commute.

C. Long-Range Correlation

Consider a system of E atoms in a cube with periodic~

boundary conditions. The relation

tV '(KP)s=g'ti'iV ' Q,Q,(S S')s
=g'ti'S —' P (S'S') (12)

where we have used periodicity to eliminate one of the
sums in the last term, suggests a close connection
between spontaneous magnetization as defined in (11)
for j=2 and "long-range order" as determined by
correla, tion functions. The right side of (12) as Ã goes
to infinity is determined by correlation functions
(Si'S, ')s for atoms separated by distances which go to
infinity with E. This suggests an alternative definition
of spontaneous magnetization m, in which distances go
to infinity after N goes to infinity:

m '=g'ti'lim(ri ~ Oe)hm(X~ oo)(Si*S')s (13)

Periodic boundary conditions are not essential,
though with other boundary conditions it is helpful to
average the correlation functions over the finite lattice
in analogy with Fisher's procedure for gases. ' It has

7 With periodic boundary conditions it is convenient to restrict
the J;; in (2) to a Gnite-range interaction in order to avoid compli-
cations of an atom interacting with itself.' M. E. Fisher, J. Math. Phys. 6, 1643 (1965).

not been shown (as far as we are aware) that either of
the limits in (13) exist, in general. And if the limits do
exist, this is not sufficient to show that ms in (11) and
m, are identical, though (12) suggests they might be.
The reader is referred to Ref. 9 for a careful discussion
of the relationship between m, and m2 in the two-
dimensional rectangular Ising model.

These formal problems should not obscure the
importance of (13) as a possible definition of sponta-
neous magnetization. Correlation functions are in
themselves of considerable interest in statistical
mechanics. They are also accessible to experimental
measurement by neutron dier action in magnetic
materials. "

D. Minima in the Free Energy

The mean-field model of a ferromagnet may be
considered the solution to a Hamiltonian of the form

3Ci———21V 'J Q S *S *

in which each atom interacts equally with every other
atom through an Ising type of exchange. If one cal-
culates the free energy" per atom as a function of
magnetization through

a&(cy '~) = iy 'P ' ln T—r[P-~—e-sate~]

(PM is defined in part B, above), and its limit

a(m) = lima~(m),
N ~rro

the resulting function possesses for T&T. two minima
at values of m, the average magnetization per atom,
different from zero [see Fig. 2 (a)].By defining sponta-
neous magnetization as the value of m&0 where the
free energy is a minimum, one obtains a result identical
in this instance with (5).

A generalization of this definition has been used by
Landau in his theory of second-order phase transitions. "
Unfortunately, its utility seems restricted to systems
which, like (14), have potentials with range increasing
with the size of the system. We discuss in Sec. IV below
why it is inapplicable to systems of the form (2) and
how it divers from the definition in part 3 above.

We should remark, however, that the notion of a
trough in the free energy, in some sense, is probably an
important feature of the spontaneously magnetized
state in both idealized and "real" ferromagnets. The

' T. D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod. Phys.
B6, 856 (1964).

' P. G. de Gennes, in Magnetism, edited by G. T. Rado and
H. Suhl (Academic Press Inc. , New York, 1963) Vol. III, p. 115.

'1 Unfortunately, there seems to be no uniform terminology or
notation for various "free energies" for magnetic systems. We
shall use the symbol a for a free energy whose natural variables
are m and T, and f for the free energy with natural variables
II and T.

' L. D. Landau and E. M. Lifshitz, Statistical I'hysics
(Pergamon Press Ltd. , London, 1958), pp. 434 Q.
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"droplet" model of condensation" as applied to ferro-
magnets suggests that a trough corresponding to the
stability of the system against the formation of regions
of reversed magnetization smaller than a certain critical
size may have an important influence on kinetic
properties, '4 though it does not show up in the bulk
free energy.

III. A RELATION, BETWEEN DEFINITIONS
AAND B

In the case where 5K and Xo commute, one can show

that the probability of finding a value of average
magnetization per atom outside the interval [ mp, mp—j,
with mp defined in (5), is vanishingly small for a large

crystal. A precise statement is found in the theorem and

corollary 1 below. The theorem, unfortunately, places
no restrictions on the probability distribution inside the
interval [—mp, rep]. This distribution might have sharp

peaks, as suggested in IIB, with m, equal to or less

than mo, or it might have a single sharp peak at m=0,
or any of a large number of other possibilities. The
reason why it is dificult to relate a "thermodynamic"
definition of the form (5) to the detailed probability
distribution will become clearer upon examining Sec. IV
below. In essence, the bulk thermodynamic properties
provide a rather coarse description of the physical
situation at a phase transition. The principle result of

the present section is, thus, an inequality between the
definitions (5) and (11):

m;&mo, (17)

p~™o~~e~~~ (18)

for a suQiciently large system.
In the proof we use the following lemma: Given

m*& mo, there is an m' in the interval mo& m'&m* and

an H'&0 such that

f(H') &f(0)—m'H, (19)

"J.Frenkel, EAsetic Theory of Liqgids (Dover Publications,
Inc. , New York, 1955), Chap. VII.

"R.B. GrifBths, C.-Y. Weng, and J. S. Langer, Phys. Rev.
149, 301 (1966).

for a more precise statement, see corollary 2 below.

Perhaps it is well to emphasize that even (17) is not
known to hold in the case where 5K and Xo do not
commute.

Let m=M/E denote the average magnetization per
spin and p~(m*, H) the probability of finding m&m*,
that is, the sum of the p~(H) defined in (10) for
~)am+

Theorem. For any m*&mp defined by (5), and

provided 5K and Sco commute, the probability with
H=O that m exceeds m* goes to zero exponentially as

E goes to infinity. That is, there is a 6&0 depending on
m* such that

where f is the function defined in (8). From (5) and (9)
we see there is a sequence HA:&0 tending to zero as
k —+ ~ such that

mp ———f'(H p) (2o)

exists and tends to mo as k ~ ~. For m' choose some
mp&m* and let H be the corresponding Hp. Then (19)
merely expresses the fact that since f(H) ~s convex
upwards, f(0) lies on or below a line drawn tangent to
f(H) at H'."

To prove the theorem we note that (10) implies

p~(H) =p~(0)ee ~ee~[~&&~i r&w], (21)

m the cuse zvhere 3CO used 5K commlte. Upon summing

(21) over values of M&Ãm*, with H&0, we have

1&p"(m*,H)& p"(m*,0)ee~~ *ee 'f&&~i r&iP&~, (22)

the first inequality reflecting, of course the fact that e

is a probability. With H' and ns' chosen as in the
foregoing lemma, define

8=-', H'(m* —m') &0. (23)

Now since f~(H) converges to f(H), we can choose E
large enough so that the absolute difference is less than
pib both at H=O and H=H'. It follows from (19) that

f~(H') —f~(0)& —m'H' —5, (24)

which, inserted in (22), yields (18) for H=H'.
As Xp defined in (2) is invariant under time reversal

(S; replaced by —S, for all i) while 5K changes sign, it
is evident that fN(H) and f(H) are even functions of
H. In certain circumstances it is convenient to use
boundary conditions which are not invariant under
time reversal, in which case the symmetry of fN(H) no
longer holds. As long as f~(H) still converges to the
same symmetric function f(H) obtained previously,
we have the following corollary 1:The above theorem
remains valid with m replaced by ~m ~.

Another obvious consequence of the theorem is
corollary 2: For any j&0

limsup(N~ ~)X '[(,~ggj~')p]'~~'&mp. (25)

We may remark that although the limit superior
always exists for a given sequence of crystals with size

going to infinity, the result may well depend on the
particular sequence employed (we always assume it to
be one for which f~(H) converges to f(H)) and in this
sense the left side of (25) remains a trifle ill defined.

IV. CONVEXITY OF THE FREE ENERGY

Consider the free energy a"(m) defined as in (15)
but with Xp from (2) in place of Xi. In the case where

Xp and 5R commute one can show (Appendix A) that
the limiting function a(m) defined in (16) exists (with
reasonable restrictions on crystal shape) and is a sym-

"-G. H. Hardy, J. E. Littlewood, and G. Polya, Ineqlulities
(Cambridge University Press, London, 1964)& p. 94.
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metrical, convex-downwards function of m related to
f(H) by a (generalized) Legendre transformation. " In
particular one can find the magnetic field associated
with some magnetization m through

PN (0).It is hard to say how much validity this simple-
minded picture retains at finite temperatures where
considerations of entropy cannot be neglected.

H= (Bu/Bp)p) r (26) V. APPLICATIONS TO THE ISING AND
HEISENBERG MODELS

Io the case of a spontaneous magnetization mo given
by (5), the curve a(m) has a "flat bottom, "as in Fig. 2

(b), and is equal to its minimum value for all m in the
interval L

—p)pp, p)pp]. In fact, the extent of the "flat
bottom" gives a definition of spontaneous magnetization
fully equivalent to (5) in the case where OR and Xp
comxnute. A double minimum in the free energy of the
form exhibited by the mean-field model and shown in
Fig. 2 (a) is not possible and thus definition D of Sec. II
is inapplicable.

However, the free energy aN(m) for a finite system is
not in general convex downwards. " In fact, since the
probability distribution with H=O is related to aN(m)
through

pN (0)—p ()N@N(m—)/~pNfN(p) (27)

it is evident that a situation such as that envisaged in
definition B of Sec. II—two peaks in the probability
distribution —could only occur if aN (m) had two
minima. A possible situation is shown by the upper
dotted line in Fig. 2 (b). As X—+ ~, the height of the
maximum separating the minima must, of course,
decrease. Were it to decrease as, for example, 1/QE,
the factor E in the first exponent on the right side of
(27) would still insure a rapid decrease with increasing
A' of pN~(0) near p)i=0. Of course another possibility is
represented by the lower dotted line in Fig. 2 (b).
Although the valley between —mo and mo would have
to disappear in the limit E~ , this could still lead
to a probability sharply peaked at m= 0.

To see how the former situation might come about,
consider for simplicity a two-dimensional square Ising
lattice with nearest-neighbor interaction at low temper-
atures. The lowest energy states correspond to all the
moments pointed "up" or "down, " in our notation to
m/gp=+ p or —p. A state with m=0 can, however, be
produced by having half the spins pointed up and half
down. This raises the energy by an amount on the
order of ¹",the minimum energy required to insert a
border between the "up" and "down" spins. Such a
"surface" energy is negligible compared with the bulk
energy as S~, and so has no inQuence on bulk
thermodynamic properties. Such surface energies are,
however, of importance in calculating the probability

~6 For a convex function there is no particular diKculty in
defining a Legendre transformation even when the second deriva-
tive vanishes or the first derivative is discontinuous. See Ref. 6,
Appendix C.

» Our observations in this and the following paragraph are not
original. See T. Hill, J. Chem. Phys. 23, 812 (1955); S. Katsura,
Advan. Phys. 12, 391 (1963). However, since the connection be-
tween probability and the theorem on convexity of u(m) can
easily lead to confusion if misunderstood (see references in the
article by Hill), a brief discussion here may not be out of place.

A major problem in discussing spontaneous mag-
netization in idealized ferromagnets is that the number
of instances where exact solutions or even good approx-
imations exist is quite limited. Most progress has been
made in one-dimensional systems, where one knows
from fairly general arguments that Ising models with
finite range interaction exhibit no phase transitions"
and it is suspected (though by no means proved) that
the same is true for more complicated cases as, for
example, the Heisenberg ferromagnet. '"

Ising models in two dimensions have received
considerable attention, and a great deal is now known
about their properties in zero magnetic field. Of
particular interest is a calculation by Yang" of the
spontaneous magnetization as a function of temperature
for the square Ising model with nearest-neighbor
interactions. This result has been discussed critically by
Schultz, Mattis, and Lieb, ' who show that Yang's
procedure is not really equivalent to (5), but his result
is equal to ms in (11)and m, in (13).From the discussion
in Sec. III above it is evident that mp in (5) certainly
cannot be smaller than the value Yang has calculated,
a fact also evident from the discussion in Ref. 9.
Calculations on small systems by Katsura20 give support
to the suggestion in Sec. IIB that the probability
becomes sharply peaked around values of &m, different
from zero. Further investigations of this point would
certainly be of interest.

Nothing is known with certainty about Ising models
in three dimensions, though a fairly simple argument
by Peierls"—rigorous versions of which have been
published independently by the author" and by
Dobrushin" —is easily extended to a simple cubic
lattice. It shows that p)pi in (11) is greater than zero at
low temperatures, and gives a lower bound on mo.

The Heisenberg coupling (y=b=1) is presumed to
lead to a spontaneous magnetization in three-dimen-
sional crystals, though this has never been proved.
The use of a vector coupling means that the Hamil-

"M. E. Baur and L. H. Nosanow, J. Chem. Phys. 37, 153
(1962).'"Soke added ie proof. N. D. Mermin and H. Wagner, Phys.
Rev. Letters (to be published) have recently shown that one- and
two-dimensional Heisenberg ferromagnets cannot exhibit a spon-
taneous magnetization in the sense of definition A above."C. N. Yang, Phys. Rev. 85, 808 l1952l."S. Katsura, Progr. Theoret. Phys. (Kyoto) 11, 476 (1.954).

"R.Peierls, Proc. Cambridge Phil. Soc. 32, 477 (1936).
"R.B. Grifhths, Phys. Rev. 136, A437 (1964).
"R.L. Dobrushin, Teoriya Veroyatnostei i ee Primeneniya 10,

209 (1965).The argument has recently been extended to the case
of interactions involving other than nearest neighbors by J.
Ginibre, A. Grossman, and D. Ruelle, Commun. Math. Phys.
(to be published).
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tonian Xo commutes with all three components of the
total angular momentum:

S=g;S;.
Consequently for each state E and s component of
magnetization M there is a set of states degenerate in
energy with s components of magnetization M—1,
M —2 1—M, —M. And thus psr(0) as defined in

(10) is monotone decreasing in lM l. In particular, it
is impossible for p&v„(0) to have two peaks. Perhaps of
more interest in this case is the probability distribution
for the total-angular-momentum quantum number ST.
One might suppose that the appearance of spontaneous
magnetization would correspond for large X to a sharp
peak in the probability around some value of Sr/1V =m, .
In this case one would expect p&v„(0) to be essentially
constant for —m, &m&m„and close to zero outside
this region. Only further investigation can confirm or
rule out this possibility.

VI. CONCLUSION

We hope the above discussion has served to indicate
some of the ambiguities and problems which beset the
discussion of spontaneous magnetization in idealized
magnetic systems. Since these systems provide some of
the simplest examples of phase transitions, it seems
safe to assume that analogous problems exist in discuss-
ing liquid-vapor transitions, order-disorder phenomena,
and the like.

Even the few relationships among different definitions
obtained above depend in a critical way upon the fact
that 5K and Xo commute. Cases where this does not
occur—e.g., the spontaneous sublattice magnetizations
in ordinary antiferromagnets —present nontrivial prob-
lems which we believe are worthy of further research.
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are similar, our comments will be brief. For simplicity,
we set gp, equal to 1.

The definition (A1) may be extended to all values of
m in the closed interval [—S, S]by linear interpolation
between the discrete values for which Nm is an eigen-
value of 5tt;. As the eigenvalues of Xo lie in some interval
of the form' [ CE—, CX) and the trace (A1) contains
at least 1 and at most (2S+1)~ nonzero terms, we
have the bounds

—C—P ' In(2S+1) &a&v(m) &C. (A2)

We suppose that our system of E atoms is composed
of two subsystems 1 and 2 (e.g. , two halves of a cube)
containing K and I.atoms, respectively, with %+1.=1V.
The Hamiltonian Xo( ) contains all terms in Xo involv-
ing only atoms in system 1 and Xo(') is similarly
dehned for system 2. Thus

Xs=X st'&+Xs &'&+X', (A3)

where X' includes all terms in Xo which simultaneously
involve at least one atom in each subsystem, that is,
X' constitutes a "surface energy. " Further, if 5':~ and
5':2 are total magnetization operators for the sub-
systems, we shall assume that each operator commutes"
with both Xst" and Xe"& Therefore 9K=ORt+OTts,
since it commutes with Ko, also commutes with X' as
well as Xo(') and XD"'. Consequently, in evaluating
the trace (A1) we may substitute (A3) and regard the
matrices Xo(&) and X' as restricted to the subspace of
eigenvectors of 5tt: with eigenvalue M; that is, all
other elements of these matrices may be set equal to
zero without altering (A1). One may then show by the
techniques of Ref. 4 that

Tr[P»re &sc']=a Tr[Psr exp —P(Xst'&+Xst'&)], (A4)

where

l»rl &plX'I (A5)

and lX' l, the matrix norm used in Appendix 3, denotes
the largest of the absolute values of the eigenvalues of
X'. We remark that (A4) with the bound (AS) depends
in an essential way on the fact that 5tt; commutes with
Xy and the Xo ~'.

I.et Psrt'&[PMt'&] be defined for the subsystem 1[2)
in analogy with I'~. The relation

APPENDIX A' EXISTENCE AND PROPERTIES
OF THE FREE ENERGY a(m)

P~=Z Pii "&Psr z "& (A6)

We assume that 5tt; and Xo commute; in this case the
free energy

tsN(X 'M) = P'E ' lnTr[P—&&re &~'] (A1)

is the lattice equivalent of the Helmholtz free energy for
a gas as calculated in the canonical ensemble. Since the
analogous problem for a continuum gas has been

'discussed in detaiP4 and the mathematical techniques

"D.Rttelle, Helv. Phys. Acta 36, 183 (1963); 36, 789 (1963);
M. K. Fisher, Arch. Ratl. Mech. Anal. 17, 377 (1964).

permits us to express the right side of (A4) as a sum of
positive terms

r P Tri[P&tt'» exp( —PXet'&)]

XTrs[P&its& exp( —PXet'&)], (A7)

where Tri[Trs] denotes the trace over all states of
system 1 [2].

2'~1 commutes with 3!0(') and SR& with 3!0(') because they
operate within different subsystems.
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as»(m)+dp (A9)

is monotonically decreasing in k, where d~ is a suitable
sequence of numbers going to zero as k —+ ~. As the
air(m) are bounded from below by (A2), the sequence
possesses a limit a(m) as k becomes infinite. One can
then show that the same limit is obtained for other
simple sequences of finite systems (e.g. , rectangular
parallelepipeds with all three edges going to infinity).

The limiting free energy a(m) is convex downwards,
bounded by (A2), and therefore continuous" in the
interior of the interval [—S, S]. The presence or
absence of jump discontinuities at the end points [i.e.,
one may have a(S)&lim(m —+S)a(m)) is a delicate
manner we shall not discuss here."The functions aiv(m)
are not, in general, convex in m. For fixed m they are,
on the other hand, monotone decreasing and convex
upwards in T, and this property is "automatically"
inherited by the limiting function a(m).

The equivalence of f(H) and a(m) for the thermo-
dynamic description of the system may be shown as
follows. Using the definitions (4) and (A1), we have

e e t&&~i =P ee~~ exP[ PNatr(N 'M) j—. (A10)

The sum contains 2NS+1 non-negative terms. It must
be greater than the maximum term and less than
2NS+1 times the maximum term. Thus we may write

fN(H)& fN(H)& f~(H)+(pN) ' ln(2NS+1), (A11)

where

fear

(H) =min[atr (m) —mH] (A12)

"Reference 15, p. 91."The continuity of the ground-state energy at the end points
for a particular case of the Hamiltonian (2) with spin se has been
proved by C.N. Yang and C. P. Yang, Phys. Rev. 147, 303 (1966).

Define ax(m) and az, (m) for subsystems 1 and 2,
respectively, in analogy with (A1). Combining (A1),
(A4), (AS), and (A7) we obtain the basic inequality

air(KN 'mi+LN 'ms) &KN 'atr(mi)

+JN 'a, -(m,)+N 'lx-'I . (Ag)

The derivation of (Ag) has been carried out only for
appropriate discrete values of m~ and m2. Its extension
to all values in [—S, Sj with the a's defined by linear
interpolation [see paragraph following (A1)] is im-
mediate, as is its generalization to the case of more
than two subsystems.

The remainder of the proof is carried out in close
analogy with arguments given elsewhere, so we omit
details. For a given nz, one considers a sequence of
cubes k=2, 3, containing %~=2'~ atoms and shows
that

is the Legendre transform" of the function aiv'(m),
the "convex-cover" of aN(m); that is, it is convex
downwards and, for every m, greater than or equal to
any convex-downwards function everywhere smaller
than atr(m).

The sequence air'(m) converges to the same limit as
the aiv(m). For the special sequence (A9) this follows
from the fact that a(m) is a convex-downwards function
less than as»(m)+ds, and thus less than as»'(m)+di„
for every k. Convergence of the former sequence thus
implies convergence of the latter. Extension of this
result to other than the standard sequence is not
dificult.

Now (A11) shows that fN(H) converges to the same
limit as fir(H), namely f(H). But as fN and aiv' are
convex functions related by a Legendre transformation;
the same is true of the limits f(H) and a(m)."

APPENDIX B: PROOF THAT mdiv(H) IS
ANALYTIC FOR A FINITE SYSTEM

For a system of Ã spins, BCO and 5K are bounded
Hermitian matrices in a d = (2S+1)~-dimensional
space. We shall show that

Z~(H) =Tr[e-e(xo-ttsK) j (B1)
is an entire function of H. For the case where Ko and 5K
commute this follows immediately from the fact that
Z is a finite polynomial' in e g»~~'. When 3CO and 5K do
not commute, the exponential can be expanded in an
infinite series of terms, each a product of H to some
power multiplied by factors of P, 3Co, and OR. The series
formed by taking the trace of each term it absolutely
convergent, and inay therefore be rearranged as a
convergent series in powers of B. To prove absolute
convergence we introduce a matrix norm29 with the
properties

I (I+tIll &
I &I+ I I

(B2)

where 8 and (9 are matrices and b a number. The series
for Ztr(H) is then bounded by

dm(pl30oI+plHI l~l). (»)
Finally we note that for H real, ZN(H) is the trace of a
positive matrix and cannot vanish. Thus f~(H) is an
analytic function for real H and so is its derivative
mar(H).

' Reference 6, Appendix C."P. R. Halmos, Fertete Dsltensso»al -Vector SPaces (D. Van
Nostrand Company, Inc., Princeton, New Jersey, 1958),pp. 176 ff.


