
pHvslcAI REvIE%' Vol. UME lS2, NUMSER 2 13RCEM HER 1966

Theorem on Spin Waves in Helical Syin Structures Adapted
from the Goldstone Theorem

R. J. ELLIOTT

Department of Theoretical I'hysics, Oxford University, Oxford, England

R. V. LANGEtf

Atomic Energy Research Estaw~shment, IIanvell, England
and

Department of Theoretical Physics, Oxford University, Oxford', England

(Received 7 June 1966)

It is shown that rare-earth metals and other substances which display helical spin ordering have no energy
gap in their spin-wave spectra even in the presence of an external magnetic field. The field is not treated in
perturbation theory. Rather, the ideas of the relativistic Goldstone theorem are adapted to this problem
and the result is proved by using only the linearization usual in spin-wave theories, the symmetry of the
ground state, and the finite range of the exchange interaction.

1. INTRODUCTION

EI ICAL, conical, and, even more complex mag-
- ~ - - netjc orderings first predicted. by Yosimori are
known to exist in the rare-earth metals' and, in some
other materials like MnAu~. ' The spin-wave spectra of
such structures are complica, ted, but their study has
been begun by magnetic-resonance, neutron-djRrac-
tion, ' specific-heat, ' and transport measurements. ' The
most detailed theoretical discussion at present published,
is that of Cooper et al. ' They considered in detail a
helical structure in the presence of a magnetic 6eld. in
the plane of spin orientation. In this situation it has
been shown by Nagamjya et al. ,9 that modifications of
the helical structure occur. As the applied field is in-

creased, small distortions of the helix are produced,
giving a moment along the 6cld. At a certain critical
Geld, H, there is a 6rst-ord. er transition, accompanied, in
real crystals by a lattice distortion, "to a fan-like struc-
ture with a large momclit along H. As the field is in-

creased further, the angle of the fan decreases until com-

*Part of this work. was made possible by the support of the U. S.
Department of the Army through its European Research Ofhce.

t National Science Foundation Post Doctoral Fellow.
$ Present address: Brandeis University, Waltham, Massa-

chusetts. %ork supported in part under National Science Founda-
tion Contract No. GP5374.

' M. Yosimori, J. Phys. Soc. Japan 14, 80'7 (1959).
For a review, see R. J. Elliott, in Magnetism I/A, edited by

G. Rado and H. Suhl (Academic Press Inc. , New Vora', 1965).
3 A. Herpin, P. Meriel, and J. Villain, Compt. Rend. 249, 1334

(1959}.
4 B.R. Cooper, F. Rossol, and R. V. Jones, J. AppL Phys. 56,

1209 (1965).
~ H. S. Mgller and J. C. G, Houmann, Phys. Rev. Letters 16,

737 (1966}.
'O. V. Lounasmaa, Phys. Rev. 126, 1352 (1962); 128, 1136

(1962); 129, 2461 (1963); 133, A522 (1964).' A. R. Mackintosh, Phys. Letters 4, 140 (1965);A. R. Mackin-
tosh and L. K. Spanel, Solid State Commun. 2, 383 (1964).

8 B. R. Cooper, R. J. Elliott, S. J. Nettel, and H. Suhl, Phys.
Rev. 127, 57 (1962); B. R. Cooper and R. J. Klliott, ibid. 131,
1043 (1963).'T. Nagamiya, K. Nagata, and Y. Kitano, Progr. Theoret.
Phys. (Kyoto) 27, 1253 (1962).' F.J. Darnell, Phys. Rev. 130) 1825 (1963)p 132' 1098 (1963).

152

plctc fcrron1Rgnctlc alignment js achieved ln R second
order transition at H=Hy, which is approximately
twice II.. This analysis showed, that thc spin wave spec

Um wa, s continuous down to zero frequency ln thc cRsc
of a pure helix (Z~O) and at &=&f hut that
was a 6nite gap and, no zero-frequency modes Rt other
fields. In recent detailed work& Thomas and groip~ (a„d
independently Nagamiya") have shown this conclusion
of Cooper Rnd Elliott to be wrong. ""When numerjcal
errors are corrected, ~=0 to the order considered.

It therefore seems that there is a zero-frequency
mod, e throughout the helical and fan range to the ord, er
of these calcula, tions, and. this suggests a general result, "
independent of the perturbation methods used. This
conjecture is proved in this paper by a method, related
to the Goldstone theorem in relativistic theory. »

An intuitive picture of the contents of the Goldstone
theorem in a Qonrelativistic context is most easjly
formed by considering a simple fcrromagnct.
groulld state of a ferromagnet is degenerate; each
ground state is specified, by its maglietization dircctjon.
These other ground. states can be consjdcred zero
energy excitations from any given gronnd state. Thc
Goldstone-theorem technique formalizes the intujtjve
notion that there might be low-lying states which are
RI'bltI'Rllly close ln cncrgy Rnd spin con6guratjons to R
simple rotation of the entire ferromagnet. These would
be long wavelength spin waves which. , over djstanccs
less than a wavelength, look like rotations of thc mag
netization but for which the angle of rota, tjon varjcs
slowly as one moves through the crystal. A djrcct
tra»latjon « the Golds«ne theorem into nonrelativjstic
langua, ge attempts to prove the existence of such an
excitation branch with no energy gap without reference

"H. Thomas and P. Wolf (to be published)."T.Nagamiya, in Solid State I'hysics, edited by F. Seitz anD. Turnbull (Academic press Inc., New /orl{ to be pub]is ed)"' A detailed Erratum to Ref. 8 will appear in the Physica
Review."J.Goldstone, Nuovo Cimento 19, 154 (1961).
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to the details of the interactions. Only the degeneracy
of the ground state and the existence of an appropriate
conservation law, which in the ferromagnet is the micro-
scopic spin-conservation law, are invoked. There has
recently been considerable discussion"" of the content
of the Goldstone theorem in nonrelativistic theories,
and Lange" has shown that the existence of an excita-
tion mode with no energy gap can not be proved just
from the symmetry conditions and conservation laws
alone. The theorem can be expected to fail unless the
forces are of 6nite range. Rigorous results are obtained
in this paper by combining the ideas behind the Gold-
stone theorem with the explicit use of the 6nite range
of the spin interactions.

This type of approach has been presented in a more
general context in another paper. "

2. FORMALISM

Following the notation of Cooper and Elliott, we
use a model Hamiltonian

X=—P P J,;S; S,—K P S;rs+) PP P S,t, (1)

which has the essential features, viz. , exchange, anisot-
ropy, and a field applied in the plane. f' is chosen as the
symmetry axis, $, r) as directions in the plane per-
pendicular to f )is a.long and rf is perpendicular to H.
In the rare earths the spin arrangement is such that the
moments of all the atoms in a given layer perpendicular
to the symmetry axis are the same, but the moments
vary in direction, and, possibly slightly in size, from
layer to layer. Taking the angle bet', ween the moment in,

the arith layer and the P axis as 8„, we define a new set
of axes for each layer with Z„along the moment
direction.

X.= —(,
Y = —g sin8 +sf cos8„,
Z = ( cos8„+sf sin8„.

(2)

E= —P P J,;M,M; cos(8;—8,)—P XPH cos8;. (4)

In equilibrium the free energy is a minimum. The
entropy will, however, depend only on the p; and not on
the t)t;. Thus one set of conditions for equilibrium is

BE/88, =2 P J,;M; sin(8, 8,)+)4PII sin8;=—0. (5)

The moment p is proportional to the ground-state
expectation value of S„,

p„=—XP(0iS zi0)= —XPM

where X is the Lande factor taken with negative sign.
For the perfect helix, 0 varies linearly with the posi-

tion of the layer along the f axis, say, like 44t The .wave-
length 2s./44 is not in general commensurate with the
lattice spacing c, i.e., 44c/2s is an irrational number. The
actual values of t =ric are discrete, but if 8 is always
referred to the range —m to x, all values of 8 will be
found. with equal probability. In the distorted spiral, 0 is
no longer linear, but has a periodic variation of wave-
length 2s./44 superimposed on the linear function 8= Kt.
In the fan phase, a periodic variation is found about
8=0 (see Fig. 1).

Using a semiclassical approximation for the spins, the
total energy of the system in this coniguration is
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pro. 1. The functions 8(f') appropriate to various conf'igurations
are: I, helix (H=O; 8=8tg) ' II, distorted helix (0(H &H,); and
III, fan (H, (H (Hf). The hatches on the g axis mark the points

I4c 8(nc) an=d 8'. (Nc) are the values appropriate to the 44th layer.
The transformations among ground states correspond to horizontal
translations of these curves.

'4 A. Klein and B. W. Lee, Phys. Rev. Letters 12, 266 (1964);
W. Gilbert, ibQ'. 12, 713 (1964)."R.V. Lange, Phys. Rev. Letters 14, 3 (1965).

'6 R. V. Lange, Phys. Rev. 146, 301 (1966).

The ground state described above is always de-
generate. For the perfect helix (H=O), this degeneracy
is simply understood in terms of the invariance of the
energy when an arbitrary phase angle is added to 0. It
may also be considered, as a movement of the spin order
relative to the lattice. Looked at this way, it is obvious
that a similar degeneracy will exist in the distorted
structures (HNO) corresponding to a movement of the
curves in Fig. 1 parallel to the f' axis. The 8; will readjust
to remain in equilibrium. If we regard 8 as a continuous
function of t', then the equilibrium condition (S) will be
independent of this translation, and for later consid, era-
tion we write this

B (BE'l
o.

Bl. I B8;)

When the pattern repeats exactly after, say, v layers
there is only a 6nite set of 0 values, 8~, , 0„, which are
explicitly determined by (5). The continuous function
8(i') cannot then be defined, and it is not immediately
clear whether there is a degeneracy in the ground state
such as that given by Eq. (6). We may, however,
extend the argument to cover this case. Nagamiya
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et al. ' showed that the repeating distance, whose inverse
is ))/2s. , varies with H. As H increases, ~ changes from
the pure helix value ao, has a discontinuous change at
B„and then goes smoothly back to ao at Bf. We can
say that the slope of the mean line in region II of Fig. 1
should vary slightly with H, as will the period of the
oscillations in II and III.

Thus, if we are ever at a commensurate situation we
can move to an incommensurate one by a slight varia-
tion of H. In that case, 8(f') is defined and we can move
to a degenerate state by a translation. Reversing the
variation of Bwill then return us to a state of the com-
mensurate situation degenerate with the first, and
diferent from it. We therefore conclude that the
degeneracy theorem will hold for all commensurate
cases which can be reached from incommensurate ones
by a small change in H. This is not true when ~=0 or
s./c, i.e., at the zone center or the zone boundary,
corresponding to simple ferro- and antiferromagnetism.

In each of these two cases there is a single ground
state when H&0. For the ferromagnet, all the moments
are along the field, for the antiferromagnet they set
nearly perpendicular to the field. But in the general case
of a pattern repeating after v layers there are a de-
generate set of states, obtained as outlined in the
previous paragraph, or, for example, by rotating the
helix relative to the field direction before it is applied.
Since the translation of the helix gives a continuous de-
generacy, the degeneracy is continuous in the corn-
mensurate situation. The existence of a zero-energy spin-
wave mode has been confirmed by direct calculation for
v=3 and 4, and the v= 3 case is given in the Appendix.

3. ZERO-FREQUENCY EXCITATION

The energies of the spin-wave modes may be obtained
from the equations of motion of the X and Y compo-
nents of the spins. These equations can be linearized
since they will always be used in operation on the
ground state and the spin deviations from equilibrium
may be regarded as small. For our purposes we need

~h(8S,x/Bt) = [X,S;x]

=P JgM, M, sin(8; —8,)+liPHM; sin8;

—2 P J,, (M;S;" M;S;r) cos—(8,—8;)

XPHS,"cos8;+0(—S rS "). (7)

The terms independent of the spin operators S,~
vanish because of the equilibrium condition (5).

The zero-frequency excitation should be that which
transforms the system among its degenerate ground
states. This corresponds to a rotation of the spin about
the f (or X) axis by an amount which corresponds to
the translation of the 8(f') curve. The infinitesimal
transformation which generates a spin rotation equiva-

lent to a translation of the 8(f) curve an in6nitesimal
distance @ is

V(8f) = I+iya P 8.'S.x8f,

where 8„ is the derivative of the curve in Fig. 1 at the
nth lattice-plane position. That this transforms the
ground state into another ground state can be checked
by summing over Eq. (7) and operating on the ground
state.

8)
8 S xlo)

8th ~

=2 P J 8 '(MW " M„S —") cos(8 —8„)l 0)

—XP P S "8„'H cos8„l 0&,

=2+ [P J .M cos(8„8„)(8.' —8„')—
XPH8„' cos8—„jS„r

l 0),

=0.

Thus the communtator [3'., U(8f)] gives zero when
operating on the ground state and therefore the
operator U(8l') transforms the ground state into another
state of the same energy. In other words, the spin wave
excited by +„8„'S„xhas zero en.ergy.

It remains to show that this mode is not isolated but
part of a continuum. To do this one might construct
modes which also have a wave-like variation e'"
across the crystal, and consider the limit k ~ 0. This is
equivalent to solving the general problem as attempted
in Refs. 8 and. 11, and is too dif5cult in the general case.
Instead, we shall use a method related to the Goldstone
theorem.

4. PROOF OF NO ENERGY GAP

S~ and S~~ are conjugate operators so that in the
ground state, for all times t,

&ol [s.x(~),s„"(~)]
I
o&= ~&01s.z(t) Io&8„.. (Io)

In the present situation, 8„'S„~ is the operator of
interest, and it has this same commutation relation
with S "/8 '. In the fan case, however, 8 ' can become
zero, so that this operator is riot a satisfactory con-
jugate to 8 'S ~. Instead, we use the pair

P.(&) =8.'S.x(t),

&-(&)= Z 8'S "(~)/2 (8')',

where gi is a summation of / over a finite region
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about m. Then

Z e-"«.-a-
(Ol [It„(t)4 (t) jlo&

product of L (kpi), defined by

L(kpi) =L(kpi), k/0

=i & (IIi')'~« '"'"' '-'/2 (ei')' (12) =lim L(kate), k=O,
k~o

(20)

The region in the summation is chosen to be finite, but
large enough so that

and &v(k) defined by

Dv(k)= lim P e'"'« " iQ
& ~~gv

(21)

2 (IIi')'~i/ 2 (ei')'= ~,

where M is an average moment essentially independent
of nz. If r is the linear dimension of the region, then
for kr((1

'i .—-i(OI [It„(t),4„(t)jl0&=in. (14)

where 0 is the volume of a cell of the lattice. By using
the function I which is regular at zero h, we assure that
the integral in Eq. (19) is the proper limiting form of P'
without invoking any assumptions about the relation-
ship between L(k&o) for k finite and L(0,&o). Finally, we
let the volume V tend to infinity. Since

The function

L(k pi) —P e—ia «e—Rm)j (M)

we get

lim Dv(k) = (2pr)'b(k),
P'-moo

lim lim P L„„(pr)=limL(kp~).
P~oo Pf~oc

(22)

(23)

where

I,„„() = dt'"(Oll It.(t),y„(0)3 lO),

It may be noted that if the limits are taken the other
way round the result is

will give the power spectrum in frequency of excitations
of wave vector k We know from the previous discussion
of the zero-frequency mode that when k=0, L(0,pi) is
proportional to 5(pi). The constant of proportionality
M can be determined from Eq. (14), since for any k
such that kr&(1,

lim lim g L„„(pi)=L(O,pi).
N~oo v~NQ ~+V

The summation will be analyzed through its moments
which are given by

de—~' Z L p(~)
n+v

dQl

L(k,pi) =iM-.
27r

(17)
&'4.(0)

=(Ol Z (i)', 4 (o) IO& (25)
n+V

We need to show that this 8(M) form can be obtained
in the limit k —+0. Instead of considering finite k
explicitly, we examine P„~v L„„(pi), a summation
over sites in a volume V, centered at site m. If there
are X sites in the entire crystal, then

g L„„(pr)= L(0,pi)
~gv g

dc'—P L„p((o)=i3E.
2~ egv

(26)

The first derivative is given by

The summation is over a volume V larger than (and
containing) the region introduced in the definition of
Qp, so that the special case for I =0 is

+—P'I L(k~)X P e'" «.-""'j,
ts+V

8
(18) ik g iP„—(t) = 2 P J„„cos(8„—II )

Bt &Ev Ngv, ns+v

lim P L„„(pi)=
& ~~gv

d'k
L(kpp)hv(k). (19)

(27r)'

The h summation has become an integral over the

where Ãv is the number of sites in volume V and P'
has k=0 excluded. If we first let Ã ~ pp while V and
therefore Xv remain finite, the first term in Eq. (18)
vanishes and

X(m„~.'S.v—m„tI„'S„v). (27)

The right-hand side of Eq. (27) consists of surface
terms, in that if the exchange interaction J„has 6nite
range p, then all the spin operators refer to sites within
p of the surface of V. In a corresponding expression for
the eth derivative of g„~v P (t), the right-hand side
would refer to sites within np of the surface. Therefore,
if the surface is everywhere at least a distance E from
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the sites of the spin operators in &0 we find that

d(0—cov g L„o(~)=0 for 0(p(R/P, (28)
2g mQU

APPENDIX

For a pattern repeating after v layers, we need only
consider those motions where S,x=S;+„~. There are
then v equations of type (7) as well as v equations of
type (5). They will have the same form with

since the equal-time commutator of spin operators on
diBerent sites is zero. In the V ~ ~ limit we get

Z J',~+. =Jv. (Ai)

d(d—a&p lim lim Q L„o((o)=0
P-woo +~oo +gy

Writing the Sx as a column vector, Eq. (7) may be
(29) summarized as a matrix relation

L)Sx=AS~.

for all P except I'=0, and therefore

lim L (kM) = i% 8 ((a),
R~O

(30)

From the equation of motion for S;~, a similar relation

AcoS"=BS~ (A3)

where Eq. (26) has been used to set the multiplicative
constant.

Thus the zero-frequency mode is not an isolated one
but part of a continuous spectrum. The power spectrum
at zero k is the zero-k limit of the power spectrum at
finite k. The spin-wave spectrum reaches down to zero
frequency with no gap irrespective of the external field
H. By the discussion at the end of Sec. 2, the result
may be extended to commensurate spin arrangements
other than ferro- and simple antiferromagnetism. As ~

varies with B and T in the rare earths, it passes con-
tinuously through such arrangements. It is satisfying
that the theorem holds without discontinuities at these
points.

We might add that similar results will hold for a
conical ordering, such as is found in Er, or may be
induced in a helical ordering if a component of the
magnetic field is along f. They will also hold in the
presence of anisotropy in the plane. If this is e-fold, it
will impose a further variation on 8(t ) periodic in. 2s/e,
but the argument will go through as before.

When any of these types of magnetic phase are found
at low temperatures, the specific heat and resistivity
from spin-wave mechanisms will have a simple power-
law variation with T, and this fact will not be affected
by the application of a magnetic field.
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~a= J23=J3i=~.
A typical diagonal element of A is

(A4)

JLcos (Hy
—82)+cos (Hy

—83)j+XPH cos8y

= cosHy(J cos82+J cos83+H)
+J sin8j (sinHg+ sinH~) . (A5)

But from the condition (5),

JLsin(8~ —82)+sin(8~ —83)]+AMPH sinH~ ——0. (A6)

By summing the three similar conditions of this type,

Q sin8;=0. (A7)

Using Eqs. (A6) and (A7) gives a value —J for the
right-hand side of Eq. (AS). A then has the form

i

1 COS(8],—82) COS(Hy Hg)

cos(82 —Hi) 1 cos(82—83), (A8)
cos (82—Hy) cos (83—82) 1

and the determinant is readily seen to be zero. From the
minors, the relative displacements in the zero-frequency
mode are

SP ~ S2 .S3 = sin(82 —83):sin(8& —8&):sin(8& —82) . (A9)

Unfortunately, it has not proved possible to generalize
this calculation to any value of v. The special properties
of this case which make this calculation simple to not
appear to be closely related to the general arguments
used in this paper.

may be obtained. The condition for a zero root is
det(AB)=0, and hence either detA=O or det8=0.
Since 8 will involve the anisotropy energy, detA =0 is
the only possibility.

For v=3 the fact that detd =0 may be demonstrated
by manipulation. From Eq. (A1),


