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much like a Josephson junction of variable oxide thick-
ness connected by a short. Thus, even "normal"
junctions, (which usually have a nonuniform oxide
thickness and many times contain shorts) may display
the modified LC resonance "
"D. N. Langenberg (private communication).

Perhaps the best way to excite or "energyze" the
superconducting loop, in order to force it to oscillate,
would be to place it in an external field and then quickly
turn off the field. The decaying field inside the loop
produces a voltage, which in turn will stimulate the
resonance oscillations of the system. This process, of
course, can be repeated many times per second.
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The usual derivation of Maxwell's equations for magnetic materials rests on the assumption that the
sources of magnetic field within the material can be split up into a magnetization density M and a current
density j. In metals the same electrons (the conduction electrons) contribute both to M and to j, and one is
forced to consider the question of what one means by M and what one means by j.In this paper we answer
the question for systems in equilibrium, using a thermodynamic approach. The separation of sources of mag-
netic field into M and j is to a large extent arbitrary, but can be done in such a way that M is uniquely re-
lated to the local magnetic field and j is zero for a normal metal in equilibrium, while in the mixed state of
a superconductor it satisfies the force-balance equation (j)&B)/c+P=0, P being the pinning force. The
stress tensor for a magnetic system is derived from first principles (not assuming the field equations), and
used to obtain the force-balance equation by an alternative method. Finally, two-dimensional systems such
as superconducting thin films and surface sheaths are examined by similar methods.

curlH =4sr j/c, (2)

together with the corresponding boundary conditions,
the equations relating B and H, and the condition that
in equilibrium the current density j is zero. Maxwell's

equations are not regarded as basic; they can be ob-

tained from the assumption that the field at any point
is the sum of three contributions, the field applied to
the system (which obeys the free space Maxwell's

equations), a contribution from a transport current with

density j, and a contribution from a distribution of
magnetic dipoles with density M. One is led naturally'
to the existence of two fields B and H, satisfying (1)
and (2), and related to each other by the equation

8=8+4 M.

The use of Maxwell's equations, then, involves a num-

*Work supported in part by the Office of Army Research
under Contract No. DA-31-124-ARO(D)-114.

' C. A. Coulson, Electricity (Interscience Publishers, Inc., New
York, 1961), Chaps. 6 and 7.

I. INTRODUCTION

'HE magnetic properties of substances in equi-
librium are governed completely, as far as a

macroscopic description is concerned, by Maxwell's

equations
dlvB= 0)

ber of assumptions: that the sources of magnetic field
in a material can be divided in a definite way into
currents and magnetic dipoles, that the currents are
zero in equilibrium (even in the presence of a magnetic
field), and that the magnetization density is a definite
function of the magnetic field. These assumptions are
plausible for an insulator, where the sources of the
magnetic field can be considered as localized on partic-
ular atomic sites. It is not at all clear, though, why they
should be applicable to metals. In this case part of the
magnetism (the Landau diamagnetism) is due to the
conduction electrons, and these are the same electrons as
participate in the conduction process when an electric
field is applied. None of the assumptions mentioned
above is obviously justified. One other point is partic-
ularly, worth mentioning: The j occurring in Maxwell's
equations is not in general equal to the local average of
the microscopic current density. '

The main purpose of the present paper is to discuss

To see this, note that if we ignore spin paramagnetism,
the part of the magnetic field outside a metal due to the conduction
electrons can be written in the form (1/c) curl J ( j'/r)d V, where j'
is the current density with fluctuations on an atomic scale aver-
aged out. Since the Landau diamagnetism of the conduction elec-
trons does influence the magnetic field outside the metal, j must
certainly be nonzero somewhere (in fact it is nonzero in a layer
near the surface of width of the order of the cyclotron radius).
The j occurring in Maxwell's equations, however, is everywhere
zero in equilibrium, so that j and j must be different.
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how the quantities B, II, M, and j are to be defined in a
metal. We shall show that they can be defined in such a
way that Maxwell s equations remain valid. In addition,
for a normal metal the j we define is zero in equilibrium.
For the mixed state of a superconductor the existence of
metastable states requires that the treatment b
modified. and we obtain instead the usual "force-
balance" equation' ' (jXB)/c+P=O, where P is the
pinning force. Our derivationmakes no explicit refer-
ence, however, to the concept of forces acting on Qux

lines, and we believe it to be of more general validity
than the usual derivation.

In Sec. II we define the quantities B, H, M, and j,
and in Sec. III we illustrate the method for deriving
equilibrium field equations by thermodynamic means,
with an example from hydrodynamics. In Sec. IV—VI
we apply these methods to normal metals and to the
mixed state of a superconductor, and in Sec. VII we

derive the force-balance equation by an alternative
method using the stress-tensor concept. Finally in
Sec. VIII we apply the methods developed previously
to thin films and the superconducting surface sheath.

II. DEFINITIONS OF MACROSCOPIC QUANTITIES

In view of the difhculty in defining j and M satis-
factorily in a metal, letus begin by considering what
quantities relevant to a macroscopic theory can be
defined. The best starting point is the magnetic induc-
tion B. This quantity can be considered as some suit-
able macroscopic average of the microscopic magnetic
field. Either a volume average, or a surface average
obtained by dividing the Qux through a closed curve by
the area of the curve, is suitable for this purpose. This
definition of B can be shown to be consistent with the
usual definition of B' valid for insulators. The fact that
the microscopic magnetic field is divergence free implies
that the macroscopic average B is also divergence free,
so that (1) holds. '

Now let us consider the other quantities to be defined.
First let us suppose that we have arrived at some
prescription for defining H. Equations (2) and (3) can
then be used to define j and M. By defining a surface
current

(4)

where [Hf is the discontinuity in H in crossing the
surface in the direction of n, and requiring that I be
equal to B in free space one can ensure that even though

j as defined may not be related to the microscopic cur-
rent density the total current Qowing through a wire

is correctly given by the integral of j over any cross

'C. J. Gorter, Phys. Letters 1, 69 (1962); P. W. Anderson,
Phys. Rev. Letters 9, 309 (1962).

4 J. Friedel, P. G. de Gennes, and J. Matricon, Appl. Phys.
Letters 2, 119 (1963).

~ Whenever 8 is referred to subsequently we shall mean the
macroscopic 8 just defined rather than the true microscopic 8
which varies rapidly with position.

section plus the integral of j' over the boundary of the
cross section. Similarly the total magnetic moment of a
specimen is correctly given in terms of j and M by the
usual formula (if j is zero the magnetic moment is
simply the volume integral of M).'

We now return to the definition of H. Our choice is
governed by two considerations: (i) that H be well-

defined and single-valued, and (ii) that the resulting
equations for j and j' in equilibrium should have a
simple character. For the pure superconducting state
(B=O) the first consideration restricts us essentially to
choosing H=O. In other cases 8 will be defined in
terms of the thermodynamic functions of the system.
Consider a homogeneous specimen of such a shape that
application of a suitable magnetic field produces a
uniform magnetic field in its interior. Since the interior
of the specimen is in the same state over the whole
volume, it will contribute to the Helmholtz free energy
of the system an amount f per unit volume, where f
will depend only on B, the composition of the specimen,
and quantities such as temperature and elastic strain.
We shall indicate only the dependence on B explicitly
in the following equations.

We define 8 to be 4m times the gradient of the free-
energy density with respect to B, keeping the composi-
tion, temperature, elastic strain, etc. fixed.

H=47rV'af.

Hence H, like f, is a function of B which depends on
the material under consideration. For the vacuum, f
is 8'/87r, so that 8=8 as required.

We have so far defined H only for homogeneous
systems. However, in inhomogeneous systems where the
spatial variations a,re slow we may define the value of H
at any point by making it the same function of the
value of B at the point as would obtain for a homoge-
neous system having the same composition as that
present at the point under consideration. This definition
is not valid when the composition varies appreciably
over distances such as those associated with the micro-
scopic structure (in particular the situation of pinning
in the mixed state of a superconductor), and this situa-
tion requires separate consideration (Sec. VI).

III. HYDRODYNAMIC ILLUSTRATION

The method by which field equations may be ob-
tained from thermodynamic considerations may be
illustrated by the derivation of the hydrodynamic equa-
tions for a Quid in a gravitational field. .I.et qb be the
gravitational potential, and f(p) the Helmholtz free
energy of the Quid per unit volume when the density is

These statements follow from the fact that the microscopic
Maxwell's equations allow the total current and magnetization
to be expressed in terms of integrals involving only magnetic
fields outside the metal, If in free space all the fields considered
are identical, then the same manipulations applied to the macro-
scopic equations allow these integrals to be related to the j and
M defined by the macroscopic equations.
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p (in zero gravitational potential). If the fluid is con-
fined to the interior of a rigid container enclosing a
volume V, its free energy is

while its mass is

(f(p)+w) «, (6)

M= pd V.
V

(7)

Since the walls of the container keep the mass of the
system constant but do no work, the equilibrium condi-
tion is that SIC is zero for processes occurring at constant
temperature, subject to the constraint Bf=0. The
constraint may be taken into account by using a
Lagrange multiplier p, o, giving the result

so that

(f(p)+pl pro)d V=0)

i.e.,
p+Q= go= const,

where p= 8f/Bp is the chemical potential per unit mass
(for &=0). The hydrodynamic equation in its usual
form,

(9)—pVQ —Vp= 0,

may be recovered by taking the gradient of (8),
multiplying by p, and using the result pdp= dp.

The variational method may be applied to more com-
plicated systems, such as a gas in equlibrium with its
solution in a liquid. The foregoing analysis still holds,
with p for the liquid phase now being the concentration
of the dissolved component rather than the total
density. In this case (8) implies not only the field equa-
tion (9) but also a boundary condition, namely the
equality of the relevant chemical potential on the two
sides of the boundary between the gas and the solution.
This system is, as will be seen, closely related to a
magnetic system consisting of partly magnetic material
and partly vacuum (the magnetic material playing the
role of a "solvent" for the magnetic field).

The basic assumption of the above approach to field
equations is the existence of a free energy of the type
(6), i.e., a volume integral of a free-energy density.
In real systems the free energy cannot be regarded as
infinitely localizable, and we should therefore consider
the modifications, if any, introduced by using a non-
local free-energy expression. The field equations will
clearly become nonlocal, but the nonlocality will have
little eBect if the fields are slowly varying. At first sight
the boundary conditions will be seriously modified,
since the boundary is a region of rapid spatial varia-
tions. However, the changes in the free energy caused

by the nonlocality are important only close to the
boundary, while in a macroscopic system the dominant
contribution to the free energy comes from the regions
away from the boundary. Therefore the only result of
the nonlocality is to cause the discontinuous changes at
a boundary to become smeared out, and the boundary
conditions remain unchanged, if they are taken to
refer to the values of the field variables outside the
boundary region. This result is a general fea, ture of
systems described by a variational principle.

IV. NORMAL MAGNETIC SYSTEMS

For a special type of field geometry, there exists a,

very close analogy between magnetic systems and the
type of system discussed in the previous section, as
was pointed out by Friedel et u/. ' The geometry is one
in which the magnetic field is everywhere in the same
direction (say the z direction) and the system has
translational invariance in that direction. There is then
only one nonvanishing field component B„and this
may be considered as the "density of magnetic field, "
analogous to the gas density p in the previous section.
The analogy is seen to be deeper when we consider what
corresponds to the rigid container for the magnetic
field. The important requirement for the equilibrium
condition used above to be valid is that the container
should do no work. A suitable container for magnetic
field consists of a hollow cylinder made of a perfect
conductor, Such a cylinder maintains the Qux through it
constant. This constraint is the exact analog of the
constraint in the Quid case, i.e., that the mass of fluid
is fixed, since if we multiply the flux through the
cylinder by its length we obtain J' B,dV, which is just
the quantity obtained from (7) by replacing p by B,.

We now suppose the free energy of the system to be
given by an expression analogous to (6) (with g put
equal to zero)

f(B,)d V . (10)

No term involving the current density is included in
the expression for Ii, since the current density is
e6ectively a gradient of the magnetic field. Omitting
terms in the current density in (10) is therefore equiv-
alent to not including terms involving the density
gradient in (6), and is justified in dealing with a macro-
scopic system. In the case of the mixed state, (10)
ignores the lattice structure of the Qux lines and as-
sumes that only their density is relevant in determining
the free-energy density. Numerical calculations in-
dicate that this is a good approximation in practice. A
more general formulation of the theory, which permits
the sects of lattice structure in the Qux lines to be
taken into account, will be given in Sec. VII, but for
the moment we shall assume (10) to be valid.

Because of the exact analogy between the two types
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of systcIn uIldcl collsideratlon~ thc equilibrium coIidl-
tion for the magnetic system may be obtained im-
mediately from that previously derived for the Quid

system by replacing p by B. (and putting @ equal to
zero). The quantity analogous to p= Bf/Bp is seen to
be what we have defined to be H,/4' [Eq. (5)j.The
equilibrium condition is therefore that H, is a constant.
Since in this geometry H, and B„are zero, this state-
ment is equivalent to the assertion that j is zero.

It is of interest to note the magnetic analog to pres-
sure. Since for a fluid p= pl/, f, t—he magnetic pressure
is B,H,/4rr . f. Th—is result is in agreement with that
obtained from the general stress tensor derived in
Sec. VII.

Now let us consider the general case of arbitrary 6eld
con6gurations. In this case we must take into account
explicitly the condition divB=O, which was auto-
matically satisfied with the special geometry considered
above. This constraint on the way 8 can vary is most
simply taken into account by writing the variational
condition in terms of bA rather than 5$, A being the
vector potential. For general field configurations, it is
not convenient to regard the field as being produced by
constraints which do no work. Instead, we suppose the
6eld applied to the system to be produced by a current
distribution J(r). The work done against induced emf's
by the sources of the currents if the 6eld changes is
given by the well-known formula

dW=(1/c) (J i')A)dV

We may suppose the source currents to be Qowing in
free space, so that the macroscopic form of MaxweH's
equations is not assumed in deriving this result.

Assuming for F the form

(12)

and using the de6nition of H, we may write

sr=(i/4 )f(8 ss)dr=()/4 ) (8 LurMA}t)V

which, using definitions (2) and (4), may be transformed
into the form

(1/c) (j SA)dv+ (j'SA)dS .

J.Friedel et al. I'Ref. 4) assumed for the equilibrium condition
I'in the absence of pinning) the constancy of the magnetic pressure.
This is correct for a homogeneous system, but if the composition
varies slowly in space there is an effective force exerted on the
magnetic field by the magnetic medium, and the magnetic pressure
is not constant. The present derivation of the result that the effec-
tive chemical potential is constant remains valid even for inhomo-
geneous systems. It is likewise true that the magnetic chemical
potential is continuous at a metal-vacuum interface, though again
the magnetic pressure is not continuous.

The thermodynamic condition for equilibrium,
SIC =dW, thus reads

(1/o) (J bA)dV=(1/c) (j ()A)dV

+ (j'i)A)d5 . (13)

Since Rf is arbitrary, (13) implies the field equation

j=0, (14)

the source current J being assumed to be zero in the
region under consideration, and the boundary condition

ji 0 (15)

' A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 32, 1442 (1957)
LEnghsh trsnsL: Soviet Phys. —JETP 5, 11/4 (195'lip.

9 It is possible that this process may actually occur if the critical
current is exceeded in the longitudinal-6eld case, where the exact
mechanism determining the critical current density has not yet
been elucidated. The Aux lines would then become entangled
around each other, and the magnetic properties of the specimen
might as a result become permanently altered as long as the
specimen remained in the mixed state.

V. SUPERCONDUCTORS

The conclusions of the previous section are true only
for normal metals. For the pure superconducting state
they are not valid quite simply because Vnf is not well
defined for 8=0 (the dominant term in f for small 8
being proportional to ~8 ~). The behavior on a macro-
scopic scale of the pure superconducting state is deter-
mined completely by the equation 8=0 for the interior,
and the boundary condition that the normal component
of B at an interface is zero. The definition given for the
pure superconducting state, H=O, does not give any
extra information by itself, and was given simply in
order that the surface current density shouM be a
well-de6ned quantity.

Thc analysis of thc prcccd1ng section bI'cRks down 1n
the mixed state for a different reason, namely that the
structure of the mixed state permits metastable states
to be formed. This possibility is quite independent of
the existence of pinning centers, and its cause may be
visualized as follows. Consider a Inixed-state wire in
which the Qux lines have a helical geometry like the
strands of a rope. This corresponds essentially to a
situation where the wire is carrying a current in a
longitudinal magnetic 6eld.. The free energy of the sys-
tem can be lowered by a process corresponding to thc
untwisting of the strands of the rope. H the Qux lines
are held in 6xed positions at the ends of the wire this
untwisting process cannot occur without cutting the
Qux lines and rejoining them, which cannot happen
physica, lly on account of the large activation energy
involved. ' The clamping action at the ends of the wire
may come about in two ways. One possibility is to con-
nect the ends to a current source, in which case the Qux



lines adjust themselves so that the current through the
wire is equal to the applied current. Alternatively, the
ends may be joined together to form a loop of wire. In
this case the process of joining the Qux lines together
stops them unwinding and one has a persistent ring
current. Clearly, Inetastability in the mixed state
occurs because of the existence of the structure as-
sociated with the Qux lines, and cannot occur in the
normal state, where the concept of a Qux line is only a
picture to aid the imagination.

A second type of metastability occurs in the mixed
state and is caused by inhomogeneities on a similar
scale to that of the Qux lines. We shall defer considera-
tion of this possibility to the following section.

Metastability of the first type affects the equilib-
rium condition in the following way. The equation
8F=d8' is now true not for all changes 6A, but only for
those which correspond to continuous displacements of
the flux lines without cutting them. Let $(r) be a vector
6eld specifying the displacement of the Qux lines as a
function of position (only the component of g normal to
the flux lines having any physical significance), and let
C be any closed curve lying entirely inside the super-
conductor. If a number of Qux lines cross C, the change
in the Qux through C is equal to this number multiplied
by the Qux quantum. Using Qux quantization again to
relate the Qux line density to 8, we can write this result
in the form

bA ds=b ds= y ds,

which imply
jXB=O,
j'XB=0.

These equations replace (14) and (15). Equation (Ig)
implies that there is no surface current unless 8 is
parallel to the surface of the specimen. In this case the
surface barrier' tends to prevent the Qux lines crossing
the surface. As far as the application of the variational
principle is concerned, the surface barrier acts as an
additional constraint, requiring that only displacements
whose normal component vanishes at the surface
should be considered. In this case ((XB) j' is equal
to zero even if j' is not parallel to B. The surface cur-
rents possible in this situation give rise to the hysteresis
observed in surface-barrier experiments, '0 since the
values of B inside and outside the specimen are no longer
uniquely related. The critical value of the surface cur-
rent is determined by microscopic considerations. "

VI. EFFECTS OF PINNING

Ke shall treat the inhomogeneities which can pin
Qux lines as a perturbation. Specifically, we assume
that the free energy of the system is the sum of a term
Fo given by (12) and an inhomogeneity term Fi.
F» cannot be written in terms of 8 only as Iio can, since
it depends on the way in which the positions of the
individual Qux lines are related to the positions of the
pinning centers. We may define a pinning force P
by the relation

8Fi — (P $)dV——. (19)

The integral of the quantity 8A —(gXB) therefore
vanishes when taken round any closed curve, so that
bA (XBmust be—the gradient of a scalar, which may
be chosen to be zero by means of a suitable gauge trans-
formation. Consequently, inside the superconductor
8A can be taken to be of the form (XB„while outside
it is arbitrary. Equation (13)must therefore be replaced
by

(1/.) (J»)«=(1/, ) (j»)«

+ {j.((XB)}dl'+ {j'((XB)}d~ (16)

where theintegrals are taken over the region outside
the superconductor, the inside of the superconductor,
and the surfaces of discontinuity respectively. The held
equations resulting from the application of the varia-
tional principle for the superconductors are

(gXB) j =0, all g

((XB) j'=0, all g

That is, P is related to the change in Ii » when a Qux line
is displaced by a small amount, for the particular con-
figuration of Qux lines under consideration. P is to be
regarded as some macroscopic average which makes
(19) true when g is slowly varying in space.

The effect of incorporating the term bF» in the ex-
plessioll fol. hF is easily seeil to be that of ieplaclllg (17)
by

(20)(1/~)(3 XB)+P=0.
The angular dependence of the critical current density

in a fixed field" follows from (20) on assuming the
existence of a maximum pinning force I', for a given
density of flux lines. For j~~B, (20) predicts an infinite
critical current density. Clearly some form of instability
other than with respect to the motion of Qux lines must
limit the current density in this case (such as that
discussed in footnote 9).

' C. P. Sean and J. D. Livingston, Phys. Rev. Letters 12, 14
(j.964); M. A. R. LeBlane and D. J. GrifEths, Phys. Letters 21,
150 (1966)."P. G. de Gennes, Smpercondgckvijy of Mergls end ALloys
(W. A. Benjamin, Inc. , New York, 1966), p. 79; J. G. Park, Phys.
Rev. Letters 15, 353 (1965)."G. D. Cody, G. %. Cullen, and J. P. McKvoy, Jr., Rev. Mod.
Phys. 36, 95 (1964).



B. D. JOSEPHSON

VII. STRESS-TENSOR FORMULATION

The procedure adopted in the preceding two sections
is probably the simplest way to justify the relation (20)
rigorously. Equation (20) is normally regarded in a
quite different light, as expressing the equilibrium of a
Qux line under the inQuence of two forces, the 6rst
term on the left-hand side being the Lorentz force
and the second the pinning force. Identification of
(1/c)(jXB) as the Lorentz force is not immediately
justifiable since j and 8 are both averages of microscopic
quantities, the former being an average of a particularly
obscure type. In this section we shall rederive (20) by
a method which shows it more explicitly to be a force-
balance equation. The method is based on the stress-
tensor concept, and can be generalized to allow for the
possibility of shearing stresses in the lattice of Qux

lines. We shall not consider the latter case further
here, beyond remarking that the force-balance equation
certainly needs modification in this situation. What
we shall find in the simpli6ed case where the lattice
structure is neglected is that the identification of the
terms on the left-hand side of (20) as Lorentz and
pinning forces is correct if the only inhomogeneities are
the rapid Quctuations whose effect is contained in P~,
but that otherwise modifications in the interpretation
are needed, though (20) is still correct. The modifica-
tion is of slightly more than academic interest in the
case of the pinning force, since the mutual force between
the electromagnetic field and the lattice is what deter-
mines the elastic stresses in the lattice.

Stress tensors may be de6ned by a general procedure
for systems whose 6eld equations can be derived from a
varlational principle. "We assume that we are dealing
with systems for which the concept of a displacement of
the system is well defined. In the present case we must
consider two types of displacement, a displacement of
the crystal lattice f', having the usual meaning, and a
displacement of the magnetic field g, defined by the
previously derived relationship aA=( XB. The elec-
trons are assumed to follow the lattice to preserve
charge neutrality. "Since the displacements have a well-

defined effect on the field variables, an expression can be
derived for the change in free-energy density in terms
of the displacements, of the form

(21)

(n=l or m, and the summation convention applies to
coordinate indices). The condition b J' fdV=O then

gives rise to the field equations

af,, /ax, =f,~ (22)

The quantity (f,'+f, )$, represents the change in f
resulting when the lattice and magnetic field are both
given a uniform displacement $,, and is therefore equal
to —(af/ax, )f, Th. erefore

a af
(Z f*')= (23)

Hence if we define

~a= fap+Z f'i', (24)

then
as,,/ax, =o. (25)

S,; may therefore be identi6ed with the stress-tensor
of the system. To obtain force equations for the in-
dividual components of the system we write f as
f'+ f", where f' is the free-energy density when 8=0
and f is the magnetic free-energy density. Since f'
does not involve 8 explicitly, either f"or fmay be used
in Eq. (5) defining H. We may now separate 5,; into
two parts Sg', Sg, where

S;, =f8,,+f;, .
From (22) we have

(26)

where

and from (23),

aS,, /ax;+P, =0,

P,'= af /ax, —f, —

QP, =0.

(27)

(29)

It is clear that boundary conditions related to (27)
can also be derived.

It only remains to derive the stress tensors and to
interpret P,". S;, is simply the ordinary elastic stress
tensor for zero magnetic field. To find the magnetic
stress tensor, we note that af =(1/4ir)(H. aB) and
aA=("XB imply

af = (1/4ir)H curl(g"XB).

f,, may then be found from the definition (21) and
substituted into (26), giving

S,i"——5@(fp" HB/4~)+HQ, /—47r. (30)

If we ignore pinning, P, is equal to minus the spatial
gradient of the magnetic free-energy density at constant
magnetic field. The effect of pinning is to add to P
the quantity we have de6ned as P. Hence

"In most applications the action is the object which is station-
ary, rather than the free energy as in the present instance.

"One can also consider displacements in which the electrons
move relative to the crystal lattice and the field. The force-
balance equation resulting reduces to the result Qp, =o, where p,
is the chemical potential for electrons.

The derivative on the last term of these equations is
to be taken regarding fp as a function of 8 and r only.
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The elastic force equation has the usual form, with
P' acting as a body force. The magnetic force equation
reduces to Eq. (20), since the true Lorentz force comes
out to be

0

I.e.)
P~= (j~ll)/~+(~. )sfo" (32)

The simple form of the force-balance equation is
seen to be the result of the cancellation of two terms
~(&.).f ".

VIII. TWO-DIMENSIONAL SYSTEMS

Techniques similar to those dcscribcd Rbovc lriRy bc
used to treat systems which are effectively two-
dimensional. Examples include the superconducting
surface sheath formed when a type-II superconductor
is placed in a 6eld somewhat greater than that required
to destroy superconductivity in the bulk, ' and super-
conducting thin 6lms. Unless the applied 6eld is ex-
actly in the plane of the sheath or 61m, a "mixed state, "
ln wlilcli thc sulfacc contains Aux spots, l.c. points
analogous to Aux lines in bulk systems, where the
superconducting order parameter is zero, occurs. Field
equations can be found for systems in this "mixed-
surface state" by requiring the condition 8F=dS'
to hold for changes in the system brought about by dis-
placemcnts of the fIux spots. Here we shall indicate
briefIy the results obtained by this analysis.

In the 6rst place, it is necessary to rede6ne the sur-
face current density, to take into account the CRect of a
surface free-energy density f' associated. with the sheath
or 61m. If we define the surface magnetic 6eld H' to be
4m times the derivative of f' with respect to the normal
component of B, then the modified surface-current
density is

~'=(/4-). &&(LHj-«).
A surface pinning force P' may be de6ned in a manner
analogous to the definition of the bulk pinning force.

"D. Saint-James and P. G. de Gennes, Phys. Letters 7, 306
(1963).

Thc 6cld equation lcsultlng fI'oIQ thc Rppllcatlon of thc
variational principle is

(&/ )(j &&~) +p =o, (34)

Ke have shown that macroscopic 6eM. equations for
metals in equilibrium may be obtained from a thermo-
dynamic approach. These equations have the same form
as Maxwell's equations, provided that the appropriate
nonlinear relationship between 8 and 8 is used. The
only variable occurring in the equations which has a
simple physical interpretation is the average field 8,
and H, j, and M appear only as auxiliary mathematical
quantities. However, any quantity which can be
measured in a macroscopic experiment, such as the
magnetization of a specimen or the total current
carried by a wire, can be computed correctly by regard-
ing j Rnd M Rs thc tluc current dcnslty Rlld IQaglictlzR-
tion respectively, as was pointed out in Sec. II.

Normal metals and superconductors in the mixed
state are treated on the same footing, the differences
in behavior between the two being clearly seen to be the
consequence of the flux-line structure present in the
mixed stRtc.
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where f denotes the tangential component.
If there is a barrier present tending to prevent Aux

spots crossing the edge of the film or sheath, a current
may flow round the edge, similar to the surface current
produced by the surface barrier in bulk samples.

One interesting system to which the ideas of this sec-
tion may be applied is that of magnetically coupled
thin 6lms. "The magnetic coupling between the two
6lms gives rise to a new type of pinning force, which
modi6es the critical currents of the 61ms, as observed
experimentally.

IX. CONCLUSIONS


