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LC-Time Behavior of Weak Superconducting Loops
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We use Anderson's operator representation to obtain the radiative properties of a superconducting loop
with a single Josephson junction. We treat n, the number of displaced pairs, and q, the relative phase across
the junction, as canonically conjugate operators. Since n is related to the voltage across the junction by
V = 2en/A and q is related to the current in the loop via the fluxoid quantization, the Hamiltonian for the
system, H = ~CV'+2LI' —Ez cosy, can be reduced to operator form. By applying the Hamiltonian formal-
ism in the usual manner, the equations of motion are obtained. In the limit of small oscillation ((q ) (1),the
Hamiltonian can be expanded and yields a solution which corresponds to a resonant frequency

(2e)2E,
—

LC AC

This mode corresponds to an "LC"oscillation of the loop modified by the Josephson junction. For physical
situations, the frequency of the oscillation can be adjusted to be as high as 10"sec ', with a purity of 1 part in
10' and at a power output of 10 i W. Qnder appropriate conditions, in addition to the modi6ed LC reso-
nance, we obtain solutions corresponding to the familiar ac Josephson radiation as well as the metastab]e
flux states of a loop with a weak link.

I. INTRODUCTION
'N this paper, we report a theoretical study on the
- radiative properties of a superconducting loop with

a Josephson junction. ' The study shows that by self-
consistently including the inductance L and capacitance
C of the loop, and the properties of the junction, the
system can have radiative properties quite di6erent
from that usually associated with an isolated Josephson
junction. In particular we obtain a solution correspond-
ing to a modified LC oscillation of the loop. Physically,
this resonant mode is possible only when the inductance
is small enough to allow a harmonic-oscillator approxi-
mation for the true Hamiltonian. Since the frequency
of the radiation can be as high as 10"sec ', it may prove
useful in obtaining radiation in the experimentally
dificult Zmischeem ellen region.

In Sec. II we introduce the Hamiltonian for the loop
with a weak link. By using Anderson's operator form-
alism we are able to rewrite the Hamiltonian in terms
of canonically conjugate operators and obtain the equa-
tion of motion for the operators. In Sec. III we present
solutions which represent two limiting situations and
correspond to whether or not we can make a harmonic-
oscillator-type approximation for the Hamiltonian.
For small oscillations of the system we find a modified
LC frequency. For large oscillations, the system be-
havior is similar to the usual ac Josephson situation.
In Sec. IV we calculate the power and purity of the
modified LC radiation. In Sec. V discussion is presented
concerning maximizing the parameters so as to enhance
the ability of the system to oscillate with the modified
LC frequency.
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FIG. 1.A superconducting
loop of inductance L in-
terrupted by a Josephson
junction of capacitance C
with coupling energy Ez.

~P. W. Anderson, in Lectures on the Many-Body Problem,
edited by E. Caianello (Academic Press Inc. , New York, 1.964),
pp. 113—135.' For a junction thickness hx(=10 ~ cm), which is very small
compared with the loop dimension, we are safe in neglecting the
line integral across Ax. Except ig $gc, IP and the caption of Fig. 2,
we have let c=1,

II. THEORY-OPERATOR FORMALISM

The system we wish to investigate is represented in
Fig. 1 and consists of a superconducting loop of induc-
tance L interrupted by a single Josephson junction of
capacitance C and junction coupling energy Ez. To
study the radiative properties of the loop, we make use
of Anderson's operator representation' in which we
treat e, the number of displaced pairs, and g, the rela-
tive phase across the junction, as canonically conjugate
operators such that [p,nj=r'. In the operator represen-
tation, the Hamiltonian for the loop is given by
II= ',CU'+ ,'LI' E-q cos p-wh—ere —E~ cos p repre-
sents the Josephson phase coupling energy, U= (2ers/C)
is the voltage drop across the junction in operator form,
and I is the current in the loop. For a thick loop, the
phase continuity condition implies p+ y= 2mrr(m=O,
&1, &2, ) where q is the phase associated with the
magnetic Aux enclosed within the loop and is, therefore,
related to I by the relation'
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where LI is the Rux in the loop and Cp is the Qux quan- the Hamiltonian. This field can be important in de-
tum h/2e. Substituting for I and V the operators p and termining the resonant modes of oscillation of the
e, the Hamiltonian obtained can be put into the form junction treated as a cavity. )

2e2

H= + p Eg c—osp,
C Se'L

=BI,g—Eg cosy

and Hl, g can be written as

(2)

By applying the Hamiltonian formalism in the usual
manner, the equations of motion obtained are

dq Py, Hj 4e'e 2eV

dt ik AC
(6a)

a'r, ~———,'b r, c(N'+C') (3)

where ~r,c= 1/(LC)'" is the usual resonance frequency
and

C'= (p/po, N= poN, [O',N j=i
with

—(2g)2/ L 1/2-1/2

kC

III. APPROXIMATE SOLUTIONS OF THE
OPERATOR EQUATIONS

Equations (6a) and (6b) are a set of highly nonlinear
operator equations whose solutions are quite dificult
to obtain. From the Hamiltonian equation (2), how-
ever, we see that the contribution of these higher order
nonlinear terms depends critically on whether or not
the operator (Ez/A) cosy can be replaced by the
approximate operator

(E~/&) (1—
2 v'),

which is valid for small oscillation in phase. In the calcu-
lation which follows, we assume we can make such an
approximation. After obtaining the new Hamiltonian
and equations of motion we will return to ask: under
what conditions was the expansion of the operator cosy
valid? Replacing the operator cosy by (1—x~q'), the new
Hamiltonian can then be written

II~Hr, c ', h~r, c(N——'+-4'),
where

gJ
y— sijiy()L A

de [n Hj

dt ik 2e ' (6b)

with

cuI g= [~rc'+ (2e)'EJ/6 Cj'
C = y/po, += poN) [C'~Ej=i,

The first equation is the same as in the usual ac
Josephson effect. ' The second equation, however, is new
because we have included the inductance of the loop.
Equation (6b) reduces the usual dc Josephson equation

Jg= (2eEg/h) sing

when the inductance L is large. In addition, if we ask
for the steady-state solutions of Eqs. (6a) and (6b),
we obtain the conditions

(Eg/A) sing =[—A/(2e)'Ljq, U=O; (7)

which are the equations for the metastable current-
carrying states of the loop with a single Josephson or
"weak" link. ' The exact time-dependent solutions to
Eqs. (6a) and (6b) are diflicult to obtain because of the
nonlinear coupling term (Eg/h) sing. In the usual ac
effect, harmonics and subharmonics occur in substantial
proportion because of the contribution of higher order
terms of &p in the expansion of sing. ' Equations (6a)
and (6b) are quite general equations of motion for the
loop with a weak link and contain, under appropriate
conditions, all the previously discussed solutions. (In
the presence of a magnetic field at the junction, terms
involving the gradient of the phase must be included in

4 B.D. Josephson, Phys. Letters 1, 251 (1962).' A. M. Goldman, P. J. Kreisman, and D. J. Scalapino, Phys.
Rev. Letters 11, 495 (1964); B. B. Schwartz (unpublished);
J. Mercereau (unpublished).' D. N. Langenberg, D. J. Scalapino, B. N. Taylor, and R. E.
Eck, Phys. Rev. Letters 11, 294 (1965).

(2e)'/C

-(&'/(2e)'L)+Ez-

-]/4

'R. E. Eck, D. J. Scalapino, and B. N. Taylor, Phys. Rev.
Letters 13, 15 {1964).

Equation (8) is a good approximation when (q')(1.
We can simply determine the "root-mean-square"
value of p, which we denote by q, ,=(y')'/', by
realizing that the average "potential" or "kinetic"
energy of a harmonic oscillator is just half the energy of
the system, so that

—,A(or, c(e') =-, e/
———,h~r, c(l+-, )

and
~-.=poH')'"= po(i+2)'"= p &1 (9)

Equation (9) gives the restriction for which we expect
the harmonic approximation to be a good one. Thus,
whenever Eq. (9) is satisfied, the system obeys a
harmonic equation and oscillates at a modified LC
frequency

~l,c= (cur, c'+ (2e)2Eg/CI/)'/'

It is important that one should not confuse the expan-
sion in powers of y with treating the coupling energy as
a perturbation.

To enhance the possibility of observing the modified
LC oscillation, the parameter pp should be as small as
possible so as to justify the small-oscillation expansion
even when l is large, viz, p«1 even if l&)1. Physically
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realizable values for C and L are 10' cm and 10 ' cm
(cgs units), respectively which, for a junction coupling
energy E& on the order of a few electron volts, results
in a value for ps= 10 ' (see Fig. 2). These same values
of L and C produce an LC frequency col.&=10" sec '
which for most physical situations (Ez&S eV) is
larger than Anderson's term

((2e)2+J/CQ)1/2
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in the modified frequency. Therefore, one is able to
excite the system to a state 3= 10', and still remain in
the small oscillation limit p~= peti'"= to. The transi-
tions from states (l ~ 1—1) will give rise to dipole
radiation at the modified frequency. The magnitude
and purity of this radiation is discussed in Sec. IV.

The oscillations of a Josephson junction in an open
circuit (L= eo) was considered earlier by Anderson. '
In that case po is typically on the order of 1 or greater
so that even the zero point motion of the system violates
the requirement of small excursion in p. Since both the
capacitance and EJ scale linearly with the junction area,
the value for po cannot be decreased. Only by including
the inductance term can the value of p™0be adjusted to
be less than one.

The situation opposite to that discussed above is the
limit p™P)1.In this case higher harmonics cannot be
neglected and a solution of the full operator Eq. (6b)
is required. Differentiating Eq. (6a) and inserting the

FIG. 3. A schematic representation of a half-cycle in the time
behavior of the loop when ~i&&1. Note there are two main fre-
quencies: ~z= 2eV/h and a&so = 1/(LC)'~s.

result into Eq. (6b) we have

d'y/dt'+tt'q/LC+ JEST(2e)'/C] sing=0. (10)

Equation (10) corresponds to the equation of motion for
a pendulum in a gravitational field suspended from the
center of a coil spring. ' If Eq. (10) is treated classically,
then for times such that (It'/LC) ip(t) is small compared
to Eq(2e)'/C, the behavior is precisely that for the
usual ac Josephson effect. In this situation, the system
oscillates at a frequency determined by the instan-
taneous voltage across the junction according to
2eV(t)/t't. For times such that (tt'/LC)k(t) is greater
than Ez(2e)s/C, Eq. (10) reduces to the motion for the
usual LC oscillation of the loop. A sketch of the motion
is presented in Fig. 3.

The restriction on the magnitude of p& has a very
physical meaning. One can determine the ratio of the
maximum allowed Josephson frequency to the LC
frequency col, z, or what turns out to be equivalent, the
ratio of the maximum enclosed Aux to the Aux quantum.
Since the mean-square value of the number and phase,
or equivalently voltage and current can be related to
the energy of the system, we have

FIG. 2. The 6gure indicates schematically, but not to scale, the
optimum specimen in which the modi6ed LC resonance will be
significant. The inductance L is given by 47rAi/hz, where Ai is
the area of the loop and hJ is the height of the loop, which is also
the length of the junction. The area of the loop A i is approximately
2Am', where 2X is twice the penetration depth and mi is the width
of the loop. The capacitance C is given by 1/4' (A z/l J), where A J
is the surface area of the junction and lz is the thickness of the
oxide. The area of the junction A z is equal to mph J, where m p is the
width of the junction and hJ is the length of the junction. Thus,
col,p=c/(LC)'/' and in terms of the dimensions above is equal to
city/2Xw~wq)'~2 For 2K~10. ~ cm, w~=10 ' cm, wg=10 cm,
and lq= 10 ' cm, ml, c=10"sec '. For these same values of L and
C, with hz equal to its maximum effective value 10 ' cm (approxi-
mately twice Josephson penetration depth 2XJ), p0=10 2. We
have assumed Eq is on the order of a few electron volts.

2eL(Vs))~Is 2wLP(ls)]'ts
=pl ~ (12)

Equation (12) is by no means accidental and may be
understood as follows: The Josephson junction prefers
to oscillate at its own resonance frequency while the
loop has its own I.'C frequency. If p&)1, then ~z))~l.z,
and the pairs oscillate many times across the junction

A unit-length pendulum with mass CA2/4', coil spring con-
stant k'=A'/4e'1. in a gravitation Geld with g=4Ege'/CA' has
the same equation of motion as the loop with a weak link.

Using Eqs. (11) to obtain the ratios we get the re-
markable result



210 E. E. H. SH I N AN D B. B. SCHWARTZ 152

by the Josephson mechanism before the LC oscillation
has a chance to commence. Equivalently from Eq. (12),
when p&))1 the system encloses many Aux quanta and
oscillates by converting one Aux quantum of field into
potential energy in the form of voltage across the capaci-
tor or vice versa. On the other hand if p~(1, then
~J(~1,~, and the system oscillates at the modified
JC frequency coL,&. In terms of the enclosed Aux argu-
ment, for p«1, the system encloses but a fraction of a
flux quantum (actually 0 fluxoid) and therefore
Josephson oscillation with the concomitant change of
the fluxoid is impossible.

The conditions on p& can be understood quite well by
considering the analogy with the pendulum' in a
gravitational field. When pg)1, the pendulum has a
large amount of total energy compared with the possible
gravitational energy. As a result, the pendulum rotates
through many angles of 2m before the coiling of the
spring becomes effective so as to transform some of the
kinetic energy of the moving pendulum (potential
energy of the capacitor) into potential energy of the
spring (kinetic energy due to current). These rotations
of the pendulum through 2x correspond to the usual
ac Josephson effect. When pi«1 we have the situation
of small oscillation of the pendulum system. We can
then make the harmonic approximation and obtain a
modified frequency which is related to the sum of the
effective coil spring and gravitational constants.

1
B„g———p A,

C

(13)

where we assume that A interacts with the oscillating
current only at the junction and we define the effective
dipole moment operator p to be

p= (2e)n(hx)«r (14)

with (hx)«r(&Ax) as the effective displacement (in
cm) of the dipole and

dQ
ts= (2e) (hx) «r = (hx) «rI(/) .

dt

For a radiation field of frequency cv, with unit vector of
polarization 8, A is given by

A= e(2'/'rc'/M)'"u + exp( —i(k r—cp/)) yl (15)

where a„+ is the photon creation operator and k=&p/c.
For the frequencies and junction thicknesses of practical
interest, we are safe in using the dipole approximation
exp(ik r) 1. The radiative transition probability y(/)

IV. POWER RADIATED

To calculate the power output of the spontaneous
radiation, we carry the operator formalism still further
by introducing the oscillator —radiation-held interaction
of the form

of state / is given by

2'
y(/) =—P

fg L'&l p

where p(cp) is the density of final states for the photons

p(&p)d(hcp) =4s.(Atp)sd(hcp)/(2rr bc)s. (16)

If we choose 1«/&/, and pp/t~s&10 '(pp/, =1), then

/(2e)'
y(/)=y(/~ (/ 1)) — pircsI (~x)«rls (1&)

App2c
where we have used

[(/ —1i (dn/dk) i/)i =cpcci((/ —1) in'/) (
=/' 'rpro

For the relative content of the higher harmonics, it is
suflicient to calculate the ratio y(/ ~ / —3)/y(/ ~ / 1)—
which for ppl'"&10 ' becomes

y(/~ / 3)/p(/ ——+ / —1)=(1/(3!)'(pp/'")'&10 ') (18)

which implies that the intensity of radiation at fre-
quency co=3cvl, z is only one part in 10' of the funda-
mental frequency co«. This is to be contrasted with
the usual ac Josephson radiation in which harmonics
abound by virtue of the high degree of nonlinearity
inherent in the coupling.

Taking (Dx)«r= (/tx) of the junction would imply
that the charges are polarized at the oxide-superconduc-
tor interface. However, since the displacement field
may extend into the superconductor to a distance on
the order of the penetration depth X(~10 ' cm), we
can only say that (Ax),« takes a value somewhere in the
range Dx&(hx)«r&(2K+Ax) or more precisely 10 '
to 10 ' cm. For orL, & typically on the order of 10"sec ',
/=10' pp=10 ' and (Ax)«f 10 ' cm, we obtain
y(/)~10 "W.

V. CONCLUSIONS

Since the power is relatively small, the modified I.C
radiation does not have any special advantage over the
usual ac Josephson radiation insofar as power output is
concerned. It does, however, have a clear advantage
over the latter in its coherence properties as given by
Eq. (18). The power output cannot be increased much
further by changing the system to higher / or by in-
creasing ppr, e. The coherence requirement (pp/t" &1) and
the condition I „&I, of the junction restricts the
maximum possible 1, and practical geometry restricts
the value of ~l,g.

The optimum specimen in which to observe the
modified I.C resonance is schematically presented in
Fig. 2. The requirement of small L (to make pp«1)
leads to a practical shape for the loop which looks very

' For the parameters of interest LiI')]'~' is on the order of
10'(l+-,')'/' statamps which for i =100 is 10' statamps. That is
below the critical current of the junction which is typically 10~
statamperes.
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much like a Josephson junction of variable oxide thick-
ness connected by a short. Thus, even "normal"
junctions, (which usually have a nonuniform oxide
thickness and many times contain shorts) may display
the modified LC resonance "
"D. N. Langenberg (private communication).

Perhaps the best way to excite or "energyze" the
superconducting loop, in order to force it to oscillate,
would be to place it in an external field and then quickly
turn off the field. The decaying field inside the loop
produces a voltage, which in turn will stimulate the
resonance oscillations of the system. This process, of
course, can be repeated many times per second.

P H YSI CAL REVI EW VOLUME 152, NUM B ER 1 2 DECEM BER 1966

Macroscopic Field Equations for Metals in Equilibrium*

B. D. JOSEPHSON

Departntent of Physics, Unioersity of Illinois, Urbana, Illinois
and

Royal Society Blond Laboratory, Cambridge Un& ersity, Cambridge, England

(Received 9 June 1966)

The usual derivation of Maxwell's equations for magnetic materials rests on the assumption that the
sources of magnetic field within the material can be split up into a magnetization density M and a current
density j. In metals the same electrons (the conduction electrons) contribute both to M and to j, and one is
forced to consider the question of what one means by M and what one means by j.In this paper we answer
the question for systems in equilibrium, using a thermodynamic approach. The separation of sources of mag-
netic field into M and j is to a large extent arbitrary, but can be done in such a way that M is uniquely re-
lated to the local magnetic field and j is zero for a normal metal in equilibrium, while in the mixed state of
a superconductor it satisfies the force-balance equation (j)&B)/c+P=0, P being the pinning force. The
stress tensor for a magnetic system is derived from first principles (not assuming the field equations), and
used to obtain the force-balance equation by an alternative method. Finally, two-dimensional systems such
as superconducting thin films and surface sheaths are examined by similar methods.

curlH =4sr j/c, (2)

together with the corresponding boundary conditions,
the equations relating B and H, and the condition that
in equilibrium the current density j is zero. Maxwell's

equations are not regarded as basic; they can be ob-

tained from the assumption that the field at any point
is the sum of three contributions, the field applied to
the system (which obeys the free space Maxwell's

equations), a contribution from a transport current with

density j, and a contribution from a distribution of
magnetic dipoles with density M. One is led naturally'
to the existence of two fields B and H, satisfying (1)
and (2), and related to each other by the equation

8=8+4 M.

The use of Maxwell's equations, then, involves a num-

*Work supported in part by the Office of Army Research
under Contract No. DA-31-124-ARO(D)-114.

' C. A. Coulson, Electricity (Interscience Publishers, Inc., New
York, 1961), Chaps. 6 and 7.

I. INTRODUCTION

'HE magnetic properties of substances in equi-
librium are governed completely, as far as a

macroscopic description is concerned, by Maxwell's

equations
dlvB= 0)

ber of assumptions: that the sources of magnetic field
in a material can be divided in a definite way into
currents and magnetic dipoles, that the currents are
zero in equilibrium (even in the presence of a magnetic
field), and that the magnetization density is a definite
function of the magnetic field. These assumptions are
plausible for an insulator, where the sources of the
magnetic field can be considered as localized on partic-
ular atomic sites. It is not at all clear, though, why they
should be applicable to metals. In this case part of the
magnetism (the Landau diamagnetism) is due to the
conduction electrons, and these are the same electrons as
participate in the conduction process when an electric
field is applied. None of the assumptions mentioned
above is obviously justified. One other point is partic-
ularly, worth mentioning: The j occurring in Maxwell's
equations is not in general equal to the local average of
the microscopic current density. '

The main purpose of the present paper is to discuss

To see this, note that if we ignore spin paramagnetism,
the part of the magnetic field outside a metal due to the conduction
electrons can be written in the form (1/c) curl J ( j'/r)d V, where j'
is the current density with fluctuations on an atomic scale aver-
aged out. Since the Landau diamagnetism of the conduction elec-
trons does influence the magnetic field outside the metal, j must
certainly be nonzero somewhere (in fact it is nonzero in a layer
near the surface of width of the order of the cyclotron radius).
The j occurring in Maxwell's equations, however, is everywhere
zero in equilibrium, so that j and j must be different.


