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A new series-expansion technique is presented for the grand-partition function for the dimer problem
with no attractive interactions. The zeroth-order term in the expansion recovers the Bethe approximation.
Higher order corrections involve the weighted summation of closed suhgraphs (no vertices of degree one).
The weight formula is given and is a simple function of the topological type of the subgraph and the number
of edges. From this series expansion, the series in powers of the dimer activity valid at low density of dimers
can be recovered. The series expansion is also applicable for high density of dimers. In particular, it provides
an improved approximation technique for estimating the molecular freedom per dimer at close packing,
as can be seen by comparing the approximate values obtained by other authors and those obtained using
this technique with the exact values known for the two dimensional lattices. Finally, this series method is
used to discuss the thermodynamic behavior.

I. INTRODUCTION

HK dimer problem arose in connection with theo-
retical attempts to explain the thermodynamic

properties of the adhesion of a gas of diatomic molecules
on a surface. ' ' The surface may be pictured as a regular
lattice which attracts the diatomic molecules (dimers)
in such a way that the dimer sits on an edge of the
lattice with the atoms on the terminal vertices. Natu-
rally, two dimers cannot occupy adjacent edges since
two atoms would then sit on the same vertex. However,
attractions might very well exist between atoms in
different but neighboring dimers.

The dimer problem has been treated by several
authors using essentially the Bethe or random-mixing
approximations. ' '4 When there are no attractive
interactions, this approximation indicates no anomalous
behavior in the thermodynamic functions, and thus
there seems to be no phase transition.

More recently, the dimer problem has become of
interest because of its connection to the Ising prob-
lem. '—' The Ising problem in two dimensions with no
field and the problem of computing the number of
ways to 611 a two-dimensional lattice with dimers can
be solved exactly by the same general method. How-
ever, it has not been possible thus far to generalize this
method to three-dimensional lattices or to the Ising
model with a field or to the dimer problem with no
attractive interactions and with a nonzero density of
monomers. " '

In lieu of an exact solution to the Ising-model
problem with a held or in three dimensions, various
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series expansions have been developed. ' ' "Since much
information has been obtained from these series, it
seems appropriate to formulate series expansions for
the dimer problem. The grand partition function ex-
panded in powers of the dimer activity is the basic
low density series. From it the series expansions in
powers of either activity or density for the usual
thermodynamic functions can be derived by simple
algebraic manipulation. The activity series may be
formulated quite easily since the eth term is simply
related to the number of ways to place m nonoverlapping
dimers on a lattice.

Because the number of ways to place e nonover-

lapping dimers on the lattice is not easily calculated
directly for e greater than three of four, Rushbrooke,
Scoins, and Waken'. eld used the Mayer series expansion
technique to provide another way of formulating the
basic low-density series. " They have given six terms
on the square lattice and five terms on the simple cubic
lattice. It is unlikely that many more terms could be
obtained using this method because of the number and
complexity of graph configurations which must be
counted. In comparison the series expansion formu-
lation to be discussed in this paper requires fewer
graphs of less complexity thereby allowing more terms
in the low density series to be obtained more easily
than by the earlier technique.

Since the work of Rushbrooke et u/. it has been
found that the number of ways to place e nonover-

lapping dimers on the lattice may be found to quite high
e as a byproduct of the Ising series. " It is not clear
at this time whether this kind of direct calculation
or the method presented here will enable more terms
to be obtained in the dimer activity series for any given
lattice, but the two methods together should provide a
useful check on each other. In addition, the series
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method presen ted here gives some extra information
concerning possible anomalies in thermodynamic
behavior.

In Sec. II of this paper a series expansion is derived
for the grand canonical partition function for the dimer
problem when there are no attractive interactions
between dimers. Each term in the series expansion
corresponds to a subgraph of the original graph (or
lattice). The contribution to the series (the weight)
of each subgraph is determined by the local degrees of
the vertices and the number of edges in the subgraph
and is therefore easily calculable. This weight formula
is especially well suited to a recent classifica tion of
graphs by topological type as is discussed in Sec. IV.
Also, the weight of any subgraph with any vertices of
degree one is zero. This is a great computational ad-
vantage. It also means that the term corresponding to
the empty sub graph gives the Bethe approximation
and this is explicitly shown in Sec. III. The series for
some usual two and three dimensional lattices are
presented in Sec. IV. These series will be extended
considerably when the lattice data now being obtained
by Sykes and his collaborators becomes available, so
extensive analysis of these series has riot yet been
undertaken. " However, the series are long enough to
obtain improved approximations to the molecular
freedom per dimer at close packing as is shown in Sec.
VA. It is shown in Sec. VB that the low density series
expansion in powers of the dimer activity valid at low

density of dimers can be obtained by rearrangement of
the series given in Sec. IV. However, it is perhaps more
interesting to consider the series in i ts original form
which is also a low density expansion. Some restrictions
on the behavior of the series are derived in Sec. VB.
Finally, in Sec. VC the possibility of rearranging the
series in a high-density expansion in powers of the
monomer activity is discussed. Each term in the high-
density series is itself an infinite series which, however,
is simply related to the derivatives of the original series
in its natural form. This provides a connection between
the low-density and high-density series expansions
which is useful in discussing a conjecture of Fisher and
Stephenson. "

It may also be mentioned that the series-expansion
technique used here has been applied to a number of
problems in which the interaction consists of a hard
core which completely excludes certain configurations. "
II. DERIVATION OF THE SERIES EXPANSION

The series expansion will be derived for arbitrary
linear graphs G which are regular of degree q, that is,
each vertex is joined by q edges to other vertices.
Infinite regular lattices are a special case. The total

FIG. 1. Tetrahedron graph
with one dimer and two mono-
mers.

number of vertices in the graph will be denoted by E
and it then follows that there are 2qX edges. A dimer
on G consists of two vertices joined by a distinguished
edge and no two dimers have a vertex in common.
(See Fig. 1.) Vertices which are not part of any dimer
are called monomers. The grand-canonical partition
function is defined as

N

"N(si, s2)= P sp s2" ~' "P [states with nlV
a N=O

monomers and 2 (1 n)X—dimers], (1)

where s & is the activity of a monomer and s2 is the
activity of a dim er. It is also convenient to define
o.= q

—1. Then, the series expansion of the grand-
canonical partition function is given by the following
theorem:

Theorem: ~(si,s2) = )F(si,y2)] P w(G'),
G'C G

where

(2)

w(G') = rr (1—p)""',
(si+oy2)' n

where e is the number of edges in G' and o(p) is the
number of vertices of degree p in G'.

It is convenient to introduce some terminology before
deriving the theorem. For each vertex i there are q+1
vertex conPgurations $;, as shown in Fig. 2. The first

() y =( /2 )L(1+4 / ')'"—1]
or y2(si+oy2) = s2, (3)

(ii) F(s y2) = (s'+~y')"'/(s'+0y')" "", (4)

(iii) The summation is over all subgraphs, G C:G.
The null subgraph is required, but subgraphs which
differ only by the number of vertices of degree zero
(isolated vertices) are considered to be equivalent.

(iv) The weight w(G') of a subgraph G' is given by

"M. E. Fisher and John Stephenson, Phys. Rev. 132, 1411
(1963).

"For example, see J. F. Nagle, J. Math. Phys. 7, 1484 and
1492 (1966). FIG. 2. The vertex configurations for q=4.
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q vertex configurations have one dimer edge. The
(g+1)st vertex configuration has no dimer edge and
corresponds t',o a monomer. Next we define various
notions of compatibility of two vertex configurations
j, and $, when the vertices i and j are nearest neighbors.
g; and $, are called dhrectly corlpatibte if both $, and $,
have a dimer edge on the edge joining vertices i and j.
(Two directly compatible nearest-neighbor vertex con-
figurations may be thought of as a dimer edge. ) f; and
p; are called indirectly compatible if neither $, nor $;
has a dimer edge on the edge joining vertices i and j.
(Two indirectly compatible nearest-neighbor vertex
configurations may be thought of as an empty edge. )
Finally, f, and $, are called irtcompatible if one of them
has a dimer edge on the edge joining vertices i and j
and the other does not. Now, we define a compatibility
functiort A ($;,(;) on the vertex configurations $, and $,
of neighboring vertices i and j by

subgraph. Now, it is desirable that the a($, ,$,) satisfy
two conditions. First, if the new compatibility function
is factorable,

(9)

then, as will be seen in the sequel, the computation of
the graph weights becomes straightforward. Second, if

(10)

where b(f;) is a new labeling function associated with
the new compatibility function, then it will also be seen
in the sequel that all graphs with any vertices of degree
one have zero weight.

We define two parameters yl and y& which will

shortly be related to s& and 22. Then, the definition of
the new compatibility function is

&($,,$,)=1, if $, and P; are directly or

indirectly compatible
=0, if $, and $, are incompatible.

Also, we define a labeling furictzon B($,) by

B(~,)=s„
=e '" if $,=1, 2, , g.

(6)

if $; and $, are directly
compatible;

y2(y—,+oym), if $, and $, are incom-
patible;

if $, and $, are indirectly
compatible. (11)

a(k', 4)= (y +ay.)',

(7) This definition satisfies (9) as follows:

Finally, a particular "state" of vertex configurations
over the vertices of the entire graph will be called a
vertex comptexion, to be denoted as C= ()i, f2, ~ ~,$N),
where $, is the vertex configuration of the ith vertex in
the complexion C. Clearly, there are (q+1)N vertex
complexions.

The following identity, which is easily verified from
(1), (6), and (7), is the starting point of the derivation.

N(sl, s2) —Z II ~ (k,4) II B(E )
C nn

i(g

where the summation is over all (q+1)N vertex com-
plexions, the first product is over all pairs of nearest-
neighbor vertices, and the second product is over all
vertices.

The idea is to transform the simple expression for
the grand-partition function in (8) by rewriting each
compatibility function essentially as a sum of a constant
and a new compatibility function, i.e., 2 (f,, $,)

(%+a($,, $,)). (This step is reminiscent of the Ursell-
Mayer treatment of the classical gas problem. ) The
resulting expression for N(s&, s2) may then be expanded
in powers of the new compatibility functions. Each
product of new compatibility functions defines a sub-
graph of the basic graph in question under the one-to-
one correspondence between a($;,$,) and the edge
joining vertices i and j.The result of summation over
vertex complexions of a product of new compatibility
functions is called the zoeight of the corresponding

c,, (f.) = —(y,+oy2), if $, has a dimer edge on the
edge joining vertices i and j.

otherwise. (12)

Let us also define

(p($, ,$,)= (y,+oy2)(y&+qy2), if $, and $, are
directly compatible;

=y2(y, +qy2), if $, and f, are
indirectly compatible;

if $; and $, are
incompatible. (13)

Then, we may check that

~ (5',4) = tLy2(yi+oy2)+a(k', 4)jl~(k', 6) (14)

From (8), (13), and (14), it follows that

N(s, s ) =Z II 9 (yi+ y )+a(6,4)]
0 nn

where -,'pS is defined as the number of dimers present,
and equals the number of directly compatible p factors.
Since p is an implicit function of s& and s2, it will be
removed by absorbing it into a new labeling function. "

"In the first derivation by this author, p was kept explicit,
which led to a series expansion for the entropy, which for infinite
lattices was evaluated by the method of steepest descents. The
author is deeply indebted to M. E. Fisher for suggesting the step
performed here which allows us to use grand-canonical methods.
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I.et us define

b(~,)=", if (,=q+1;
=22'/2y2'/2/(y, +oy2)'/', if &,=1, , q. (16)

Then, (15) becomes

=. ~(si,s2) =E II b 2(yi+cy2)+a(k', k/)]
0 nn

one or more a($;,$,) compatibility functions. From (2)
and (23) we see that rc(G') is defined by

~(G') =Z t:y2(»+cy2)] ' II a(0', 4)
in G'

XII b(5')/(si++2) (24)

xII I b(5')/y '"(yi+cy )"'] (17)

Alternatively, the new labeling function could be de-
fined as

b'($;) =si(y, +oy2)'/2/y2'/2, if (,= q+1;
=S2'~' if $,=1, , q. (18)

Then, (15) would become

=--(,")=Z II Ly. (y+-y.)+ (~„~,)]
C nn

XII Lb'(6)/y2" (yi+gy2)" (yi+ y,)" ']. (19)
s=l

The remainder of the derivation is much the same
whether b($,) or b'($;) is used, and the final series
expansions will be shown to be equivalent. Therefore,
it is sufhcient to consider only (16) and (17).To satisfy
(10) now requires

where each a((;,(,) corresponds to one of the e edges
of O'. Next, perform a partial vertex complexion sum-
mation in (24) over all vertices not contained in G'.
Then,

(G')=Ly( + y)] ' Z II (4,4)
nn

i inG' inG'

X II b(f,)/(si+qy, ), (25)

where the summation is now over all vertex complexions
of 6' and the second product is over all vertices in G'.
Because of the dependence of the a((„$,) on both $,
and $, , the summation in (25) is "cooperative. " How-
ever, it is possible to perform this summation over each
vertex independently because the a($, ,$;) as defined

by (11) and (12) are factorable. Therefore,

.+i b(6)
~(G')=Ly2(si+~y2)] ' II

i in G' rf=i (zi+qy2)

b(P,)=yi if g,=it+1
if $,=1, ' ' ') iI. (20)

XII c' (6) (26)

Thus, from (16) and (20),

yi —si aild y2
—22 / y2 / /(yi+Oy2) / (21)

in accordance with (3) in the statement of the theorem.
As was mentioned earlier, the series expansion is in

powers of the a($, ,$,) compatibility functions and each
product of the a($, ,$,) compatibility functions corre-
sponds to a subgraph of the original graph. The first
term of the series is defined as the one with no a(f;,$,)
factors. This term will be denoted as LF (si,y2)]~ and is
easily calculated from (17) to be

~(»,y2)=(si+~y2)'"/(2+qy2)" "" (22)

in agreement with the notation of (4) in the statement
of the theorem. It is desirable to factor LI" (s&,y2))N
from the series so that the first term of the final series
is unity. Therefore, from (22) and (17), we have

="~(si,s2) = L~(»,y2)]"Z II Ey2(si+n 2)+a($',4)]
0 nn

~(G') =Ly2(»+ay2)] '

sly2 Py2 (sl+&y2)+ (il P)y2x II
»+qy2i in G'

where the j index runs over all nearest neighbors of i
in 6', and the summation is only over the vei'tex con-
6gurations of vertex i. This single-vertex summation
is easily performed for an arbitrary vertex in G'. I.et
vertex 2 have degree p in G', which means that there
will be p factors, c;,($,). Now for $,=/t+1, which is the
vertex configuration corresponding to a monomer, all

P of the c,, ($,) equal y2 and b($,) equals si. The re-
maining q vertex configurations have a dimer edge and
b($,) equals y2. Of these q vertex configurations, p have
their dimer edge in G' and for these one of the c,, ($,)
equals —(si+oy2) and the other (P—1) equal y2. The
remaining (g—p) vertex configurations do not have their
dimer edge in G', and for these all the c,, ($;) equal y2.
Thus,

XII t:b(5')/y2'"(si+~y2)'"(si+D2)] (23)
s=l

y
8 q

II (1-p)
»+~y2- ~~

(27)

The 6nal step in the proof of the theorem is to find
the weights of subgraphs corresponding to products of where to obtain the last equality, use has been made of
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the fact that the sum of the local vertex degrees equals
twice the number of edges in a graph and g(p) is defined
to be the number of vertices of degree p in G' in accord-
ance with (5) in the statement of the theorem. This
completes the proof of the theorem.

The alternative derivation based on (18) and (19)
yields the following modi6cation which may be easily
proved in the same way as the theorem. Modification:

is ~Xp, so the number of dimer vertices is Ep and the
number of monomer vertices is $(1—p). Then, the
number of ways, WN(p), to arrange 121Vp dimers can be
written approximately

where

=N(zr, z2)=[F(yr, z2)j" Z ~(G'),
G'C G

(28)
2/2- N(1—p)P

X (1—— (33)
q

(1) y1= (g1 z1/z21 )(z2+zp/4g') +z1/2z2

ol

y
2 —z 2(y +&z I/2)/z 1/2

(11) p (y z2) —z 1/4
(y +gz 1/2) N/2/ (Y +qz 1/2) (2 2) /2

(29)

(30)

(iii) (Same as in condition (iii) in the statement of
the theorem).

(iv) The weight 2g(G') of a subgraph G' is given by

~(G') = [z '"/(v+ z '")3' ll (1—P)'"' (31)

III. RECOVERY OF THE BETHE APPROXIMATION

One of the advantages of series expansions in which
the weights of all graphs with any vertices of degree
one is zero is that the term corresponding to the null
subgraph should give the same result as the Bethe
approximation. This follows because the Bethe approxi-
mation is exact for lattices with no cycles (polygonal
paths), and for this kind of lattice (Bethe lattice) all
subgraphs except the null subgraph have some vertices
of degree one."

First, let us rederive the Bethe approximation for
the dimer problem. Assume that the number of dimers

~7 Imposing the customary periodic boundary conditions on a
lattice results in some subgraphs with no vertices of degree one
which "loop the torus. " For ordinary lattices, these can be neg-
lected as a surface effect as N ~ ~. Formally, there is some
difFiculty in imposing periodic boundary conditions on the Bethe
lattice, because the surface of a Bethe lattice is not negligible
compared to the volume as N —+ ~. However, this complication
does not seem to affect the validity of the statements made in
the text, as will be seen in the sequel.

This modification is just the theorem disguised by an
algebraic transformation of variables, as may be seen

by the following equivalence of the series parameters.

y2/(z, +gy2) = [(1+(4gz2/zP))'/' 1j/—
g[(1+(4gz2/zP))1/2+1j

= (4z2/z P)/[2+ (4gz2/z P)

y2(]+ (4gz2/z 2))'/2j

z 1/2/(y +gz 1/2) (32)

It may also be easily shown that F(z1,y2) =F(y1 z2).

The first square bracket in (33) gives the number of
ways to arrange Ep dimer vertex configurations on the
lattice. The second square bracket in (33) is the square
root of the probability (disregarding correlations around
cycles) of a dimer vertex configuration being com-
patible with all its nearest-neighbors' vertex con6gu-
rations. (For example, p/q is the probability that the
dimer edge meets another dimer edge and [1—(p/q) j
is the probability that an empty edge meets an empty
edge. ) The third square bracket in (33) is the square
root of the probability of a monomer vertex configu-
ration being compatible with all its nearest-neighbors
vertex configurations. The square roots are taken since
the probabilities would otherwise be computed twice,
once from each vertex at the end of each edge.

From (33) we may compute the entropy as a function
of density. To compute the grand potential F as a
function of s2 we may use the following equations,
which are valid for purely hard-core systems:

S lnz2"' ———(d/dp) InWN (/)), (34)

(1/Ã) N = I'= (1/1V) [lnWN —
p (d/dp) lnWN (p)]. (35)

(These may be derived from S/k = —F/k T= —p lnz+I',
and p=z(d/dz)l'. z2'" appears in (34) because p is
defined as twice the density of dimers. ) From (33) and
(34) we obtain

z 1/2 /)I/2 (q /)) 1/2/ (1 p)q
ol

p = q(1+ 2qz2 —(1+4gz2)) '/2/2 (1+q2z2),

and from (33), (35), and (36) we obtain

(36)

(37)

I's(z2) = (q/2) in[1+2qg z + (1+4gz2)'"j
—

ln[q (1+4g z2) '"—(g—1)]
—

2 (q —2) ln2(1+q'z2), (38)

where the subscript 8 refers to the Bethe approximation.
It may be noticed that in the preceding derivation

of the Bethe approximation we have neglected to
include s&, the monomer activity. It is not essential to
include it, since it is the ratio of activities, or in this
case z2/z1, which appears nontrivially in all quantities,
as may be seen from (1).This may also be verified for
the theorem and its modification in Sec. II. Now from
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(2) and (35) the zeroth-order approximation is

Fp(si, zp) =lnF(si, yp) =lnsi
+-,'q ln-,'[(1+4osp')"'+1]
——,'(q —2) ln(1/2o)

X[o—1+q(1+4osp')'iP], (39)

FIG. 3. Some topo-
logical types of
graphs.

(c)

where sp'=sp/sP. To compare (37) with (38), set si= 1
and therefore sp' ——sp. The equivalence of (38) and (39)
now follows easily from the following identities.

4o(1+q'sp) = [q(1+4os,)'~'+o —1]
X[q(1+4osp)'IP —(o —1)],

2[1+2qosp+(1+4osp)'i']= [1+(1+4osp)'i'] (40)
X[q(1+4osp)'I' —(o —1)].

IV. GRAPH DATA AND THE SERIES

To obtain higher approximations than the zeroth
order or Bethe approximation, one must know the
number of ways closed subgraphs (no vertices of degree
one) may occur on the graph. In the case of infinite
lattices one first takes lim~ „(1/N) ln(series). This
is accomplished formally by retaining only the co-
efficients of E in the series. '

In the derivation and often in the application of
lattice data, it is convenient to classify graphs by
topological type. " ' Some particular topological types
required for the dimer series are shown in Fig. 3. A
particular graph may be obtained from its topological
type by the insertion of zero or more vertices of degree
two. This classification of graphs by topological type
is particularly well suited to the dimer series derived
in Sec. II since all graphs with the same topological
type and the same number of edges have the same
weight. Furthermore, the dependence of the graph
weight on the number of edges is particularly simple.
Let us define the specific weight y(G') of a graph G'

with e edges by
y(G') =e 'w(G'), (41)

where x is the expansion variable in the series given by

*=yp/(si+oyp)

Let T denote the topological type of G'. Then, con-
sidering T also as a particular graph with e(T) edges,
we have

y(G')=( —1) ""y(T), (43)

where, of course, y(T) does not depend on e.
The problem of obtaining lattice data has been

considered in detail by Sykes" and his collaborators
and data for the major lattices will shortly become
available which will enable the computation of many
more terms in the dimer series than are presented here.

' J. F. Nagle, J. Math. Phys. 7, 1588 (1966)."B,R. Heap, J. Math. Phys. 7, 1582 (1966).
"M. F. Sykes, J. W. Kssam, B. R. Heap, and B. J. Hiley, J.

Math. Phys. 7, 1557 (1966).

—Sx'+33x4—24x' —1534x'+ (49)

V. DISCUSSION OF THE SERIES AND SOME
PRELIMINARY RESULTS

A. Entropy at Close Packing of Dimers

To obtain the limit of close packing of dimers we
may set s&——0 and s2 ——1. Then, the grand potential
F(0,1) equals (1/N) inW~(p=1), where W"(1) is the
number of ways to arrange dimers on the lattice when
the lattice is completely filled with dimers. The series
for (1/N) lnWN(1) have been approximated in two
ways in this paper. First, the series have been truncated
after the last term. Second, the Pade approximants to
the series have been formed" and the values obtained
from the last three near diagonal approximants [(n,e),
(e~1, e), and (n, e~1)] have been averaged. In the
case of the honeycomb lattice, the series is so erratic
that only the last three terms have been treated using
the Pade approximant.

It has been customary in the literature to quote the
value of [Wn(1)]"",called the molecular freedom per
dimer. The approximant evaluations of the molecular
freedom per dimer computed from the above approxi-
mations of (1/N) lnW" (1) are given in Table I, along
with the approximations given by other authors and

"G. A. Baker, Phys. Rev. 129, 99 (1963).

Most of the lattice data used in this paper have been
obtained from Sykes prior to publication or from the
review article by Bomb. ' The following series are given
in powers of the variable x defined in (42), and the
series give F—Fp ——(1/N) ln ~—lnF(s, ,yp):

honeycomb lattice

(1/2)x'+(3/2)x"+6x" —(3/4)x"+ . (44)

square lattice (sq)

x'+2x'+Sx' —(7/2)x'+80x' —44x"+392x'"+, (45)

diamond lattice

2x'+3x'+72x" —11x"+72Qx"—1QQ2x"

+3712x"—9568-'x"+ . , (46)

triangular lattice

—2x'+3x'+6x' —73x'+360x' —1348-,'x'+ (47)

simple-cubic lattice (sc)

3x'+22x'+72x' —559-'x'+2016x' —3612x"+ (48)

face-centered-cubic lattice (fcc)
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TABLE I. Values of 5", the molecular freedom per dimer at close packing, for some major lattices.

Fowler R
Rushbrooke'

Miller 8z Chang'
Bethe approx.

Rushbrooke~
This paper

Truncated series
This paper

Pade' series
Exact'

Honeycomb

1.3333

1.3659

1.3659'
1.3814

Square

1.8

1.6875
1.78

1.7694

1.7905
1.7916

Diamond

1.6875

1.7007

1.7004

Triangular

2.3
also 2.38

2.4113
2.36

2.3519

2.3562
2.3565

S. C.

2.38

2,4113
2.46

2.4420

2.4423

F.C. C.

4.6079
4.57

4.5642

4.5693

a Reference 1.
d Reference 23.

b Reference 3.
e See text.

e Reference 2.
f See Refs. 8 and 15.

the exact results known for two-dimensional lattices.
Since the zeroth-order term of the series presented here
is the (6rst-order) Bethe approximation, one is not
surprised that the approximations of this paper are
better than those of Chang and Miller. '' An entirely
different method used by Fowler and Rushbrooke is
to compute the exact values of W~(1) for finite strips
of lattice and extrapolate the width of the strips to
infinity. ' (This method is now being used by Runnels"
for the intermediate-density problem. ) Although this
method has given very good results for various problems
in two dimensions, it is too laborious to apply to three-
dimensional lattices. Finally, the series of Rushbrooke,
Scoins and Wakefield may be used to obtain extrap-
olated approximations which are quite good." This
rejects the fact that not many terms are needed in the
basic low density series in order to obtain adequate
approximations to the molecular freedom per dimer.

Fowler and Rushbrooke' suggested that the molecular
freedom per dimer might be primarily dependent on
coordination number, and this is true in the Bethe
approximation. However, it is not true for the series
corrections. These are of opposite sign for the triangular
and simple-cubic lattices largely because the first term
is negative for close-packed lattices and positive for
loose-packed ones. The square lattice and the diamond
lattice also have the same coordination number and
both are loose packed, but the diamond lattice has
fewer short cycles, so the series correction to the Bethe
approximation is smaller than for the square lattice.
Since there is no reason to believe that this approxi-
mation method is any less accurate in three dimensions
than in two dimensions, we conclude that the three-
dimensional Pade approximations in Table T are
probably quite close to the exact values and are cer-

tainly better than previous approximations.

"L.K. Runnels (private communication}.
23 G. S. Rushbrooke {private communication). It may be noted

that Professor Rushbrooke's choice of quoting only three sig-
nificant figures imposes a somewhat larger error on his estimates
than might be reasonably inferred from his series, especially for
the close-packed lattices.

x=s2 2oz—'2+5'o z'214 —
oz +s (50)

Because this expansion has no constant term, the erst
e terms in the expansion of F(1,s2) in powers of s2 can
be found from the first e terms in the expansion of F
in powers ofx. Since the series in powers of s2 is also being
obtained in another way (see Introduction and Ref. 24),
we will not discuss it further.

We may also examine the series expanded in the
natural parameter x. This is also a low-density expan-
sion since x increases as 22 increases. x= a. is the close-
packing limit. Equation (42) implies

y2 ——x/(1 —ox),

and then (21) yields

s2 ——x/(1 —ox)' and dz2/dx= (1+ox)/(1 —ox)'. (51)

Using (51) the density of dimers, p2, and the isothermal
compressibility K& are

p = s (dF/ds ) = [x(1 o'x)/(1+o'x)] (dI'/dx), (52)

kTpKr =Op/OF = (dp/dx)/(dl'/dx)

1—2o x—(ox)' x(1—ox) (d'F/dx')

(1+o.x)2 (1+o x) (dF/dx)

Also, in terms of x, the Bethe approximation is

(53)

Fs(x) = —ln(1 —ox) —z (q —2) ln(1+x). (54)

The total F is given as F=Fs+F, where the I', (x) are
given in Sec. IV.

We will now investigate the permissible behavior of
F, (x) and its derivatives. Let us allow O'F,/dx' to have
a pole of order (x,—x) ~ where x, is the critical value
of x. If y) 1, then the dominant part of dI', /dx at x,

A. Low-Density Series Expansions

We may set sI ——1 for the low-density series since
only the ratio z&/z, is physically significant. The series
parameter x given by (42) may be expanded in terms
of s2 as
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goes as (x,—x)' &, and if y) 2, then the dominant part
of F, at x, goes as (x,—x)' &. It should be noted that
for the Bethe approximation, rs(x), in (54), p=2, and
x,=o '. There are two interesting cases to consider.

(a). Assume x,(g . Since there is no singularity in
the Bethe approximation for such an x„(52) implies
that y&1 since p2 cannot exceed -', . The fact that the
series for the molecular freedom per dimer, which is
just exp2F, (x=g '), behaves so well suggests that &
is not too large and that x, is not too far from o='.

(b). Assume x,=g '. Using only r& in (52) gives

p, =2. Therefore, dF,/dx must be less singular than
drs/dx, so that y(2. This also follows from the series
analysis of the molecular freedom per dimer. Thus, in
this case the singularities in I' and its derivatives are
dominated by the Bethe approximation. However,
non-Bethe-like behavior may exist in the rates at which

p, —p and Ez approach zero as x ~ x,. Consider

pc p=
1—gx-1 (q—2)x-+ —x(dr, /dx) . (55)
1+gx 2 2(1+x)

A not too obvious possibility is for

dF,/dx = (g 2/q) d(1—gx) «—+ (56)

where o.&0, and d is a constant. Then, the asymptotic
behavior as x ~ g ' of (55) is

u.—~-(1—gx)'+ . (57)

This kind of behavior with n 1/7 agrees with a pre-
liminary analysis performed by Gaunt'4 using a re-
arrangement of the low-density series for F in powers
of s2 for the sq lattice. If (56) is valid, then y = 1 n(1. —

r, = ——', lnx ——', (q—2) ln(1+x). (59)

Because there is a constant term in (58), each graph
will contribute to the coeKcient of each power of z».

'4 D. S. Gaunt (private communication).

C. High-Density Series Expansion

Next, we ask if a high-density series expansion can
be found. Let us set z2 ——1 and expand in powers of z».
The relevant formulas are obtained most easily from
the modi6cation to the theorem, Eqs. (29), (30), and
(31):

x—g
—i(1 g

—ksi+g —&sP/2+. . .)
and

verified from (58), (59), (42), and (5) that

(gl/2/q) g—3/2(dr /dx)
~

(61)

ap ——(q—2)/2q'+-', g. 'Br,/Bx i.=.—
+-',g

—'8'r, /Bx'(.=.— . (62)

The 6rst terms come from the Bethe approximation
and the terms in the series are simply related to the
derivatives of I', evaluated at close packing.

This formal connection between the coefficients of
the high-density series and the derivatives of the low-

density series leads to the following observation: If
Eq. (56) is valid, then a, =0 and for n(1, a~ is a di-

vergent sum. This behavior for the series in (60) has
been suggested by Fisher and Stephenson»4 in their
study of the monomer correlation coeKcients for the
sq lattice. They felt that this behavior indicates an
incipient phase transition at close packing. Since (56)
is also suggested by otherwise independent work, this
is strong presumptive evidence that y(1 and x,=o- '.

However, preliminary studies of the series for dF,/dx
and d'F, /dx2 using the Pade approximant tend to
suggest that p)1 or x,(a ' for the sq lattice. (In
contrast, there is no evidence of any physical singu-
larities in I', or any of its derivatives for the triangular
lattice. ) Still, the series are not yet very long and
sequences of Pade approximants are erratic, so this
evidence is far from conclusive. It is hoped that when
the lattice data become available, analysis of the longer
series will resolve the outstanding questions concerning
the thermodynamic behavior.
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Thus, formally,

F(si, 1)= r(0,1)+a,s,+a2sP+, (60)

where F(0,1), ai, and a2 are each an infinite series.
F(0,1) was evaluated approximately in the discussion
of the entropy at close packing. By taking the co-
efFicients of z» and z»' in the expansion of x", it is easily


