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distance from it. It is best seen at the highest speeds
when the velocity gradient is greater. Its rate of travel
depends on Q.” The similarity with Pellam’s results
(a) and (b) (nearly 40 years later) is unmistakable.
The stopping experiments are complicated by in-
herent instabilities. Comparing Figs. 1 and 2, both
helium and H,O respond more rapidly to stopping
rotation than to starting and the departure from two-
dimensional theory is greater for stopping. One expects
that the response to stopping will appear to be faster
when measuring * with a disk fixed in the nonrotating
laboratory frame even if the results for » are identical
when compared in appropriate frames. The observed
differences, however, are too large to account for in
this way. According to McLeod, the large differences in
HO are “. .. due to the break-up of the regular
motion, owing to instability at the fixed outer wall.
Except with the high speed and the large cylinder, the
motion on starting, on the other hand, appears to the
eye to be without appreciable irregularity.” For a long,
slender cylinder, one would expect the stopping in-
stability to be primarily of Rayleigh” type, while for a
shorter cylinder instability of the endwall boundary
layer may dominate. Since the helium II and H,O data
for the largest Re are nearly identical, it would seem
unnecessary to speculate that liquid helium II ac-

7J. W. Strutt, Lord Rayleigh, Sci. Papers 6, 447 (1920).
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F16. 2. Square of fluid velocity versus time at »/d=0.375 in
suddenly decelerated cylindrical containers. Velocity normalized
with equilibrium value. Time normalized with characteristic
viscous diffusion time. For HyO data, L/d=2 except where noted.
Dashed line is two-dimensional theory for L/d= .

quires any special rigidity in rotation not ordinarily
possessed by classical liquids.

The author would like to thank Professor J. R.
Pellam, who kindly provided additional information
about his experiment in order to make the present
comparison possible.
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A system of rectilinear vortices in an arbitrary multiply connected domain rotating with angular velocity
Q is studied with Lin’s general formalism. In the limit of many vortices, the equilibrium distribution is
shown to be a uniform vortex density #=2Q/k where « is the circulation about each vortex. If the inner
boundaries are specified by a set of contours C,, each enclosing an area 4., then the equilibrium value of
the circulation I'y about C, is given by I's=2Q4,. In equilibrium, the fluid rotates as a solid body with
angular momentum L =1IQ and energy E=4% IQ? where I is the moment of inertia.

I. INTRODUCTION

HE behavior of rotating liquid He II has fre-
quently been studied with the model of a classical
inviscid fluid containing rectilinear vortices.! The only
important manifestation of the quantum nature of He II

* Work supported in part by the U. S. Air Force through Air
Force Office of Scientific Research Contract No. AF 49 (638)-1389.

1 See, for example, H. E. Hall, Advan. Phys. 9, 89 (1960); or
W. F. Vinen, in Progress in Low Temperature Physics, edited by
C. J. Gorter (North-Holland Publishing Company, Amsterdam,
1961), Vol. ITI, p. 1.

is the appearance of quantized circulation,?? so that the
circulation « about each vortex is given by k=h/m,
where % is Planck’s constant and = is the mass of a
helium atom. The simplest experimental situation is a
rotating cylinder of radius R, where a great many
vortices are present for reasonable angular velocities
(@>h/mR?~1.6X10* rad/sec for R~1 cm). It is

2 L. Onsager, Nuovo Cimento 6, Suppl. IT, 249 (1949).

8R. P. Feynman, in Progress in Low Temperature Physics,
edited by C. J. Gorter (North-Holland Publishing Company,
Amsterdam, 1955), Vol. I, p. 17.
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F1c. 1. The geometry of
c a multiply connected domain,
showing the sense of the con-
tours and the outward normal
vectors.

generally assumed that the equilibrium configuration of
a large number of vortices in a cylinder is a uniform
density #=2Q/kx=2mQ/h.2 This configuration has also
been shown to minimize the free energy for a cylindrical
container.

Other more complicated geometries are also of interest
in connection with rotating He IL.® In particular, several
recent theoretical papers® have examined the distribu-
tion of vortices in an annular region bounded by con-
centric cylinders (R;<r<R,). These studies predict
that the fluid forms two regions: an inner irrotational
vortex-free region (R1<r<r,) and an outer region
(ro.<r<R,) filled with a uniform density of vortices
n=2Q/k. In these calculations, it is assumed without
comment that the energy E and angular momentum L
of the system are composed of additive contributions
from the mean fluid velocity and from the vortices.”
This assumption is by no means obvious, however, and
must be tested by a calculation based on first principles.
For this reason, the present paper contains an exact
treatment of rectilinear vortices in an arbitrary multiply
connected container bounded externally by a contour Co
and internally by a set of contours {C.}. The equi-
librium vortex density depends on the angular velocity
Q. In the limit of many vortices, the equilibrium distri-
bution is shown to be a uniform density #=2Q/x filling
the whole container; the equilibrium circulation T.
about each internal contour is given by I'a=2QA4,,
where 4, is the area enclosed by C,. The corresponding
angular momentum and energy are precisely the values
for solid-body rotation: L,,=I12 and E.,=3IQ? where I
is the classical moment of inertia.

The basic formalism (due to Lin8) is reviewed in Sec.
IT and applied in Sec. III to the special case of a simply

4 A. L. Fetter, Phys. Rev. 138, A429 (1965).

5 See, for example, P. J. Bendt, Phys. Rev. 127, 1441 (1962);
H. A. Snyder, Phys. Fluids 6, 755 (1963).

$P. J. Bendt and T. A. Oliphant, Phys. Rev. Letters 6, 213
(1961) ; M. P. Kemoklidze and I. M. Khalatnikov, Zh. Eksperim.
i Teor. Fiz. 46, 1677 (1964) [English transl.: Soviet Phys.—
JETP 19, 1134 (1964)].

7 This assumption was introduced by H. E. Hall, Advan. Phys.
9, 89 (1960), in a calculation of the equilibrium distribution of
vortices in a cylinder. See also I. M. Khalatnikov, A#n Introduction
to the Theory of Superfluidity (W. A. Benjamin, Inc., New York,
1965), Sec. 16.

8C. C. Lin, On the Motion of Voriices in Two Dimensions
(University of Toronto Press, Toronto, Canada, 1943); an
abbreviated but more accessible account is C. C. Lin, Proc. Natl.
Acad. Sci. U. S. 27, 570 (1941); 27, 575 (1941).
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connected region. Section IV treats the general multiply
connected domain.

II. RECTILINEAR VORTICES IN
TWO DIMENSIONS

The fundamental problem considered here is the two-
dimensional motion of an incompressible fluid bounded
externally by a contour Cy and internally by a set of
contours {C.}. This question has been studied in great
detail by Lin,® whose notation will be used throughout.
When the container rotates with angular velocity ©, the
fluid must move with the walls; this provides the
necessary boundary condition

ton Co, {Ca}, M

where r is measured from the axis of rotation Q. The
equilibrium configuration for the rotating system is
obtained by minimizing the free energy F=E—QL,
where E and L are the total energy and angular
momentum.?

The motion of the fluid is most simply described with
the stream function ¢(r); the fluid velocity can be
computed directly from y with the equations

V= —a‘///ay)
v,=00/0x.

In the present problem, the motion arises from three
different sources: the vortices, the rotation of the walls,
and the circulation about the internal boundaries. The
stream function satisfies a linear differential equation,
and each of the above contributions to ¥ may be con-
sidered separately.

In the absence of vortices, y is a harmonic function
and obeys Laplace’s equation

v=Qxr for

@

V2y=0. 3)
The rotation of the walls requires that
Y(r)=30r for ron Co {Ca}, 4)

which is equivalent to Eq. (1). It is convenient to
separate the irrotational stream function into two terms

Ya(1)+o(r). )

Here, the first term Yo represents the effect of the
rotating boundaries and has the following properties:

Ve(r)=0, ©)
Yo(r)=3Qr2 for ronCy {Co}, (7)
dsdpa/In=0, ®)

Ca

where the contour integral is taken in the positive sense
and 98/0n represents the normal derivative in the

9 See, for example, L. D. Landau and E. M. Lifshitz, Statistical
Physics (Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1958), p. 72.
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outward direction (Fig. 1). The second term y, in Eq.
(5) arises from the presence of circulation {T's} about
the inner boundaries {C«} ; Yo is defined by the equations

VAo (r)=0; ©)

Yo(r) =ypa (=const), for r on C,; (10)
}{ dsdpo/In=Tl; 11)

Cﬂ
Yo(r)=0, forr on Cy. (12)

Equations (6) and (9) together ensure that the motion
is irrotational while Egs. (8) and (11) fix the correct
circulation about each inner boundary. Since the
fluid velocity is defined only through derivatives of the
stream function, the physical motion [Eq. (1)] is
unaffected by the addition of a constant [Eq. (10)] to
the boundary condition (7). In the special case that the
set {T'z} vanishes, yo(r) is identically equal to zero.
Furthermore, yo(r) vanishes for a stationary system
(2=0). It can be shown that yq and ¥y are uniquely
defined by the above set of equations.?

Our discussion must be modified when vortices are
present in the fluid. The additional contribution to the
stream function is expressible in terms of a unique
Green’s function G(r,r,) that satisfies the following
conditions?®:

G(1,10)=G(10,1); (13)
V2G(r,10) = 6(r—10) ; (14)
G(1,10) =G, (ro) for r on Cq; (15)
f dsdG/on=0; (16)

Cu
G(x,19)=0 for r on Co. 17)

As r— 1o, the Green’s function becomes singular like
(2m)'In|r—ro|, and the auxiliary function

g(r,ro)=G(r,r0)—(27r)“‘1 ln[r-— l’o‘ (18)
satisfies Laplace’s equation throughout the whole fluid
V2g(r,10)=0. (19)

If a single vortex with circulation « is situated at ry,
the additional stream function is given by

KG(I',l'o) y (20)

which must be added to Eq. (5). More generally, for a
system of identical vortices with circulation « at the
points {r;} combined with circulation {T'x} about {C.},
the total stream function is given by

Y (1) =va(t)+¥o(r)+« Zk G(r,rp). (21)

10 See, for example, S. G. Mikhlin, Infegral Equations (The
Macmillan Company, New York, 1964), 2nd ed., pp. 157-159.
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Equation (21) describes irrotational flow except at the
vortex cores:

|curlv| =Vx=xk 3 §(r—11). (22)

It is straightforward to verify that Eq. (21) actually
satisfies the boundary conditions and therefore repre-
sents the correct solution to the boundary-value prob-
lem. In principle, the explicit form of G, ¥q, and ¥, may
be found for any particular geometry; in practice, the
actual calculation may be difficult. Such detailed
knowledge is unnecessary for the present purpose, how-
ever, and it is sufficient to work directly with Eq. (21).

In the rotating system, the free energy F is given by

F=E—QL, (23)

and we must calculate the angular momentum L and
energy E of the fluid. These are easily found by inte-
grating over the allowed area

L=p / @r(xv,—yva) , (24)

E=%P/dzfv"’=%i°/d2’(vx2+”u2) , (25)

where p is the fluid density. Equation (24) may be
rewritten in terms of the stream function ¢,

L=p / T4/ 0)+5(04/9) ]

— / L0 () 0+ () 0y~ / ory

=pf;ods(r-ﬁ)\,b—p Za: ﬁa ds(r-ﬁ)n//—prdzr\I/. (26)

Green’s theorem! has been used to obtain the last line
of Eq. (26), where the contours are all taken in the
positive sense and # is a unit vector in the normal
(outward) direction (Fig. 1).

The line integrals in Eq. (26) may be simplified since
¥ assumes specified values on the boundaries

o f st L § asriy

=%,,9[ fc as(e )= Cads(r-ﬁ)r{l

= Z Wk E Gu(0)] f ds(ed), @)

11 See, for example, T. M. Apostol, Mathematical Analysis
(Addison-Wesley Publishing Company, Inc., Reading, Massa-
chusetts, 1957), pp. 283-292.
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where Egs. (7), (10), (12), (15), and (17) have been

used. An elementary calculation with Green’s theorem
shows that

p[iods(r'ﬁ)r2—§ Cads(r-ﬁ)rz_J
=4p / ErP=4T, (28)

which defines the moment of inertia 7, and that

f ds(r-A)=24.,
C,

a

(29)

ALEXANDER L. FETTER

152

where A, is the area enclosed by Ca. Hence the angular
momentum reduces to

L=2I0—20> YoaAa—20t > Y. Ga(rr)A s
@ a k

—Zp/dzr[glxg(r)—f—z//o(r):]—-ZpKZk /d2rG(r,rk). (30)

Here and subsequently, sums over Greek subscripts
refer to the contours while sums over Latin subscripts
refer to the vortices.

The energy may be calculated in a similar manner:

E= %p/dzr[vy(é)xp/ax) —2,(8y/dy)]

= %p/dzr[a (Yvy)/ 02— 9 (Yv.)/dy]— %p/dzﬂﬁl curlv|

~iof dsw-1pz
Co «

ds-v¢—%p/d27¢]curlv] ,
[

(31)

where Green’s theorem has again been used to obtain the last line. The contour integrals may be rewritten as in

Eq. (27):

%pf dsw—%pzf ds-v¢=%psz[7{ ds Y.
Co « Co «/ Co

=20Q / @[ (wvy— yvo) +57°| curlv| J—3p 32 [Yoatr 2 G (rs) Le.
a k

Since the motion is irrotational except at the vortex
cores, |curlv| is nonzero only at a finite number of
points, where it becomes singular. Substitution of Egs.
(22) and (24) into Eq. (32) yields

%QL‘!‘%])Q Z 7’],;2_%,; Z II/OaFa
k 3
—3px Y Zk: Go(ri)To. (33)

The last term of Eq. (31) may be treated in a similar
manner

/ &ry|eurlv| = T ¢y, (34)

where y(; 1s the nonsingular part of the stream function
evaluated at r;,

Yoy =lim[Y(1)— 2r) In|r—r,{ ]. (35)
r->r;

In principle, Eq. (34) should also contain the small

model-dependent contributions from the vortex cores.

These self-energy terms may be omitted here since they

are negligible in the limit of many vortices and do not

ds-v
Ca

ds~vr2:|—%p > [Woatx % Ga(1i)]
Ca @

(32)

affect the conclusions of this paper. Equations (18) and
(21) show that

Yy =va(r;)+o(rj)+« Z)G(rk,rj)—l—xg(r,«,rj), (36)

B(=j
and Eq. (31) may be rewritten as
E=3L0+5okQ 2 ri*—3p 2_ Yool
k @

"%PK Z T. Zk Ga(rk>
—3pK % [‘Pn(l‘k)“l“%(l‘k)]
—3pi? Zk’ G(rj,r)— 30K §k: g(rir), (37)

where the primed sum is over j and % separately,
omitting the terms j=k.

Equations (30) and (37) are exact expressions for the
angular momentum and energy of a rotating fluid
moving with prescribed circulation about inner bound-
aries and containing a system of rectilinear vortices.
Although the results were obtained by integrating over
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the volume of the fluid, the final formulas depend ex-
plicitly on the coordinates of the vortices and may be
interpreted as the angular momentum and energy of
the vortices themselves. In particular, the quantity
—pi?G (1,1 represents the interaction energy of a pair
of vortices situated at the points r; and rx. The Green’s
function G serves both as the stream function at r due
to a vortex at r’ and as the interaction energy between
two vortices at r and r’. This dual role is familiar in
electrostatics, where ! is simultaneously the solution
of Laplace’s equation for a point charge and the inter-
action energy between two charges. In a similar manner,
the total energy of a system of charged particles can be
expressed either as an integral of the electrostatic field
energy over all space [as in Eq. (25)] or as the sum
of the interaction energy between all pairs of particles
[as in Eq. (37)].

III. SIMPLY CONNECTED DOMAIN

In order to simplify the calculation of the equilibrium
fluid configuration, we shall first consider the special
case of a simply connected domain, where y(r) vanishes
identically. The energy and angular momentum assume
an especially simple form

E=35L0+5pkQ 3" ri—%pk 2 Ya(rs)
k k

—30¢ X/ Glryr)—dod T glrine), (39)
i k

L= 2]9—2p/d2nﬁ9(1')—2pk Z /d2rG(r,rk). (39)

Suppose that the total number of vortices V becomes
large, so that the sums over separate vortices may be
approximated by integrations over a smoothed vortex
density #(r). The last term in Eq. (28) is negligible in
the limit N — 0, and the free energy reduces to

F=i—pxﬂ/dzrn(r)ﬂ~%px/d%ﬁg(t)ﬂ(t)
—%p:c?//d?rd?r’G(r,r’)n(r)n(r’)
—IQ2+pQ/d2r¢g(r)

—+ k2 / / rd'G(r,t)n(r'). (40)
The equilibrium configuration is obtained by mini-

mizing the free energy with respect to the vortex
density, which leads to the simple condition

8F [én(r) = L prQr*—Jpicpa(r)

— ox? / &G (1,)n(r)

-}—pxﬂ-/dzr'G(r,r/):O. (41)
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Equation (41) is an integral equation for #(r),”? and
the solution may be obtained by applying the Laplacian
operator

iQWr“’—%V%/xg(r)—xVZ/d27’G(r,r’)n(r’)
+QV2/d2r'G(r,r’)=0. (42)

Since Yq(r) is harmonic and V2G(r,t’)=6(r—1’), the
unique solution to Eq. (41) is

n(r)=2Q/k(=const), (43)

throughout the whole simply connected domain. The
vortices are uniformly distributed with density 29/x,
and the equilibrium condition (41) then reduces to

[Ya(r)Jeq=3r"— ZQ/d“’r’G(r,r’). (44)

The total stream function (21) may be greatly sim-
plified, and we find

[y (r)1.q=5". (45)

The mean vorticity V=22 is just the value associated
with solid-body rotation.

IV. MULTIPLY CONNECTED DOMAIN

The treatment of Sec. IIT must now be generalized
in order to deal with a multiply connected domain since
the circulation I', must be considered as a variational
parameter. Equation (21) shows that the total stream
function is composed of distinct contributions from the
vortices, from the rotating walls, and from the pre-
scribed circulation. Changes in I, affect only the irrota-
tional stream function y,, which we shall examine in
more detail. As mentioned in Sec. II, ¥, is uniquely
defined by specifying the value of the circulation T,
about each contour C,, along with the condition that
Yo vanish on Co. The constant boundary value yos of
Yo(r) on Cg thus depends on the complete set of con-
stants {T'x}. It is not difficult to show that ¥ is in
fact a linear homogeneous function of the circulation
T, so that

Yos=2_ T'a(8¥0a/0Tp). (46)

12 The simple solution of this integral equation is possible only
for a Newtonian interaction (E «7,571in three dimensions, £ «Inr;,
in two dimensions). A similar variation of the free energy has been
used by K. Maki, Ann. Phys. (N. Y.) 34, 363 (1965), in a study of
the distribution of quantized flux lines in a thin film of type-I
superconductor in a perpendicular magnetic field. In this latter
two-dimensional situation, however, the energy varies as 71571, so
that the kernel of the corresponding integral equation is much
more complicated. Another feature of the Newtonian interaction
is that the fluid velocity vanishes in the interior of a ring of
continuously distributed vorticity and varies as ™! outside of the
ring. This velocity pattern is the two-dimensional analog of the
gravitational force field of a thin spherical shell.
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Equation (46) implies that ¥ may be written explicitly
as
Yog=2_ Lgal'a, (47)

where Lg, is a constant depending only on the geometric
configuration of the contours C, and Cg. It is intuitively
obvious that the constants L, are symmetric under
the interchange of @ and B; this result can also be shown
directly by examining the total energy of the system.

It is worth noting the existence of an exact mathe-
matical equivalence between two-dimensional irrota-
tion flow and two-dimensional magnetostatics in the
presence of current-carrying wires.”® The velocity field
v corresponds to the magnetic field H, while the circula-
tion T'o[ = ¢ ¢, ds-v] about C, is equivalent to the
current 4, [= (¢/47) & ¢,ds-H] in the cylindrical wire
bounded by C,. Furthermore, the constant o, is
analogous to the total magnetic flux ®, linking the
circuit made up of the ath wire and its return path on
the outer boundary. This identification follows immedi-
ately from the usual definition of the stream function
Yo(r) as a measure of the total fluid flux crossing a line
drawn from C, to r.* The hydrodynamic problem of
irrotational (vortex-free) flow in an arbitrary multiply
connected container is therefore identical with the
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determination of the magnetic field in an arbitary
polycore cable. Equations that are valid in one system
provide a correct description of the other. In particular,
the total magnetic flux ®, linking the contours C, and
Cy is known to be a linear homogeneous function of the
currents 7g, and the coefficients of mutual inductance
between C, and Cg are symmetric functions of « and
.15 Separate proof of the corresponding hydrodynamic
results [Eqs. (46) and (47)] is unnecessary in view of
the precise equivalence between the two systems.

We shall now return to the original problem of the
two-dimensional motion of a system of vortices in a
multiply connected region. The expressions for the total
angular momentum (30) and the total energy (37) may
be substituted into Eq. (23) to obtain the exact free
energy, which may be used to study the behavior of an
arbitrary number of vortices in a multiply connected
container. Such a general problem presents computa-
tional difficulties, however, and the present work will
be restricted to the limiting case of a great many
vortices. The sums over separate vortices may then be
approximated by integrations over a smoothed vortex
density #(r), exactly as in Sec. IIL. In this limit, the
self-energy is again negligible, so that the free energy
becomes

F=1p@ f PP —3p S YouTaboc X T f PrGa (B (5)— b f (9 pa(d) ()]

—%p;c?//dzrdzr’G(r,r’)n(r)n(r’)—-IQ2+p$Z > YoadatorQ > Aa/dera(r)n(r)

+pﬂ/d27’|:§[/g(!‘)+¢/o(r)]+pKQ//d21’d27’G(l’,l‘l)n(r’). (48)

A rotating system is in equilibrium if the free energy is a minimum; this condition requires that

8F /on(r)=0,

OF /dT5=0,

(49a)
(49b)

for all 8. The explicit expressions corresponding to Eq. (49a) and (49b) are easily found to be

1ouQr*—Jpx 2 ToGa (1) — Sok[a (1) +o(r) ]—p* / @G, )n (1) +pkQ 2 AoGa(r)+prQ / @*'G(r,r')=0, (50a)

—3pbos—3p 2 Ta(00a/OT's) —px / @rGg(r)n(r)—px / d*rn(r)[ 9o (r)/0Ts]

PO Au(Ona/T5) 400 / P oa(x)/0T5]=0.  (S0b)

13 See, for example, H. Lamb, Hydrodynamics (Dover Publications, Inc., New York, 1945), 6th ed., pp. 210, 217; A. L. Fetter and

R. J. Donnelly, Phys. Fluids 9, 619 (1966).
1 H, Lamb, Ref. 13 pp. 62-63.

16 See, for example, M. Abraham and R. Becker, The Classical Theory of Electricity and Magnetism (Blackie and Son Ltd.,
London, 1954), 2nd ed., pp. 165-172; or L. D. Landau and E. M. Lifshitz, Elecirodynamics of Continuous Media (Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts, 1960), pp. 131-136.
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In computing Eq. (50b), it is important to remember
that the variations in the vortex density and in the circu-
lation are independent, so that dG/0T = dyqe/0T ,=0.
Equation (50a) may be solved by applying the La-
placian operator; since Yo and ¥, represent irrotational
flow and V?G,(r) vanishes in the interior of the domain,
Eq. (50a) reduces to Eq. (42). It follows that the equi-
librium vortex density #=2Q/k is uniform and inde-
pendent of the circulation about any of the inner
boundaries. Equation (50a) may then be simplified to
yield a relation between the equilibrium value of the
irrotational stream function and the Green’s function
describing the uniformly distributed vortices,

[‘/’ﬂ(f)+¢o(r)]eq=%ﬂrz—29/d2r’G(r,r’)
+3 [204,—To]Ga(r). (51)

The second equilibrium condition (50b) may be re-
written using the uniform density #»=2Q/k:

—Sobos—tp 5 Tu(3Woa/OTs)—p0 / 21Go(e)

The linear relation between vy, and T's [Eqs. (46) and
(47)] remains valid in the presence of vortices, and
Eq. (52) may be simplified to

Wos—2 204 o (00e/Tg) = —ZQfder,g(r). (53)

If Eq. (51) is evaluated for r on Cg, we obtain a second
expression for Yog:

Jos=—20 / PrG )+ [2040—ToJGas, (54)

where the constants Gug are given by

Gop= lim G, (1) = lim G(r) =Gy, (55)
1>Cg 1>Ca
Equations (53) and (54) are consistent if
[T.].q=204,, (56)
Leg=Gag, (57)
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which fixes the equilibrium circulation and identifies
the mutual-coupling coefficients.

It is now possible to find the total stream function
[Y(r)]eq describing the equilibrium state of a large
number of vortices. A combination of Egs. (21), (51),
and (56) leads to

(1) Jog=322, (58)

which is precisely the stream function for fluid rotating

as a solid body with
v()=Qxr. (59)

Detailed evaluation of Egs. (30), (37), and (48) yields
the equilibrium values

L,,=19Q, (60)
E,,=3IQ2, (61)
Foo=—3I02, (62)

which also follow immediately from Eq. (59).

This paper has shown that the equilibrium configura-
tion of an assembly of identical rectilinear vortices in
an arbitrary multiply connected region is a uniform
density #=29/k. Hence the mean vorticity in the fluid
is 2Q, which is identical with the value for solid-body
rotation. The equilibrium circulation about each of the
inner boundaries C, is 2Q4,, where 4, is the area
enclosed by C,. This circulation is precisely the value
that would occur if vortices filled the interior of C,
uniformly with density 2Q/«. It follows that the circula-
tion about any contour lying wholly in the fluid is given
by 2Q times the area enclosed by the contour. Although
the fluid remains irrotational at every point except at
the vortex cores, the flow pattern is indistinguishable
on a macroscopic scale from a uniform rotation, in
which |curlv|=2Q. It must be emphasized that these
conclusions are valid only in the limit of many vortices,
when the discrete structure may be approximated by a
continuous distribution. The very interesting experi-
mental question of the critical angular velocity for the
appearance of vortices in a given container requires an
explicit calculation of the Green’s function for that
geometry. The particular case of an annular region has
been studied in detail and will be presented in a sepa-
rate paper.
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