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distance from it. It is best seen at the highest speeds
when the velocity gradient is greater. Its rate of travel
depends on Q." The similarity with Pellam's results
(a) and (b) (nearly 40 years later) is unmistakable.

The stopping experiments are complicated by in-
herent instabilities. Comparing Figs. 1 and 2, both
helium and. H20 respond more rapidly to stopping
rotation than to starting and the departure from two-
dimensional theory is greater for stopping. One expects
that the response to stopping will appear to be faster
when measuring e' with a disk Axed in the nonrotating
laboratory frame even if the results for v are identical
when compared in appropriate frames. The observed
di6erences, however, are too large to account for in
this way. According to McLeod, the large di8erences in
H~O are ". . . due to the break-up of the regular
motion, owing to instability at the Axed outer wall.
Except with the high speed and the large cylinder, the
motion on starting, on the other hand, appears to the
eye to be without appreciable irregularity. "For a long,
slender cylinder, one would expect the stopping in-
stability to be primarily of Rayleigh' type, while for a
shorter cylinder instability of the endwall boundary
layer may dominate. Since the helium II and H&O data
for the largest Re are nearly identical, it would seem
unnecessary to speculate that liquid helium II ac-

7 J. W. Strutt, Lord Rayleigh, Sci. Papers 6, 447 (1920).
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quires any special rigidity in rotation not ordinarily
possessed by classical liquids.

The author would like to thank Professor J. R.
Pellam, who kindly provided additional information
about his experiment in order to make the present
comparison possible.
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Fxo. 2. Square of fluid velocity versus time at r/d=o 375 in.

suddenly decelerated cylindrical containers. Velocity normalized
with equilibrium value. Time normalized with characteristic
viscous diffusion time. For HsO data, L/8= 2 except where noted.
Dashed line is two-dimensional theory for L/tl = ~.
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A s stem of rectilinear vortices in an arbitrary multiply connected domain rotating with angular velocity
t d' d ith Lin's general formalism. In the limit of many vortices, the equilibrium distribution isis su ie wi insg

If the innershown to be a uniform vortex density n=20/If: where It: is the circulation about each vortex. e inner
boundaries are specified by a set of contours C, each enclosing an area A, then the equilibrium value o
the circulation F about C is given by I' =2' . In equilibrium, the Quid rotates as a solid body wit
angular momentum L =IQ and energy 8= & ID', where I is the moment of inertia.

I. INTRODUCTIOÃ

HE behavior of rotating liquid He II has fre-
quently been studied with the model of a classical

inviscid Auid containing rectilinear vortices. ' The only
important manifestation of the quantum nature of He II

*Work supported in part by the U. S. Air Force through Air
Force once of Scientinc Research Contract No. AF 49 (638)-1389.' See, for example, H. E. Hall, Advan. Phys. 9, 89 (1960); or
W. F. Vinen, in Progress in Low Temperature P'hysics, edited by
C. J. Gorter (North-Holland Publishing Company, Amsterdam,
1961),Vol. III, p. 1.

is the appearance of quantized circulation, ' ' so that the
circulation tt about each vortex is given by x=jt/nt,
where h is Planck's constant and m is the mass of a
helium atom. The simplest experimental situation is a
rotating cylinder of radius R, where a great many
vortices are present for reasonable angular velocities
(0&)i't/ntR'=1. 6)&10 4 rad/sec for 2=1 cm). It is

s L. Onsager, Nuovo Cimento 6, Suppl. II, 249 i1949l.
'R. P. Feynman, in Progress in Low Temperature Physics,

edited by C. J. Gorter (North-Holland Publishing Company,
Amsterdam, 1955), Vol. I, p. 17.
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connected region. Section IV treats the general multiply
connected domain.

Fzo. 1. The geometry of
a multiply connected domain,
showing the sense of the con-
tours and the outward normal
vectors.

generally assumed that the equilibrium configuration of
a large number of vortices in a cylinder is a uniform
density rt=2Q/tt=2rrtQ/h. e This configuration has also
been shown to minimize the free energy for a cylindrical
container. 4

Other more complicated geometries are also of interest
in connection with rotating He II. In particular, several
recent theoretical papers' have examined the distribu-
tion of vortices in an annular region bounded by con-
centric cylinders (Rr&r&Rs). These studies predict
that the Quid forms two regions: an inner irrotational
vortex-free region (Rt&r&r, ) and an outer region
(r,&r&Rs) 6lled with a uniform density of vortices
rt=2Q/x. In these calculations, it is assumed without
comment that the energy E and angular momentum L
of the system are composed of additive contributions
from the mean Quid velocity and from the vortices. ~

This assumption is by no means obvious, however, and
must be tested by a calculation based on fi.rst principles.
For this reason, the present paper contains an exact
treatment of rectilinear vortices in an arbitrary multiply
connected container bounded externally by a contour Cp
and internally by a set of contours {C }.The equi-
librium vortex density depends on the angular velocity
Q. In the limit of many vortices, the equilibrium distri-
bution is shown to be a uniform density ts=2Q/tt 6lling
the whole container; the equilibrium circulation I'
about each internal contour is given by F =2QA,
where A is the area enclosed by C . The corresponding
angular momentum and energy are precisely the values
for solid-body rotation: L«=IQ and Epq 2IQ 7 where I
is the classical moment of inertia.

The basic formalism (due to Lin') is reviewed in Sec.
II and applied in Sec. III to the special case of a simply

' A. L. Fetter, Phys. Rev. 138, A429 (1965).
e See, for example, P. J. Bendt, Phys. Rev. 127, 1441 (1962);

H. A. Snyder, Phys. Fluids 6, 755 (1963).
'P. J. Bendt and T. A. Oliphant, Phys. Rev. Letters 6, 213

(1961);M. P. Kemoklidze and I. M. Khalatnikov, Zh. Eksperim.
i Teor. Fiz. 46 1677 (1964) LEnglish transl. : Soviet Phys. —
JETP 19, 1134 (1964)7.' This assumption was introduced by H. E. Hall, Advan. Phys.
9, 89 (1960), in a calculation of the equilibrium distribution of
vortices in a cylinder. See also I.M. Khalatnikov, An Introduction
to the Theory of SNPerJtreiChty (W. A. Benjamin, Inc. , New York,
1965), Sec. 16.

C. C. Lin, ON the 3fotion of Vortices in Tzeo Birnensions
(University of Toronto Press, Toronto, Canada, 1943); an
abbreviated but more accessible account is C. C. Lin, Proc. Natl.
Acad. Sci. U. S. 27, 570 (1941);27, 575 (1941).

II. RECTILINEAR VORTICES IN
TWO DIMENSIONS

t.= —BP/By,

v„=B$/Bx.
(2)

In the present problem, the motion arises from three
different sources: the vortices, the rotation of the walls,
and the circulation about the internal boundaries. The
stream function satisfies a linear differential equation,
and each of the above contributions to P may be con-
sidered separately.

In the absence of vortices, f is a harmonic function
and obeys Laplace's equation

V'f= 0.

The rotation of the walls requires that

P(r)=-', Qr' for r on Ce, {C }, (4)

which is equivalent to Eq. (1). It is convenient to
separate the irrotational stream function into two terms

y.(r)+ii, (r) .

Here, the erst term fn represents the effect of the
rotating boundaries and has the following properties:

V'iran(r) =0,
ifn(r)=zQr' for r on Co, {C}, (7)

ttsB$ n/Btt =0, (8)
&a

where the contour integral is taken in the positive sense
and B/Brt represents the normal derivative in the

' See, for example, L. D. Landau and E. M. Lifshitz, Statistical
Physics (Addison-Wesley Publishing Company, Inc. , Reading,
Massachusetts, 1958), p. 72.

The fundamental problem considered here is the two-
dimensional motion of an incompressible Quid bounded
externally by a contoul Cp and internally by a set of
contours {C }.This question has been studied in great
detail by Lin, ' whose notation will be used throughout.
When the container rotates with angular velocity Q, the
Quid must move with the walls; this provides the
necessary boundary condition

v=Qxr for ronCs {C }, (1)

where r is measured from the axis of rotation Q. The
equilibrium configuration for the rotating system is
obtained by minimizing the free energy F=E—QL,
where E and L are the total energy and angular
momentum. 9

The motion of the Quid is most simply described with
the stream function if(r); the fiuid velocity can be
computed directly from f with the equations
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outward direction (Fig. 1). The second term fp in Kq.
(5) arises from the presence of circulation {I' } about
the inner boundaries {C };fp is defined by the equations

V P, (r)=O;

Pp(r)=fp (=const), for r on C;
(9)

(10)

dsBkp/Bn= I';
&a

Pp(r) =0, for r on Cp. (12)

G(r, rp) =G(rp, r);
V'G(r, rp) =B(r—rp);

G(r, rp) =G, (rp) for r on C;

(13)

(14)

(15)

Equations (6) and (9) together ensure that the motion
is irrotational while Eqs. (8) and (11) fix the correct
circulation about each inner boundary. Since the
Quid velocity is defined only through derivatives of the
stream function, the physical motion [Eq. (1)] is
unaffected by the addition of a constant [Kq. (10)] to
the boundary condition (7). In the special case that the
set {I' } vanishes, Pp(r) is identically equal to zero.
Furthermore, Po(r) vanishes for a stationary system
(Q=O). It can be shown that Pa and Pp are uniquely
de6ned by the above set of equations. ' "

Our discussion must be modi6ed when vortices are
present in the Quid. The additional contribution to the
stream function is expressible in terms of a unique
Green's function G(r, rp) that satisfies the following
conditions':

Equation (21) describes irrotational Qow except at the
vortex cores:

( curlv( =~=K P 5(r—r,). (22)

L= p d'r(xv„—yp, ), (24)

E= 'p d'rv'=-'p d-'r(p '+p ') (25)

where p is the Quid density. Equation (24) may be
rewritten in terms of the stream function f,

d'rL*(W/»)+y(W/By)]

It is straightforward to verify that Eq. (21) actually
satisfies the boundary conditions and therefore repre-
sents the correct solution to the boundary-value prob-
lem. In principle, the explicit form of G, iso, and Pp may
be found for any particular geometry; in practice, the
actual calculation may be dd6cult. Such detailed
knowledge is unnecessary for the present purpose, how-
ever, and it is sufficient to work directly with Eq. (21).

In the rotating system, the free energy Ii is given by

(23)

and we must calculate the angular momentum I. and
energy E of the Quid. These are easily found by inte-
grating over the allowed area

dsBG/Be =0;
~a

16) =~ d'r[B (+)~/Bx+ B (yg/By] 2& d nP

G(r, rp) =0 for r on Cp. (17)

Wg(r, rp) =0. (19)

If a single vortex with circulation ~ is situated at rp,
the additional stream function is given by

KG(r, rp), (20)

which must be added to Eq. (5). More generally, for a
system of identical vortices with circulation ~ at the
points {rp}combined with circulation {p }about {C },
the total stream function is given by

As x~ rp, the Green's function becomes singular like
(2m.) '

inne r
—rp~, and the auxiliary function

g(r, rp) =G(r, rp) —(2s) ' ln~ r—rp~ (18)

satis6es Laplace's equation throughout the whole Quid

=p ds(r R)P pP ds(r—6)f 2p dPnP. —(26)
Op R

Green's theorem" has been used to obtain the last line
of Kq. (26), where the contours are all taken in the
positive sense and 8 is a unit vector in the normal
(outward) direction (Fig. 1).

The line integrals in Eq. (26) may be simplified since

P assumes specified values on the boundaries

p ds(r n)P —pP ds(r sl)f
~p 0!

=-',pQ ds(r sl)r' —p ds(r R)r'
Op ~a

y(r) =go(r)+pp(r)+ K Z G(r, rp). (21)
—p Q [tPp +K P G (r&)] ds(r n), (27)

a Is 0

' See, for example, S. G. Mikhlin, Integral Equations (The
Macmillan Company, New York, 1964), 2nd ed. , pp. 157-159.

"See, for example, T. M. Apostol, Mathematical Analysis
(Addison-Wesley Publishing Company, Inc. , Reading, Massa-
chusetts, 1957), pp. 283—292.
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where Eqs. (7), (10), (12), (15), and (17) have been where A is the area enclosed by C . Hence the angular
used. An elementary calculation with Green's theorem momentum reduces to
shows that

L= 2IB—2p g $0 A —2p» P g G (rp)A

p ds(r 6)r'—P ds(r 8)r'
Cp a

= 4p d'rr'= 4I, (28)
—2p d'rLPo(r)+lto(r)] —2p» P d'rG(r, r)). (30)

which defines the moment of inertia I, and that

ds(r 6)=23
~a

(29)

Here and subsequently, sums over Greek. subscripts
refer to the contours while sums over Latin subscripts
refer to the vortices.

The energy may be calculated in a similar manner:

&= 2p d'rLvw(~4!») "—(4/~y)]

=2p d'r[~&4~.)/» ~Q~.)/~y] 2p—

=2p ds vP —
&p P ds vP &p d'Q—~curlv~,

|.0 a
(31)

where Green's theorem has again been used to obtain the last line. The contour integrals may be rewritten as in
Eq. (27):

-', p ds vt)( —-',pP ds. v)=-', pQ ds vr' g—ds vr' —'2pg L&0 +Kg G (r))] ds v
Cp a gp a k

=-,'pD d rc (xi~„—y(I,)+-', r'(curlv~] —sp P [$0,+» P G (r))]i' . (32)

Since the motion is irrotational except at the vortex
cores, ~curlv~ is nonzero only at a finite number of
points, where it becomes singular. Substitution of Eqs.
(22) and (24) into Eq. (32) yields

affect the conclusions of this paper. Equations (18) and
(21) show that

f(J) =4'()(rl)+A(rf)+» 2 G(r( rJ)+»a(r3 r9) (36)
k(g j)

-,'nL+-,'pn P r„2—-'„P P,.i. and Eq. (31) may be rewritten as

—~p» p + G (r),)1' . (33) Q 1LQ+lp Qp 2

pyric

I
k a

d'nP
~
curlv~ =» Q P(,), (34)

The last term of Eq. (31) may be treated in a similar
manner

lp 2 I"- E G«(—)
a k

—kp» P t P.(r,)+go(r, )]

where P(,) is the nonsingular part of the stream function
evaluated at r, ,

P(,) ——limi P(r) —(2s.) ' ln~ r—r, ~]. (35)

In principle, Eq. (34) should also contain the small
model-dependent contributions from the vortex cores.
These self-energy terms may be omitted here since they
are negligible in the limit of many vortices and do not

——',p»' Q' G(r, , r),) 2p»' P g—(r)„r),), (37)
jk k

where the primed sum is over j and k separately,
omitting the terms j=k.

Equations (30) and (37) are exact expressions for the
angular momentum and energy of a rotating Quid

moving with prescribed circulation about inner bound-
aries and containing a system of rectilinear vortices.
Although the results were obtained by integrating over
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In computing Eq. (50b), it is important to remember
that the variations in the vortex density and in the circu-
lation are independent, so that BG/81' =Bgo/81' =0.
Equation (50a) may be solved by applying the La-
placian operator; since fo and Po represent irrotational
ilow and 7'G (r) vanishes in the interior of the domain,
Eq. (50a) reduces to Eq. (42). It follows that the equi-
librium vortex density n=2Q/~ is uniform and inde-
pendent of the circulation about any of the inner
boundaries. Equation (50a) may then be simplified to
yield a relation between the equilibrium value of the
irrotational stream function and the Green's function
describing the uniformly distributed vortices,

vrhich fixes the equilibrium circulation and identiies
the mutual-coupling coeKcients.

It is now possible to find the total stream function
B(r)j,o describing the equilibrium state of a large
number of vortices. A combination of Eqs. (21), (51),
and (56) leads to

La( )7.,=lQ",
vrhich is precisely the stream function for Quid rotating
as a solid body with

Detailed evaluation of Eqs. (30), (37), and (48) yields
the equilibrium values

Lgo(r)+go(r) j.,=-,'Qr' —2Q d'r'G(r, r')

+Q $2QA —I' jG (r). (51)

I,q=IQ,

E„=-',IQ',

I'„=—~IQ',

(60)

(61)

{62)

The second equilibrium condition (50b) may be re-
written using the uniform density e= 2Q/x:

kAop k—p 2 I'-—(~A-/~1'p) pQ d—'~p(r)

+pQQA (8&o /oiI"p)=0 (52.)

2IIop —Q 2QA {ojgo /81'p)= —2Q dr Gpr{). (53)

If Eq. (51) is evaluated for r on Cp, we obtain a second
expression for fop.

Pop ———2Q d'r'Gp(r')+g L2QA —I' JG p, (54)

where the constants 6 p are given by

G p= limG (r) = limGp(r)=Gp . (55)

Equations (53) and (54) are consistent if

The hnear relation between fo and I'p LEqs. (46) and
(4'/)j remains valid in the presence of vortices, and
Eq. (52) may be simplified to

which also follow immediately from Eq. (59).
This paper has shown that the equilibrium conhgura-

tion of an assembly of identical rectilinear vortices in
an arbitrary Inultiply connected region is a uniform
density e=2Q/~. Hence the mean vorticity in the fluid
is 2Q, vrhich is identical with the value for solid-body
lotatlon. The equlllbl"D1IQ clrcUlatlon about each of the
innel boundM ies Ca is 2' e2 'whel e ~& ls the al ea
enclosed by C . This circulation is precisely the value
that would occur if vortices 61led the interior of C
uniformly with density 2Q/o:. It follows that the circula-
tion about uey contour lying @&holly in the Quid is given
by 2Q times the area enclosed by the contour. Although
the Quid remains lllotatlonal at evely point except at
the vortex cores, the Qow pattern is indistinguishable
on a macroscopic scale from a uniform rotation, in
which

~
curlv~ =2Q. It must be emphasized that these

conclusions are vahd only in the limit of many vortices,
vrhen the discrete structure may be approximated by a
continuous distribution. The very interesting experi-
mental question of the critical angular velocity for the
appearance of vortices in a given container requires an
explicit calculation of the Green's function for that
geometry. The particular case of an annular region has
been studied in detail and mill be presented in a sepa-
rate paper.
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