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circularly polarized beams. The ratio of the slopes of
these two straight lines was found to be about the same
as the corresponding ratio of the vertical intercepts of
these lines. The threshold ratios between circularly and
linearly polarized beams were determined from the
vertical intercept of these lines, and were found to be,
respectively, 2.00, 1.66, 1.60, and 1.50 for CS,, nitro-
benzene, toluene, and benzene. For CCly, our maximum
available laser power was insufficient to permit similar
measurements with a circularly polarized beam.

It has been suggested?? that the above threshold
ratios should be identified with the corresponding ratios
of the index changes in Eq. (11). It then follows that
the observed threshold ratios of 2.0 to 1.5 would
correspond to a range of values from 1.0 to 0.5 for the
ratio X3'221/(X;11224-X,1221), These are the ratios which
we determined in Table I to be close to 3. Thus it
appears that discrepancy exists between the results

deduced from the observed ratios of self-focusing
threshold, and the results deduced jointly from measure-
ments of intensity-induced rotation and measurements
of self-focusing threshold for a linearly polarized beam.
However, we feel that the results deduced from meas-
urements of intensity-induced rotation and measure-
ments of self-focusing threshold with a linearly polarized
beam are probably correct. Since uncertainties exist
both in theory and in experiment for the self-focusing
effect of a circularly polarized beam, it is not clear if
the ratio of self-focusing threshold is to be identified
with the corresponding ratio of the index changes.
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An expression for the static nonlinear dielectric constant of a nonpolar liquid is derived which takes into
account the reorientation and local spatial redistribution of molecules in the presence of a strong electric
field. This result is used to calculate the nonlinear index of refraction of various lossless liquids at “optical”
frequencies which are much higher than molecular reorientation rates. From this nonlinear index, we obtain
estimates of the optical power required to initiate self-focusing in a liquid over periods so short that macro-
scopic density changes do not have time to take place. This situation is commonly approached in experi-
ment. The theory predicts that the effects of molecular redistribution, hitherto not considered, will be
generally as important as the widely considered effects of molecular reorientation, and will in fact dominate
the nonlinear index of many symmetric and nearly symmetric molecules. Furthermore, the results suggest
that some purely symmetric molecules, such as SiBrs, may exhibit self-focusing in liquid as readily as do
some commonly studied asymmetric molecules, such as nitrobenzene. The calculation proceeeds from classi-
cal statistical mechanics with the aid of a variational principle that is valid for arbitrary density. In the
low-density limit our results reflect only molecular reorientation and reduce to those of Debye and others.
The accuracy of the results depends mainly on the accuracy of Kirkwood’s “superposition approximation”
in representing three- and four-particle correlation functions in liquids. Since the accuracy of this approxi-
mation is at present unknown, nonlinear index data may prove useful in checking it. As a by-product of our
investigation, we have proven that the Clausius-Mossotti expression gives a lower bound for the dielectric
constant of a fluid in which the two-particle correlation function is a function only of the interparticle spacing
and approaches a constant at large spacing. Molecular redistribution must also play a role in induced bire-
fringence (ac and dc Kerr effects), especially for symmetric molecules. However, the present treatment is
limited to waves of a single linear polarization, and does not cover the Kerr effect.

2 DECEMBER 1966

I. INTRODUCTION

HE self-focusing of optical beams and the effects

of this self-focusing on stimulated Raman scat-
tering and other nonlinear effects have been studied
in a variety of liquids.*~® The nonlinear index of re-
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fraction which causes self-focusing has been attributed
to electrostrictive effects and to the reorientation of
asymmetric molecules (ac Kerr effect) in the strong
optical fields; the electronic nonlinearities are presumed

( 2 6%) Hauchecorne and G. Mayer, Compt. Rend. 261, 4014
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to contribute much less.>=%7 In this paper we point
out that another mechanism, the spatial redistribution
of the molecules, can make a contribution to the non-
linear index of liquids which is generally comparable
to, and may in some cases dominate, electrostrictive
and reorientation effects.

We will consider only the index change experienced
by a strong linearly polarized optical field in a liquid;
the index changes for beams of other polarizations (and
related phenomena such as induced birefringence) will
involve added calculational complexities. The strong
impressed field induces a dipole moment in each mole-
cule so that extra anisotropic dipole-dipole forces, which
are evidently proportional to the time average of the
square of the field strength, occur between molecules
in addition to the usual intermolecular forces already
present. Therefore, after the molecules come into
thermal equilibrium in the impressed field, the #-
particle correlation functions for the liquid (#>1) are
altered in an anisotropic way from their zero field forms.
That is, the field causes the molecules to become
“redistributed” in space, and this redistribution con-
tributes to a change in index. For example, the induced
dipole forces cause two nearby molecules of a fixed
separation to be more probably found in line with the
strong applied field (where their combined polarization
is maximum) than on a line perpendicular to it (where
their combined polarization is minimum). Of course,
asymmetric molecules also tend to reorient themselves
in the field, and thus increase their average polariza-
bility, and the macroscopic mass motion caused by
electrostrictive forces and thermal expansion also alters
dielectric properties after macroscopic density vari-
ations have had time to form. It is the main object of
this paper to assess the change in index of refraction
brought about by the local redistribution and reorien-
tation of molecules in a liquid, ignoring the effects of
macroscopic density changes which take much more
time to form.

Specifically, we calculate here the nonlinear index
(to second order in the fields) which would exist in a
fluid irradiated by an optical pulse of such short dura-
tion that macroscopic changes in density (such as
might arise from electrostrictive effects and heating)
do not have time to occur. We also assume that a
molecule will undergo so many collisions during this
optical pulse that a statistical mechanical equilibrium
will exist which is appropriate to the modified inter-
molecular dipole-dipole forces and the torques resulting
from the application of the strong optical fields. The
refractive index for this altered equilibrium state of
the fluid is then calculated in a standard way by
differentiating the free energy & of a uniform sample
of fixed macroscopic density with respect to the applied
electric field strength E, to obtain the induced dipole
moment. From this one obtains, in the usual way, an
expression for the total (linear plus nonlinear) index.

7R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev.
Letters 13, 479 (1964).
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This expression for the index contains only the effects
of molecular redistribution and reorientation.

The densities of the liquids of interest are too large
for a low density expansion of & to be accurate. There-
fore we employ a variational principle which gives an
upper bound for & regardless of density. A “local field
approximation” is then made in which certain free
parameters may be varied to obtain a lowest upper
bound for & within the local field approximation. From
this, a lower bound results for the linear part of the
index of refraction, which bound is the ‘“Clausius-
Mossotti” or ‘“‘Lorentz-Lorenz” expression. This is a
strong lower bound, true whenever two particle corre-
lations depend only on the interparticle spacing. Un-
fortunately, a similar bound does not result for the
nonlinear index which we calculate to second order in
the field.

Because the Clausius-Mossotti expression for the
linear dielectric constant (or the square of the index)
is known to be accurate to within a few percent for
liquids, one might expect our corresponding expression
for the second-order part of the index to be accurate to
within 10 to 509,. Unfortunately, many additional
errors are introduced into the evaluation of the non-
linear index expressions by our having to use the
Kirkwood ‘‘superposition approximation” for the
three-and four-particle correlation functions. These
errors are of uncertain magnitude within our present
knowledge of statistical functions for liquids. Perhaps
the nonlinear index experiments can be used to obtain
an idea of the accuracy of the Kirkwood approximation,
since the nonlinear index is more sensitive to the char-
acter of third- and fourth-order correlation functions
than are other quantities which are as accurately meas-
urable. It is reassuring that the term in our final ex-
pression for the nonlinear index which dominates at
low densities and which is most sensitive to the asym-
metry of the molecules is exactly the same as the
expression of Debye® for the low-frequency nonlinear
index of molecules having no permanent dipole moments
(these don’t interact with optical fields). However,
optical, rather than low-frequency, polarizabilities
appear. Although this “Debye” term in the nonlinear
index is dominant (for asymmetric molecules) at
densities somewhat lower than liquid densities, the other
terms we find are important, if not dominant, at liquid
densities. These other terms arise from the redistri-
bution of molecules brought about by the field-induced
changes in intermolecular forces.

The relative power thresholds for producing self-
focusing or “self-trapping” in those liquids for which

8 P. Debye, Marx’s Handbuch der Radiologie VI (Leipzig, 1925),
Chap. V, p. 768. P. Langevin, J. J. Larmor, M. Born and others
earlier derived similar relations to that of Debye, but none had
evaluated correctly both the local fields producing the non-
linearities and the effect of the change in polarizability of a
molecule on the local fields themselves. Furthermore, in Optik
by M. Born (Springer-Verlag, Berlin, 1965), an extra error of 2
is introduced in passing from Eq. (33), p. 352 to Eq. (1), p. 366
which is copied in some of the later literature on nonlinear indices
and the Kerr effect. See M. Born, 4bid. for a general bibliography.
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quantitative data is available are consistent with values
calculated from our nonlinear indices and the formula
for threshold power of Chiao et @l.” In particular, the
recent observation by Bret ef ol that the symmetric
molecule CCly exhibits a threshold anomaly character-
istic of self-focusing in liquid when the asymmetric
molecules choloform, acetone, and acetic acid do not is
consistent with our predictions. Comparison of our
results with the current data indicates that our predicted
relative threshold powers may be accurate to around
+259%,. If this is so, then we predict that several purely
symmetric-molecule liquids, such as SiBr,, will exhibit
low self-trapping thresholds of the same order as, for
example, that of the strongly self-focusing liquid nitro-
benzene. Molecular redistribution must also affect the
induced birefringence (Kerr effect), perhaps accounting
for the general disagreement between the usual Debye
theory® and experiment (especially pronounced for
symmetric molecules). However, we do not consider
such effects here.

The absolute magnitudes of our predicted thresholds
tend to fall an order of magnitude lower than those
estimated from experiments.?~% The errors inherent in
the Kirkwood approximation might well be responsible
for this. However, as we point out later in the discussion,
there is some evidence that thresholds are actually
lower than was at first supposed. The possible effects
of relaxation processes which may prevent the achieve-
ment of the quasi-steady state we have assumed have
not yet been examined, nor has the role of bubbles,
impurities, normal thermal turbulence, etc.

II. FORMULATION

The induced orientation and intermolecular potentials
are quadratic in the field strength. Therefore molecules,
which can neither translate nor rotate at optical fre-
quencies, will assume the same configuration in a
uniform dc applied field as in a uniform optical field of
equal mean square amplitude (if the optical and static
polarizabilities are equal). We will take advantage of
this fact to simplify the mechanics of the calculation
and compute the nonlinear dielectric constant to second
order in the fields as if the strong applied electric field
were static. Of course, only induced polarizations need
be considered; there is essentially no interaction be-
tween any permanent electric dipole moments and the
optical fields and polarizations. The desired second
order optical dielectric constant is then simply obtained
from the static constant by replacing the square of the
static field by the mean square optical field and using
the optical values for molecular polarizabilities in all
expressions.

To compute the static dielectric constant, we first
compute the free energy § of an ellipsoidal sample of

9 G. Bret, F. Gires, and G. Mayer, in IEEE J. Quant. Electron.
QE-2, No. 4, 18 (1966).
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uniform fluid in a uniform x-directed electric field o,
with a principal axis of the ellipsoid parallel to the field.
Then the total electric dipole moment of the sample M
is obtained from the well known relation’

M=—dF/dE,. 1)

Because the sample is ellipsoidal and the external field
uniform, the polarization per unit volume P inside the
sample will be uniform and «x-directed.’ We assume
the sample to have a fixed volume V, whence

P=M/V. o)

We desire the nonlinear index only to second order in
the electric fields so we compute & to fourth order in
the fields and obtain a result of the form

F= (bER/24cE#/4)V 3)
from which we have
P= on+CE03 . (4)

In an ellipsoidal sample uniformly polarized along a
principal axis, the relation of the polarization density
to the macroscopic electric field E is generally written!

E=FE,—LP, Q)

where L is called the depolarization factor for that axis
of the ellipsoid. The factor L can have values between
0 and 4 depending only on the shape of the ellipsoid.?
If we define a linear susceptibility X and a nonlinear
susceptibility 7 by the relation

P=XE+nE?, (6)

then a comparison of (4) and (6) with the aid of (5)
shows that
X=b/(1—Lb) )
and
n=c(1—Lb)*=c(14+LX)*. (8)

The nonlinear dielectric constant ey is
exr=1+47P/E
= 1+4dn (X+nE?) ©
and, in extrapolating our results to the optical case,

we would therefore have an index of refraction eyp!/?
given, to second order in E, by

evzt2=n+ (2r/nmB?, (10)

where E is the root mean square electric field averaged
over many optical cycles and # is the ordinary linear
index of refraction. Following the standard practice,
we define a “nonlinear index” #, by

(11)

Then the threshold power P, required to begin trapping
a uniform cylindrical beam much broader than a wave-

ne=2mwn/n.

WW. F. Brown, Jr., Handbuch der Physik XVII, Dielectrics,
edited by S. Fliigge (Springer-Verlag, Berlin, 1956), pp. 1-153.
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length is given approximately by’

Pom (1.2200)%0/ (12815) , (12)

where A\¢ and ¢o are the vacuum wavelength and velocity
of light, respectively. We now have all the relations
necessary to connect the nonlinear index effects with
the electric free energy &.

In computing the free energy &, we will assume that
we are dealing with a classical fluid and use classical
statistical mechanics. We must therefore formulate the
total potential energy v of the V molecules in the sample

when they are placed at positions r!, ---r¥, have
electric dipole moments m!, ---m¥, and are oriented
at the Euler angles 6., ¢1, ¢4, * * +, 0, ¢n, ¥~, which we
symbolize by @4, -+, Q.

We may anticipate that the electronic nonlinearities
will be small compared to those with which we are
concerned here and assume that the internal energy v,
of the yth molecule is quadratic in the components of
its electric dipole moment m?. If m,” are the components
of this moment along the principal axes a=1, 2, 3, of
its polarizability ellipsoid, then'

3
0y=% 2, (ma")*/aa,
a=]

(13)

where ai, as, ag are the polarizabilities of the molecule
along its principal axes. The components m,? are
related to the components m;Y measured in a laboratory-
fixed coordinate system by!

mi¥=Ria(Qy)m4". (14)

The repeated space indices here and elsewhere are
assumed to be summed. The matrix R;,(Q,) =R :(Q,)
represents the rotation operator for the Euler angles
Q, of the yth molecule, and will be abbreviated R;,".
The interaction energy v, between two molecules at

positions r” and r* will be assumed to be'
Vyu= Voyut-mYm D7

(15a)

where v,, is a hard core repulsive potential and the
remaining term is the dipole-dipole interaction energy.

D (8:;0k0— 38:x8;) (rie?— k) (ri¥—11#)
ij“II‘E

. (15b)

o=t

The m,” which measure the displacement of electronic
charge may be taken to be the independent harmonic
“internal” coordinates of the molecules which describe
the electronic polarization. That is, it is appropriate to
integrate over all values of these coordinates in evalu-
ating the free energy from the potential energy func-

' We will use the lower case Latin subscripts ¢ through / to
denote the space components of a vector or matrix referred to
the principal axes (1,2,3) of the polarizability ellipsoid fixed in
the molecule. Latin subscripts from 7 onward will be used to denote
space components referred to the orthogonal principal axes (x,y,2)
of the ellipsoidal sample fixed in the laboratory.
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tion.® The free energy F of the liquid in the x-directed
external field may therefore be written

= / f / Aryd{Q)d(m) e

V=2 (=M "Eo+2y)+5 2 y.u Vyu

(16a)

where
(16b)

is the total energy of a configuration of the positions,
moments, and orientations of the molecules. /'d{r}
symbolizes the integration 'dr'---/dr¥ over the
entire volume V of the ellipsoid of every molecular
position. Similarly, Sd{Q} symbolizes the integral
Jor sinbud6; S d1 ST dipr, - S0 sinbndOy ST dpy
X S dyn (872N over all molecular orientations {Q},
and fd{m.} symbolizes the integral S dm.’dmsidms- - -
S dmVdme¥dms¥ over-all internal molecular coordi-
nates {m,}. 8 is defined as the inverse of (the tem-
perature times Boltzmann’s constant).

This completes the formulation of the static dipolar
free energy suitable for classical liquids. The relations
(1) to (12) connect the dependence of & on an externally
applied electric field E, with the threshold power for
self-focusing or self-trapping which we wish to predict.
It remains to carry through the evaluation of the free
energy starting from the basic definition (16).

III. A VARIATIONAL PRINCIPLE FOR
CALCULATION

In order to obtain from (16) an accurate estimation
of § for liquids, it does not suffice to expand & in powers
of the number density p=N/V. We therefore employ a
variational approach which obtains an upper bound
for §. Parameters will exist in the upper bound which
can be varied to obtain a lowest upper bound within
any approximation scheme.

To obtain a variational principle, we note that the
total potential energy v is a quadratic function of the
dipole moment coordinates #,”. This means that if we
define new coordinate variables of integration »,* by

7

where the u,” are those values which minimize v for a
given positional and orientational configuration, then
we can rewrite (16) as

VaY=Ma¥"— o,

6% = / / d{r}d{Q} exp(—B X yu $00y,— B’

—B mingye), (18)
where!!
o=0({u},{1},{Q},E0)
=3\ (—u"Eot3 Lo ra”/
aa"'% Zv Hi7ﬂijij7y) ) (19)
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is the function which is minimized by our choice of the
oY and

expl— B ()2} T= / dfva)

XCXPE_ %ﬂ ZV(Vaﬂ/aa",'Zn Vi"Dij‘iju):"

The symbol {u} represents the set of all values of the
ua”. The intermolecular potential »* defined by (20)
cannot depend on the electric field Ey (or the {u} would
not minimize ¢) and represents, of course, the long
range van der Waal’s potential due to induced dipole-
induced dipole interactions. This potential has been
analyzed in the literature® and we need not discuss it
further here.

It is too difficult to find an exact explicit expression
for [ming,¢], but if we insert wrong values for the
{u} into ¢, we at least obtain an estimate for the field
dependent part §z of & that is too high. We therefore
have the useful inequality that for any {u} whatever

(20)

Fp<F (21)
where
34F=//Quwaanninnrw (22a)
and
o exp(—8 22 yu $%0yu—B") . (22b)

,/'d{r}d{(l} exp(—b’ Zw FV0yu—RBY')

With this inequality we may proceed with a variational
calculation of the desired field-dependent part Fz of
the free energy.

IV. THE EFFECTIVE FIELD APPROXIMATION

We will use a local field approximation in which we
use the approximate values

Ha"=0.R,VE, (23a)

or equivalently™

kY= Rj,"a R, E’, (23b)

in ¢ as if each molecular moment saw only an effective
x-directed local field of magnitude E’. We will then
adjust £’ to minimize the resulting upper bound F for
the free energy (calculated to fourth order in E').
The F thus obtained is a function of the shape of the
ellipsoidal sample, but the dielectric constant derived
from it via (9) is not. (Otherwise one could vary the
shape parameters to improve further the accuracy of
the estimate for the dielectric constant.)
Using (23) in (19) gives

e BF = «e—ﬂ(nz—m)» (24)
where
w=y ., G a"F, (25a)
G=E,—1iF, (25b)
and
u=%1>,,E 07D F. (26)
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We have introduced the usual shorthand notation for
multiplication among the 3X3 space matrices
a'=R; "0 R;., D'Y"ED,'J"V”, and the 3-vectors E¢=%4F,
and E'=2£E'. The double average brackets (( )) in
(24) symbolize the integrations over {r} and {Q}
weighted by w({r}) which is normalized so that
({1))=1. We will often use only the single average
bracket when either the angle or position average is
required alone; which average is intended will be clear
from the context. In either case, (1)=1.

We expect (as we will find) that the best local field
E’ will be of the order of E,. Therefore (24) implies
that, to fourth order in E,, F is given by

F= Uz—Ul_%ﬂ[UZT‘ZUm‘l‘Un] (27>
where
U= {(u:)) (28a)
and
Uij= ((uaug))— (uay){us)): 4, j=1,2. (28b)

The integrals in U, and Uy, are easily performed to
give
U,=NaGE’ (29)
and

U 11= N GZE/2a2A (30)

where the dimensionless anisotropy parameter A is
defined by

A=2[ (a1 —a2)?+ (@s—as)?+ (@1—a3)*]/ (45e%) (31)

and o= (a;+asta3)/3 is the usual linear molecular
polarizability.

To perform the integrals in U, and U,s we require
the positional average of D,,". We assume the weight
function w does not depend on {Q}. Then, if the
dimensionless two-particle correlation function p(r)
defined by

p(riy)= VZ/dr3- - -dryw({r}) (32)

approaches a constant value when 7= [r,—rs| is still
small compared with the size of the liquid sample
under consideration, the required positional average
gives (neglecting terms of order N—! smaller)

(Z'vm Dzzw) = Npl
l=L—4x/3, (34)

independently of the form of p(r).° p is the number
density of molecules N/V'; L is the depolarizing factor
along that principal axis of the ellipsoidal sample which
is parallel to the external field. Therefore

Us=3Na2El

(33)
where

35)
U= Na3GE"3plA. (36)

To perform the integrals required in U, the exact
form of the two-, three-, and four-particle correlation
functions is required. For purposes of calculation, we

and
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have assumed that p(7) is a simple step function which,
properly normalized, is

p(r)=0, r<d
=(1—7/V), r>d (37a)

where
r=4rd®/3. (37b)

We have used the usual “Kirkwood superposition
approximation” for the three- and four-particle corre-
lation functions, expressing them in terms of p(r). The
details of the calculation of U, with these approxi-
mations is given in the Appendix; the result is

U/ (NE'pa®) = (24272/3)A+27%/3
+72(324-136A+16742)/ (45p7)
+0.961p7 (14K 4/4), (38)

where K4 is a small contribution (~10~!) from an
integral that we have not been able to evaluate exactly
and which we may neglect without affecting the
probable accuracy of the over-all results.

V. THE BEST EFFECTIVE FIELD; LINEAR AND
NONLINEAR INDEX FORMULAS

Having explicit expressions for all the terms in (27)
for F, we will adjust the magnitude E’ of the effective
local field to obtain as low a value as possible for the
upper bound F of the electric free energy. Since the
terms of order E¢* are supposed to be orders of magni-
tude smaller than those of order E¢, it is easily seen
that the best E’ is that which minimizes the terms of
order E¢®. Any small change of E’ from such a value
raises these large terms more than it can depress the
smaller terms of order E¢*. That is, we need only mini-
mize (U,— U,) with respect to E’ and find that

E'=Eo/ (1+pod) (39)

is the best choice for E’. Using (39) in (27) gives im-
mediately the approximate b and ¢ coefficients of (7).
Since the inequality (21) holds in the limit of low fields,
the estimate for & is a lower bound. Then, from (7)-
(12), the following relations result for the linear di-
electric constant e and the nonlinear index #,:

14-87pa/3
> (40)
1—4mpa/3
and
wpoB r 472002
o~ A+ (324-136A+167A2)
n(l—dmpa/3)L | 457
8n20%a? (14-A)

+

+3.843a2p3r:| . (41)

We reiterate that, since the test sample of fluid con-
sidered was uniformly irradiated and filled a fixed
volume uniformly, the estimate (41) for the nonlinear
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TasLE I. Values of #,, the nonlinear index arising from molecu-
lar reorientation and redistribution, calculated from Eq. (41) for
various liquids. Values of the threshold power for self-focusing P,
calculated using these values of #s in Eq. (7), with A,=6943 A.
Values of #:p, the nonlinear index of Debye for molecular reorien-
tation alone, and given by the term in (41) lowest order in the
density. The optical polarizability data used in calculations was
taken from Table 142072 of Ref. (12) whenever possible, and
otherwise from Ref. (13) or as noted.

72 X102 Py (kW) calc.  n9p X102

Liquid esu for 6943 A esu
1-chloronaphthalene® 167> 1.0
Lead tetraisopropyl® 111 1.5 0
Tin tetra 2-methylbutyl* 109 1.5 0
Tin tetrapental® 108 1.6 0
CS, 96 1.7 22
Tin tetrabutyl® 89 19 0
SiBr, 82 2.0 0
Lead tetraethyl® 81 2.1 0
Benzoylchloride 73b 2.3b
Nitrobenzene 69 24 8.8
Bromobenzene 68¢ 2.5 6.4°
Acetophenone 564 3.1d
Chlorbenzene 54 3.1 6.3
Toluene 45 3.8 5.6
SnCly 44 3.8 0
Benzene 37 4.5 44
Sn (CH3)4 27 6.2 0
CCl4 24 7.1 0
Chloroform 19 9.0 1.3
Water 11p 15b
Acetone 6.7 26 0.6
Acetic acid 5.7v 30p
Liquid CH, 3.0 56 0
Liquid H, 0.024¢ 7000 0.010

» A molecule whose largest dimension is estimated to be larger than p~1/3;
hence, the listed index and power values are less accurate for this than the
smaller molecules.

b Measured values of A not available; n2 calculated using A estimated
from the ac Kerr effect data of Ref. (9) and the theory of Ref. (8).

¢ Value of A estimated by scaling values in Table 142072 of Ref. (12) to
those of Table 142071.

d Estimated by assuming molecule is symmetric (A =0).

¢ This value is less accurate than others because the quantum effects that
we have ignored are important in liquid Ha.

index does not contain any effects of macroscopic
density changes such as would arise after a certain time
from electrostriction and heating in a nonuniformly
irradiated sample or in a compressible sample uniformly
irradiated. The expression (41) contains only the rela-
tively quickly established nonlinearities due to molec-
ular reorientation and redistribution.

In order to evaluate (41), a knowledge of the molecu-
lar volume %7 is required. This parameter also occurs
in the theories of the fluid viscosity, the heat conduc-
tivity, and virial coefficients. An examination of data
on representative fluids in each of these areas gives
values for 7 which vary typically by £109,, for a given
fluid and which fall within 159, or 2.5/p. Since data
on 7 are not available for most of the fluids of interest
to us, we have used the value pr=2.5 throughout our
numerical evaluations of #,. Fortunately, #, is not very
sensitive to deviations of pr from 2.5, and we feel that
the errors arising from this approximation are less than
from other sources.

The values of 7, that result from using this approxi-
mation and polarizability data appropriate for the
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wavelength 0.589 u of the sodium D-line are given for
24 liquids in the first column of Table I.213 The
threshold powers P, for self-focusing estimated by
using our values for #, in (7) are listed in the second
column. Also given in the last column for comparison
are the values #,p which would be obtained from the
low density formula of Debye for the nonlinear index
[i.e., the first term on the RHS of (41)] which neglects
molecular redistribution.

VI. EXAMINATION OF ACCURACY AND
DISCUSSION

The inequality (40) is equivalent to the statement
that the Clausius-Mossotti function (e—1)/[o(e+2)]
is always larger than 4ma/3 for a classical fluid of
molecules of fixed linear polarizability, regardless of
the intermolecular forces, provided that the two-
particle correlation function depends only on the inter-
molecular spacing and becomes constant for large
spacing. The fact that many fluids have been found
which slightly disobey (40) demonstrates that at least
one of these assumptions is not entirely valid.!> How-
ever, the observed deviation of the Clausius-Mossotti
function from 4ma/3 is rarely more than a few percent
in liquid.!® This suggests that our nonlinear index
should be accurate to within 10 to 509, depending on
the molecule. However, in arriving at (41), several
added approximations have been made so that this
absolute accuracy may not be attained. The result for
7y 1s sensitive to the forms of the two-, three-, and four-
particle correlation functions. The first of these we
have approximated by the step function (37), and even
the best parameter 7 to use in (37) is uncertain.
Probably least certain of all the approximations is the
Kirkwood superposition approximation for the three-
and four-particle correlation functions. Also, for those
“large” molecules listed in Table I whose largest di-
mensions are probably larger than p=/3, extra errors are
introduced because such molecules are clearly not
representable as hard spheres with ideal polarizable
dipoles at their centers. Furthermore, in the listed
threshold powers there are the added errors inherent
in (7) which, when applied to a given laser beam, could
easily err by an order of magnitude. Despite these and
other difficulties, we believe there are some significant
correlations between our theoretical values of #n, or P,

12 Landolt-Bornstein, Zahlenwerie —und  Functionen I/3
(Springer-Verlag, Berlin, 1962), p. 509.

18 Dictionary of Organic Compounds (Oxford University Press,
New York, 1965). )

14Y. R. Shen, Phys. Letters 20, 378 (1966), also uses this
formula for #sp to tabulate nonlinear indices. However, his values
often differ from ours by a factor ~2 because he employs the dc
Kerr coefficients, with data on permanent dipole moments and
the theory of C. V. Raman and K. S. Krishnan, Phil. Mag. 3, 724
(1927), to determine A, rather than the optical values measured
directly by Rayleigh scattering. This latter theory was shown by
Raman and Krishnan to be commonly in error by 2 or more.

15 C. M. Knobler, C. P. Abiss, and C. J. Pings, J. Chem. Phys.
40, 2200 (1964).
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and the available experimental results on self-focusing.
The reasons for this and some detailed comparisons with
experiment are given below.

From recent time-resolved studies of the formation
of self-trapped filaments of an unfocused ruby laser
beam in CS, and nitrobenzene, it was found that the
filaments do not persist for more than a few nano-
seconds even when the laser pulse is several tens of
nanoseconds long.!® In all of the experimental studies
of self-trapping to date, unfocused beams of cross
section of the order of 1 mm or larger have been used.
Therefore, during the lifetime of a “filament,” a sound
wave could travel only a small fraction (<107?) of the
width of the parent beam. This suggests that macro-
scopic density changes and the effects (such as electro-
striction) which produce them may not have time to
affect the index in many, if not all, materials studied
to date. Further evidence against density change effects
comes from the observed instability in the nonlinear
propagation of a circularly polarized beam, an insta-
bility which would not exist if density changes alone
altered the index.!® It is true that stimulated Brillouin
scattering may accompany or precede self-focusing, but
the usual theory suggests that the density changes
associated with this are not such as to case an index
change at the parent frequency, although they may of
course contribute a loss which can effect self-focusing.
Therefore, it seems reasonable to expect that a com-
parison between present data and our theory which
omits effects of macroscopic density changes will yield
some information on the accuracy of the theory and of
the conclusions that it suggests. Such a comparison
and suggestions for more definitive experimental checks
of molecular redistribution effects are now given.

In the first data on self-trapping of Hauchecorne and
Mayer,? nitrobenzene was found to self-focus about the
same fraction of an incident beam as does 1-chloro-
naphthalene. This suggests that the threshold powers
are about the same in these two materials, as has been
verified more recently by Bret et al.? Therefore, the ratio
of the threshold for 1-chloronaphthalene to that of
nitrobenzene inferred from Table I is two times too
low. However, 1-chloronaphthalene is a “large” mole-
cule (its maximum dimension is greater than p~3) for
which our model of a point dipole at the center of a
spherical molecule is obviously bad. This suggests that
the critical powers listed for the other “large” molecules
indicated in Table I may also be too low relative to the
other powers listed.

Shen and Shaham?® found that the threshold powers
for self-focusing in nitrobenzene, acetophenone, ben-
zene, and water increased in that order. This is in
agreement with the order of Table I.

16 D. H. Close, C. R. Guiliano, R. W. Hellwarth, L. D. Hess,
F. J. McClung, and W. G. Wagner, IEEE J. Quant. Electron.
QE-2, No. 9, 553 (1966).
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Lallemand and Bloembergen found that the threshold
powers of CS,, nitrobenzene, bromobenzene, and
acetone increased in that order, in agreement with
Table I. They also failed to observe self-trapping in
water and CCls. However, from a more detailed
examination of Raman scattering near threshold,
Bret et al. have found evidence for self-trapping in CCly
at powers where there was none for acetone, chloroform,
and acetic acid.’ Table I is consistent with the latter
possibility.

Other measurements of Bret ef al. give the threshold
powers to produce stimulated Raman scattering in CS,,
nitrobenzene, benzoylchloride, 1-chloronaphthalene,
toluene, benzene, and CCl, to be in the ratios 1:2:3:3:
6:10:300.° Since Bret ef al. present indirect evidence
that self-trapping occurs in each of these liquids, we
may suppose that this ordering is also that for the self-
trapping threshold powers. Again, except for the “large”
molecule 1-chloronaphthalene, the ordering is consistent
with that in Table I. The connection between these
threshold powers covering a power range of 300 and
the self-trapping thresholds for beams of a fixed spatial
pattern is not clear enough to warrant studying a
numerical comparison, especially since the experimental
procedure was not given.

From a study of the cell length dependence of stimu-
lated Raman thresholds, Wang has inferred that the
trapping threshold powers for nitrobenezene, toluene
and benezene are in the ratios 1:2.9:3.4. This may be
compared with corresponding ratios 1:1.6:1.9 from
Table I. We do not feel that this difference represents
a fundamental disagreement, but is probably repre-
sentative of the experimental and theoretical errors in
such ratios.

If even rough comparisons are to be made between
the absolute values of the threshold powers for self-
focusing predicted by (7) and observation, a highly
degenerate diffraction limited beam of smooth wave-
front must be employed. Otherwise corrections to (7)
discussed by Wang® must be devised. The only pub-
lished efforts to study self-focusing with a beam approxi-
mating the ideal conditions are those of Garmire e/ al.
They found beam constriction to set in at 2545 kW
in nitrobenzene, an order of magnitude higher power
than given by our value of #, used in (7). With a multi-
mode, multi-lobe beam, Wang inferred from Raman
data that the self-focusing in nitrobenzene set in at
19 kW, again a much higher power than in Table I.
Such discrepancies could not be said to be surprising
in view of the combined absolute errors of (7) and (41).
However, there is some evidence that it is premature
to assume that this discrepancy is entirely established.
First, Chiao and Garmire have reported that very small
filaments have been discovered subsequently to be
present while the overall constriction of the beam, on
which the previous threshold estimate was based, is
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just beginning.!” This sub-structure in the beam sets
in at an as yet undetermined lower power level than the
large scale beam constriction. Secondly, Emmett has
observed in nitrobenzene what appear to be self-trapped
filaments in the stimulated Raman scattering at 90°
from a beam that has been focused onto a perpendicular
line.!® These “filaments” vary in number with the beam
power as do the usual parallel filaments. However,
single “filament” outputs of between 5 and 10 kW
have been observed, in rough agreement with the values
of Table 1.8 Evidently, further work is required to
establish definitive estimates of thresholds for the
self-trapping of highly degenerate diffraction limited
beams.

There are two kinds of measurements which have
been performed that do not involve #, or self-focusing,
but which may give information about redistribution
effects. First, Mayer and Gires have measured the
optical birefringence induced in one beam traversing a
material by another strong linearly polarized congruent
beam of a different wavelength.®®® They describe their
results by an optical Kerr constant By, which, if the
low density theory® were correct, would equal 3n5p/
(2\1), where \; is the free space wavelength of the
birefringent beam.2 However, when molecular redis-
tribution effects at liquid densities are also considered,
a different relation between By and %, will result. Un-
fortunately, our theory of 7, is not capable of giving
the “two beam” property By, but it could be extended
to do so. After such an extension, a comparison of
predicted values of By with those that have been meas-
ured would probably make a much more accurate test
of theory than comparisons of #,, because the measure-
ments of By are probably more accurate than those
of n2.21

Secondly, Maker et al. have measured the change in
the state of polarization of a strong, elliptically polar-
ized, beam as a function of beam power and distance

17R. Y. Chiao and E. Garmire, IEEE J. Quant. Electron.
QE-2, No. 9, 467 (1966).

18 T, L. Emmett (private communication).

19 G, Mayer and F. Gires, Compt. Rend. 258, 2039 (1964).

2 A comparison of the observations of Mayer and Gires with
predictions of the low-density theory of Ref. 8 shows general dis-
agreement. Reference 9 reports that BoX 108 esu is observed to be
42,29, 9.3, 4.0, 0.5,1.6,and 0.4 for the liquids CS;, nitrobenzene,
toluene, benzene, CCls, choloform, and cyclohexane, respectively
(at ;=488 mu). Using the optical polarizabilities obtained from
Rayleigh scattering measurements (Ref. 12) in the low density
theory (Ref. 8), one would predict 69, 27, 18, 14, 0, 4.0, and 1.5
for these values.

21 This extension of theory would also give predictions for the
static (dc) Kerr constant B, for nonpolar molecules which could
be compared with a wealth of existing data. These data are in
wide disagreement with the predictions of the classical low density
theory (Ref. 8). For example, the measured values of B, X108 esu
for CSs, benzene, CCly, liquid Ny, cyclohexane, and liquid Hs, at
A1=546 my are 35.5, 4.1, 0.84, 0.8, 0.59, and 0.34, respectively
[from Landolt-Bérnstein, Zaklenwerte und Funktionen II/8
(Springer-Verlag, Berlin, 1962), Chap. 5, pp. 849-855]. Using
the polarizability data of Ref. 12 in the low density theory (Ref.
8), one would predict 60, 12, 0, 0.4, 1.4, and 0.027, respectively,
for these values.
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along the beam.?? These measurements have been
recently refined by Wang and Racette.? Their results
were given in terms of a constant B (real in the absence
of loss) which would equal 3n#,/8 if the low density
theory® which neglects molecular redistribution were
applicable, but will be related to ». differently at liquid
densities where molecular redistribution is important.
Again, when our theory is extended to predict B values,
comparison with these experiments will be illuminating.

There is a measurement of #, which could be per-
formed, but which does not involve self-focusing and
hence might be more accurate. The change in index for
a weak, plane polarized, beam congruent with a strong
beam of the same polarization but of a different wave-
length would equal #,E? where E? is the mean square
amplitude of the strong beam, provided that the two
wavelengths are not too widely separated. This change
in index could be measured, for example, by putting
the strongly irradiated material in one arm of a Mach-
Zehnder interferometer, and using the weak beam at a
different wavelength as the interferometric source.

Stimulated Brillouin scattering, turbulence, impuri-
ties, bubbles, and molecular relaxation processes, all
of which tend to prevent the liquid from reaching an
equilibrium state in the strong fields, may affect experi-
mental results. Elucidation of these phenomena will
doubtless follow a better understanding of the equi-
librium state itself, but we will not attempt to analyze
them here.

In conclusion, since there are no general relations for
liquids among the coefficients #, Bo, and B, information
concerning the validity of approximations such as the
Kirkwood approximation in dealing with molecular
redistribution effects can be obtained as yet only from
comparing the present theory with experiments which
measure 7,. When the theory is extended to treat By
and B, additional checks of the approximations will
become available. However, with only the relatively
crude comparisons between the available results on
self-trapping and the theory that we have made above,
we are led to conclude that molecular redistribution
effects are generally important, and no doubt dominate
the nonlinear index of symmetric-molecule liquids.
Observations of self-trapping in such symmetric-
molecule liquids as SiBrs and SnCl, will provide im-
portant checks of the theory of the nonlinear index.
Further efforts to obtain smooth, diffraction limited,
highly degenerate beams would aid in establishing the
absolute magnitude of the nonlinear index #, in various
materials. The measurement of the index change for a
weak, linearly polarized, beam congruent within a
material to a parallel-polarized strong beam of different
wavelength may yield an even more accurate value of
1y for that material.

22 P, D. Maker, R. W. Terhune, and C. M. Savage, Phys. Rev.
Letters 12, 507 (1964).

2 C. C. Wang and G. W. Racette, J. Quant. Electron. QE-2,
No. 4 53 (1966).
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APPENDIX

Here we outline the calculation of U= ((us?))
— ({us))2. We will use the form (37) for the probability
V_2‘_P(r1—r2)d37'1d372 that if a certain molecule is
in d’ry, another specified molecule is in d%, We
will use Kirkwood’s superposition approximation for
V=3pa(rs,re,t3)=p3(123) [and for V—4pa(ry,rsrs,rs)
=$4(1234)] which is the probability (per unit volume
for each molecule) for finding specified molecules at
11, Iy, 13 (and ry) simultaneously:

$3(123)=p(12)p(23)p(13), (A1)
p4(1234)~p(12)p(13)p (14)p(23)p(24)p(34) . (A2)

Here p(12) is an abbreviation for p(r1,), and we have
ignored terms of order N2 smaller than the leading
terms of (A1) and (A2). (Terms of order N must be
kept, as the terms in U,, which are proportional to N2
will cancel.)

The integrals in 4({u?)) fall naturally into four
groups, which we call Iy, I, I3, and 14, depending on
whether 1-; 2-, 3-, or 4-particle correlations are required :

K= 1, (a3)
where -
=200 (B a*- Do E')%))=0 (A4)
=2 T (B0 Do 0> E2)) (43)

I;=4Y ,y ((E'-a*-D#.o” E'E' o’ D*7-a7-E')) (AG)
and
Ii=3 sy (B Dw.o@ - EF'E-of-Df7.7-E')). (A7)

Here the summed indices are always unequal in any I;.
The I, is zero, of course, because D## is defined to be
zero. The angular averages in each of the remaining
integrals are easily performed and give

Ig= 2(!4E,4 va [(1+A/4)2<(szﬂv)2>
+(A/241142/16)(TrD#-D=Y]  (A8)

13=40£4E,4(1+A) Z“v'y <Da:x“yszy7> (A9>

and

I4=OZ4EI4 Zyvﬁ‘y (D:c::tzxﬂ7> . (AIO)

Here “Tr” denotes the ‘““trace” or sum over diagonal
space elements, and the single bracket ( ) denotes
the average over spatial configurations.

Using the form (37) for the two particle distribution
function and (20) for D#* gives (neglecting terms~N?)

5 ((Das?)?) = N2V 14 / singdy / 72 dr
0 d

X (1—3 costy) 5= Np6dn?/(457). (All)
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Similarly,
>w (TrD'“’-D"")=N2V‘1121r/ siml/dgb/ 7 dr
0 a

X (14-3 cosi)r—5=Np322%/(37). (Al12)

Therefore,
Iy=NaAE"p47? (32 136A+167A2)/ (45p7) . (A13)
To perform the average in (A9) to order N, we write

p()=A—h(r)/1=1/V), (A14)

where %(r)=1 for r<d and is zero otherwise. Then,
with (A1), we obtain to order NV

2wy (Daa"Dez”)

=N3V2/d372d31’3131£23(1“h13); (A15)
where D1p=D,2(1—hy), his denotes k(r,—rs), etc.
The integrals here are easily performed using the
theorem that the integral J of D% over any volume Q
is related to an integral over the surface .S bounding

Q by
J=/ d372Dle= —/ d2r2ﬁ"f/r12'ii’12_3. (A16)
Q S

(If S is ellipsoidal and ry is inside it, recall that J=L.
If S is spherical and r; is outside it, then J=QD,,!*
where r; is the center of the sphere and Q is the nu-
merical value of the volume bounded by S.) The part
of (A15) independent of ;3 is obviously Np??. With
the aid of (A16), the part of (A1l5) involving his
integrates to Np2x?/3 whence

I;=4ANo*E"p?(1+A) (*+27%/3). (A17)
To evaluate T4 we use (A2) to obtain
2 woy (Dazt*Das)
=NWN—-1)(N-2)(N=3)V3(1—7/V)"
X / drad@rs@raD12Dsa(1—has) (1= h1a)
X (1= haz) (1 —as)
=_i K; (A18)
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The right hand side separates naturally into terms
which we call K; where =0, 1, - - -, 4 is the number of
explicit % factors in the integrand of the term. The Ky
term is integrated trivially and has a part of order NV?
which cancels the V2 part of ((#2))?, and a part of order
N, which combines with ({#,))* from (41) (corrected
by the now important factor (1—7/V)™) to give
Ko—4{(ug))2=—4Npl(1—p7). (A19)
There are four terms in K; (there being four possible
terms linear in one of the #’s) each of which integrates
trivially to —Prp® giving
K= —4Pp*N . (A20)
There are six ways to form integrands quadratic in the
K’s in (A18), four of which have one space point as an
argument of both %’s and are equivalent to each other.
The remaining two have no space points as arguments
of both % factors and are equivalent to each other.
Each of the first four terms is seen to be identically
zero with the aid of (A16), and the last two can be
straightforwardly integrated with (A16) to give
K,=0.5066m20*7N . (A21)
Almost the same straightforward integrations are
required for each of the four equivalent terms which are
cubic in the /4’s, and one finds that
K3=—0.117137%°7N . (A22)
We have not been able to integrate the remaining
term K, analytically. We estimate that it is an order
of magnitude smaller than K3 because the four % factors
combine to limit the volume accessible to the points of
integration much more than in K. Since K3 is already
a minor contribution to the final result, we feel well
within the other limits of our calculation to neglect
K, in the final result:

Ti—4{(us) P N2 (—4P+3.84p7).  (A23)

Combining all the above terms gives the Us, of (38).



