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A simple N/D representation is written down in which nearby singularities (long-range contributions)
are calculated explicitly from single-particle-exchange graphs in the conventional way. The remaining
singularities (short-range forces) are not ignored, but are approximated in terms of two "effective-range"
parameters. These are taken to be SU(3)-symmetric, an assumption which is closely related to the idea that
internal symmetries should manifest themselves at high energies and momentum transfers. For instance, we
can relate the paramaters in the I= 1,J= 1 xw-EE problem to the corresponding ones in the I=0, J= 1 Eg
problem. Thus if we know the mass and width of the p meson, say from experiment, we can calculate the
corresponding quantities for the p meson. A simplified version of this calculation gives values in fairly
good agreement with experiment.

I. INTRODUCTION

'OST of the difhculties in interpreting SU(3)
~ symmetry' ' in strong interactions arise from the

fact that it is badly broken. In fact, many of its successes
have involved certain very specific additional assump-
tions. The prime example is octet dominance, which was
used in deriving the Gell-Mann —Okubo mass formula. ' '

It has been proposed that unitary symmetry may,
however, manifest itself at high energies and momentum
tra, nsfers, i.e., in interactions involving small distances.
Unfortunately, it has not proven possible to check on
this directly. On the other hand, interactions at small
distances probably have a very important effect in
giving rise to bound states and resonances. Of course,
long-range forces are also important. Indeed, it has
been argued by Dashen and Frautschi' that SU(3)-
breaking may be due primarily to just such forces. They
argued further that this is particularly likely to be true
if we are dealing with bound states rather than ele-
mentary particles, and used this in studying the pertur-
bations on SU(3)-symmetric bootstraps.

In most bootstrap calculations, only long-range forces
are considered, ' since these are the only ones which can
be handled directly with present-day dispersion tech-
niques. Thus the left-hand cut is assumed to arise from
single-particle exchange graphs, while two-body unitar-
ity is imposed on the right-hand cut, usually through the
X/D method. This procedure generally leads to reso-
nance widths which are much broader than the observed

*This work was supported in part by the National Science
Foundation.
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values. ' However, distant singularities can always be
represented by a few constants through an effective-
range approximation. This is most easily seen in terms
of the analogy between the singularities in the complex
plane and charge distributions in electrostatics. ' As
long as we are interested in a small region, the effect
of any set of singularities (or charges), if sufficiently
far away, can be replaced by a pole (or point charge) at
infinity. If we want to increase our accuracy, we
can add multipoles or replace our singularities by a
small number of simpler singularities (such as poles) at
an appropriately chosen finite distance. This is because
far-away singularities can be expected to produce only
smooth variations, which can always be reproduced
quite accurately through a small number of parameters.

Although the inclusion of distant singularities through
an effective-range approximation should increase the
reliability of our E/D equations, it generally leads to
the introduction of as many extra parameters as we are
trying to explain in the first place. It is here that an
assumption that distant singularities obey a symmetry
is particularly helpful, since such a symmetry can be
used to reduce considerably the number of independent
parameters. ~ In fact, as we shall see, it should enable us
to calculate all the masses and coupling constants of
the members of an SU(3) multiplet in terms of only two
or three constants. The symmetry breaking is achieved,
not by first assuming exact symmetry and then adding
a perturbation, but simply by not assuming the sym-
metry in the first place as far as long-range effects
(nearby singularities) are concerned.

In Sec. II we set up an E/D representation which
incorporates the features discussed above. Two-body
unitarity is exactly satisfied, while the nearby left-hand
cut can be calculated from one-particle exchange graphs.

See, for instance, G. F. Chew, S-3Eatrix Theory of Strong Inter-
actiorts (W. A. Benjamin, Inc. , New York, 1961), Chap. 1.

Actually, all we have to assume is that the effect of distant
singularities in the region of interest is as if they were SU(3)
symmetric. This is a very weak assumption, as can be seen in our
electrostatic analogy. Here symmetry breaking manifests itself at
worst as a dipole term, which is always small if the singularities
are sufliciently far away.
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These usually lead to divergences, so a cutoff is intro-
duced. Such a cutoff, of course, is a way of representing
at least part of the distant left-hand cut, and so will be
treated as one of our effective-range parameters. A
second parameter, which represents inelastic effects as
well as the remaining left-hand cut, is introduced by
adding a linear term to the D function.

In Sec. III, the above representation is applied to the
I=1, J=1 m-~-EE problem. By retaining a certain
amount of residual SU(3) symmetry, it is possible to
reduce this problem to the xx problem with inelasticity.
A rough approximation to p exchange is taken for the
nearby left-hand cut, and our two effective-range
parameters are adjusted so as to give the correct mass
and width of the p resonance in the direct channel. They
are then related to the corresponding parameters in
the I=0, J= 1 EE. problem, making possible a calcula-
tion of the mass and width of the g meson, which occurs
as a resonance in this state.

IL N/D EFFECTIVE-RANGE APPROXIMATION

Suppose, for the sake of being definite, we consider
the P wave scatt-ering of the PS (pseudoscalar) mesons
x, E, and g in the octet state. This breaks up into the
two-channel I=1 m.x-EE and I=2 xK-gE problems,
and the one-channel I=O EK problem. The invariant
amplitude for the process j—+i has the form

A,,=s"(S,, 0,;)/(4i—q ' 'q'") (1)

where s equals m', m is the total c.m. energy, 5 is the
S matrix, which is unitary, q; is the c.m. three-mornen-
tum for the ith channel. Thus the matrix A made up of
these elements satisfies the unitarity relation

be obtained from Eq. (2) if we assume two-body
unitarity.

Normally, the left-hand cut is approximated by the
contribution of one-particle exchange graphs. Such
graphs should give a reasonable approximation to the
nearby part of the cut but often give rise to a divergence
unless some kind of cutoff is imposed. This would
happen if we exchanged vector mesons, for instance.
We therefore put in a cutoff at s=s„,, so that Eq. (5)
becomes

E(s)=
ImA (s')D (s')

ds
s —sl (7)

D(s) =1—S—Ss " P(S')1V(S')
ds

(S'—Ss) (S'—S)

s—sp ,DmA '(s')+ p(s')3&(s')
ds

(s'—ss) (s'—s)

In fact, if we treat s, as an adjustable parameter, it can
be used to represent at least part of the left cut. This is
because, by the arguments of Sec. I, we should always
be capable of approximating such singularities by some
adjustable simpler singularity, in this case, by whatever
one gets from one-particle exchange. The actual
strength of this simpler singularity can be adjusted by
varying s,.

The normal procedure for representing any additional
singularities would be to add one or more poles to Eq.
(7). This would introduce at least two extra parameters,
which is more than we can handle. But actually, even
if we use Eq. (7) we can still get an exact expression for
the amplitude if we modify Eq. (6) to read

with

ImA —'(s) = —p(s), (2) ImA '(s')iV(s')
ds

E(s)= ImA (s')D(s')
Gs'

s —sI

s—se " ImA —'(s')iV(s')
D(s) =1+ ds'

S —Sp S —S
(6)

where sp is some subtraction point, and s~ and s~ mark
the start of the left- and right-hand cuts, respectively.
The expressions (5) and (6) give the correct ImA(s)
on the left and ImA '(s) on the right. The latter can

' G. F. Chew and S. Mandelstatn, Phys. Rev. 119,467 (1960).

p (s) = (2q"/s'") '0(q ') & (3)

Equation (2) fails at high energies, where other channels
become important.

If we knew the discontinuity ImA (s) a,cross the left-
hand cut we could find the amplitude by the N/D
method, ' which gives

A (s) =1V(s)D-'(s),
with

D(s) =1—s sp p(s')&(s')
ds' +C(s—») . (9)

(s' —») (s' —s)

Equation (9) no longer has the same asymptotic be-
havior as the original D function. This should not make
much difference, however, since we are only interested
in the low-energy region.

So far, we have not assumed any kind of symmetry.
Suppose now that SU(3) holds exactly, with the masses
of the E'5 mesons equal to each other. Then the ampli-

(s'—») (s'—s)

We have used Eq. (2) for s(sz, where s= sz is the point
at which other channels begin to become important.
Of course, we have no way of calculating the last two
integrals in Eq. (8). Since, however, we are only inter-
ested in low energies and since these integrals represent
high-energy effects, we shall approximate them by a
constant matrix C. This corresponds to approximating
the integrals by a (Castillejo-Dalitz-Dyson) pole at
infinity. Equation (8) then becomes
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tude for all the I'S scattering processes that we are
considering can be written in terms of a single function
f(s);

A(s) =Mf(s), (10)

where M is a purely numerical matrix whose elements
can be calculated from SU(3) Clebsch-Gordan, coeK-
cients. Of course, s, must then be taken to be the same
for every process, something we have been electively
assuming all along.

Suppose we now break the symmetry for all nearby
singularities but preserve it for the far-away cuts. The
only way of doing this with Eqs. (7) and (9) is to keep
the same s, for all channels and to require that C have
the forme

C= Ir3II ' lim slV(s),

where z is a pure number. This is because s, and C
represent the distant singularities within our representa-
tion. The last term in Eq. (11)has to be put in because
we are assuming that it is the amplitude which should
obey SU(3) for large s, and not some purely auxiliary
quantity like the D function. In fact, we now have an
asymptotic behavior

A—'(s) ~ (o.s+P 1ns)M—'+0(1), (12)

where n and P are numbers. In other words, the leading
singularities are indeed SU(3)-symmetric at infinity.

We now have an 1V/D representation which depends
on the two parameters s, and ~." Suppose we are
interested in the vector mesons, which occur as reso-
nances in the channels we have been considering. Now
a resonance occurs at s= s~ if

detD(sn) =0. (13)

The residue of the corresponding pole, i.e., the reduced
width, is

y = —1V(sn) cofD(s~)/(d/ds) I detD(s) j.=,„, (14)

where cofD(s~) means the cofactor matrix of D(sn).
We can adjust s, and ~ to give the experimental mass
and width of one of the resonances, say the p. Equations
(7), (9), (11), (13), and (14) are then capable of pre-
dicting the masses and widths of the others. The ex-
pressions for ImA (s) in Eq. (7) can be evaluated from
vector-meson exchange, which should be the dominant
contribution to the nearby left-hand cut. Of course,
within our limited framework, experimental values have
to be used for the masses of the pseudoscalar mesons.

' We are assuming that ImA '(s) obeys SU(3) for large s.
Equation (11) is equivalent to approximating it with an SU(3)-
symmetric delta function at in6nity. We could not have done this
unless s, were the same for all channels.

"In I'S-8 scattering (8=baryon octet), we would have had
three parameters, since JI/I would have also contained the D- to
E-ratio.

ImA» '= —p» —
(I A»l'/I A»l')»s. (16)

If SU(3) were exact, we would have had A» ——V2A rs, so
that Eq. (16) would have been

ImArr ' ———(p„+-'s pss).

We shall assume that Eq. (16) is approximately valid
even if the symmetry is broken. It is certainly exact
below the EK threshold because of the 8 function in
the definition (3). We can then write

Art(s) =IV/D,

where 1V and D would be again given by Eqs. (7) and
(9) but with p= (p»+-', p»). Equation (11) is also the
same, but with M= s. For ImArr in Eq. (7), we shall
take an approximation to the contribution of p ex-
change. It can then be shown that our 1V/D equations
give the same result as the multichannel equations in
the limit of exact SU(3)."

In dealing with p exchange we exploit the fact that
its contribution to 2» is roughly constant up to quite
high energies. "This is unchanged by the introduction
of a cutoff, provided that s, is suKciently large. On
the other hand, the cutoft gives rise to an s ' behavior at
infinity. One way of approximating this graph would
therefore be to replace it with a pole adjusted so as to
give the correct threshold. Specifically, we take an
expression of the form

In1A (s) = blah(s+X),

which gives a contribution to the amplitude of

a»(s) =f) /() +s),

(19)

(20)

so that, with suKciently large X, b is the threshold value
given by the p-exchange graph. Of course, Eq. (20) may

"This is made possible only by the accidental equality of
crossing-matrix elements mentioned in the 6rst paragraph. We
could not have done the same thing in the I=-', mE'-gE problem,
for instance.

'2 See, for instance, L. A. P. BaMzs, Phys. Rev. 134, 31315
(1964).

III. SIMPLIFIED CALCULATIOÃ OF THE
P IN TERMS OF THE y

We now illustrate the above method by looking at
the I=1 rrrr EE-problem. Instead of doing a full two-
channel calculation, however, we shall take advantage
of two features which are peculiar to this particular
case. The first is that the isospin crossing matrix element
Prr is the same for the s s. problem with p exchange as it
is for the I'S-I'S problem with vector exchange in the
pure SU(3) limit with degenerate masses (Prr = s). The
second is that the s.s. and EZ thresholds are widely
separated. Suppose we write the unitarity relation for
the mm —+ ~m amplitude

ImArr= parI A»I'+ pssI ArsI',

which can be rewritten as
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lead to a completely meaningless result at high energies;
this does not matter within an effective-range approach,
however. The position s= —X of our pole plays exactly
the same role as the cutoff and will be taken to be the
same in all channels, just like s,. With the approxirna-
tion (19) we can solve our X/D equations exactly to
obtain

V(s) =8/(X+s),

s+X
D(s) =1— bX

t ti(s')+st »(s')
ds'

(s'+)I,) '(s' —s)

(21)

+-,s ttbX (s+X) . (22)

ms'=-'(4mze' —m p') . (23)

"We are taking mass= 765 MeV and full width=105 MeV for
the p. See A. H. Rosenfeld et al , Rev. Mod. Phy. s. 36, 977 (1964)."J.J. Sakurai, Phys. Rev. Letters 9, 472 (1962); reprinted in
Gell-Mann and Ne'eman, Ref. 1, p. 108.

'~ J. Bronzan and F. E. Low, Phys. Rev. Letters 12, 522 (1964).

The requirement that this reproduce the experimental
mass and width of the pis gives in~A~ =17.62 and
m~=1 —649'A '.

We next turn to the I=O EE state. This is a one-
channel problem, so we can use Eqs. (7), (9), and (11)
directly. %ith the same normalization as in the m-x

problem, we would have 3f= 1 in this case. The nearby
left-hand cut is taken from p and @ exchange. We shall
approximate their contribution by a pole adjusted so
as to give the correct threshold behavior, just as we did
for the ~sr problem. Now in a more complete calculation
all the necessary parameters could be calculated self-
consistently. To simplify matters, however, the pEE
and &f&EE coupling constants were calculated from the
experimental ps.s. coupling, assuming unbroken SU(3).
Of course, for ) and ~ we take the values obtained in the
preceding paragraph.

The main complication in the I=O EE problem
arises from the possibility of p-ot mixing. ' " Two
different models were considered:

(a). The simplest possibility would be to assume that
E symmetry' is meaningful, at least for mesons. "Then
there is no p-ca mixing, and the p is the eighth member of
the octet with no coupling to up, while the m is a singlet
with zero coupling to the EE; channel. In other words,
the co does not come into our calculation at all. The
experimental value was taken for the mass of the g
exchanged in the crossed channel. Our equations then
give an output P in the direct channel with mass = 1040
MeV and reduced width y&~~=0.92.

(b). If @-ta mixing does occur, then both the p and
the co can be exchanged in the crossed channel. Instead
of putting both in explicitly, however, we shall simulate
their combined effect by means of a single effective
vector meson acting like the I=O member of the octet.
For its mass m8 we use the Gell-Mann —Okubo mass
formula. ' '

This mass lies between the p and ca masses; indeed, it
was this fact which first motivated the study of P-ca

mixing. ' Our effective meson is the one which would
occur if there were no p-&a mixing and the mass formula
were satisfied exactly. It can therefore be thought of as
some kind of average of the p and ca.

With p-ta mixing, we might expect the s.p channel to
couple strongly to our EX state. Its inclusion would
complicate the problem enormously. It was therefore
dropped, in the hope that since the p~ prr decay is
known to be very weak experimentally, "the xp channel
may be unimportant for calculating the p resonance,
even though it may be important in calculating other
effects. Our single-channel I=O EX representation
then gives an output P with mass=1017 MeV and
yp~~ =0.91.

Experimentally, " we have P „,=1020 MeV and
y~~~ ——0.79~0.15, which corresponds to a full width
=3.1+0.6 MeV; if we had used unbroken SU(3), the
value of y~~~ calculated from the experimental pxm

coupling constant would have been y&~~ ——1.02. Thus
model (b) seems to be favored, although the numerous
approximations we have made preclude any definite
conclusions.

IV. CONCLUSION

We have seen how it is possible to correlate the
properties of the various members of an SU(3) multi-
plet even when the symmetry is badly broken. This is
done by using the familiar techniques of dispersion
theory to treat nearby singularities and assuming
SU(3) for the more distant ones, which are represented
in terms of a pair of effective-range constants. We can
then calculate the masses and couplings of the members
of our multiplet in terms of as many parameters as
would have occurred in the unbroken symmetry.

In the example of the preceding sections, for instance,
we considered the members of the vector-meson octet
(Vs), which occur as bound systems in I'S PS scatter--
ing. Assuming the I'S masses to be known, it is then
possible to calculate all the V8 parameters in terms of
only two constants. In a more complete calculation we
could try to calculate the I'S masses at the same time
by looking at I'S-V8 scattering. This is technically a
much more complicated problem. Not only do we have
spin complications, but in ~p scattering, for instance,
the exchange of the m in the crossed channel gives rise
to a cut in the physical region, so that the 7V/D for-
malism has to be modified. Of course, since we do not
have vertex symmetry, we would actually be over-
determining many coupling constants which also occur
in I'S-I'S scattering. We could either take advantage of
this to simplify our calculation, or use any discrepancies
between the parameters as a measure of the accuracy
of our calculations.

Similar calculations can be done for the baryon
octet (Bs) and decimet (B&s) in I'S Bs scattering. -
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The static model" would be the simplest framework for
dealing with this problem, since the nearby left-hand
cut can then be approximated quite naturally by a small
number of poles. To remove the divergences which arise
in the D function, we can introduce a pole and a dipole
at some point on the left, with residues adjusted so as
to have the E function fall off sufliciently rapidly at
infinity. This position would play essentially the same
role as the cutoffs A. or ) in I'S-I'S scattering, and can
therefore be taken at the same point in all channels. A
second effective-range parameter can again be intro-
duced by adding a linear term to the D function.

If we tried to do a relativistic calculation of I'S-Bs
scattering, the left-hand cut would no longer be re-
stricted to the real axis in the plane of 8', the natural
variable in this problem. '~ This makes it dificult to
impose a cutoff. One way of getting around this is to
calculate the discontinuity in a variable such as q' for
which the singularities are restricted to the real axis.
One could then write a dispersion relation to calculate
the full contribution 8 of the left-hand cut, which
would have a cutoff at some value of this variable. The
corresponding value of W could be taken to be SU(3)
symmetric. Once we have B(W), we can solve the
Uretsky form' of the N/D equations.

One of the difhculties often encountered in a problem
such as I'S-Bs scattering is that it is not possible to
avoid kinematical singularities, at least if one wishes
to have reasonable behavior at infinity. This does not
give any trouble in an eRective-range method, however,
since we can always take the kinematical singularity at
the position of the cutoff. It then becomes part of the
faraway singularities which we are parametrizing
anyway.

Finally, it should be possible to extend our approach
to include weak and electromagnetic interactions. Here
it is convenient to treat all nonstrong effects as perturba-
tions. We could, for instance, combine the above
effective-range formalism with the Dashen-Frautschi
perturbation technique. 4 Since these perturbations
break various internal symmetries which are assumed
to be valid at small distances, it should be meaningful
to include only their contribution to the nearby singu-
larities, as we have seen.

"G. F.Chew and F.E. Low, Phys. Rev. 101, 1571 (1956); 101,
1579 (1956)."S. W. MacDowell, Phys. Rev. 116, 774 (1960)."J.UretskyPhys, . Rev. 125, 1459 (1961).
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where k is a number and M is the same matrix as in
Sec. II. We can now solve Eqs. (5) and (6) exactly, and
fix k and z by requiring our N/D equations to give the
experimental mass and width of the p. We can then use
them to predict the masses and widths of the other
members of the multiplet.

In practice, the same sort of approximations were
made as in Sec. III. In the I=1 7rs EZ problem-, N/D
equations were written down for A»(s) instead of A (s),
and p was replaced by (pat+s pss). We then used Eq.
(A1) but with M = s. The requirement that the resulting
equations reproduce the experimental mass and width of
the p
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~ q ~

= 16.60 and sk '= 1+29.0q '.
We next turn to the I=O EK state. Heing a one-

channel problem, we can use Eqs. (5), (6), and (Ai),
where now M=1. Since we are assuming SU(3) for our
distant pole, we naturally take for p and k the values
we obtained in the preceding paragraph. Assuming
again that the xp channel does not couple strongly to
our EK state, we obtain an output g with mass=1210
MeV and y&~~=0.99. Although y&~~ is not too diRer-
ent from the values obtained in Sec. III, the mass is
considerably larger. This suggests that it may not be
safe to leave out an explicit consideration of the nearby
left-hand cut, except perhaps for obtaining a 6rst crude
approximation.
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APPENDIX

In. setting up our N/D representation, we have
attempted to treat explicitly as many singularities as
can be handled simply with present-day dispersion
techniques. It would be interesting to see what would
happen if we left some out. We shall therefore consider
a representation in which only the elastic right-hand cut
is treated as a nearby singularity. All remaining singu-
larities are approximated by a distant pole, whose
position and residue are assumed to be SU(3)-sym-
metric. In other words, we use Eqs. (4), (5), and (6)
but with


