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Proton-proton partial-wave amplitudes for 1&1 and for lab kinetic energies below 350 Me& are fitted with
a collection of single-particle exchanges taken in Born (fixed-pole) approximation. Since the Born terms are
real, and consequently nonunitary, a correction term is added which makes the full amplitude unitary, and
which at the same time satisfies the appropriate dispersion relation and threshold condition. The nature of
this correction term and of its association with a strip approximation to the Mandelstam representation are
discussed. The particle parameters were fitted to a reduced matrix representation of the P-P data, as de-
scribed by Amdt and MacGregor in another publication. The S-wave dependence was removed in a manner
also discussed by these authors. The gross structure of the partial-wave amplitudes is found to be approxi-
mately given by a sum of four meson-exchange poles, those corresponding to a m meson (J =0, I=1,
g '=14, M =135 MeV), a o. meson (j =0+, I=0, g,'=2.9, M, =450 MeV), an zo meson (Ji'=1, I=O,
g„i=4, (f/g)„=0, M =783 MeV), and a p meson (I~=1,1=1,g,z=1.2, (f/g)r=4, Mr=763 MeV). The
searched parameters were g ', g ', g„', g~', and M, ; the remaining parameters were 6xed at their "physical"
values. It is further found that the relatively small unitarizing corrections play an essential role in deter-
mining the goodness of fit, but they do not appreciably alter the pole parameters determined from the search.
Studies were also undertaken to determine the manner in which this (obviously low-energy) model becomes
quantitatively worse as low-angular-momentum and high-energy contributions are added to the calculation.

I. INTRODUCTION

h, (T)=
27ri

"Dtz(P)dP

T —T

where
27ri

Tr,'= tz'/2M,

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

'HE model with which we attempt to describe the
two-proton problem is for a region of incident

energies in which the low-energy partial-wave ampli-
tudes for l&1 are dominated by single-particle ex-
changes —bound states and resonances in the cross
channels. We represent each of the "particles" by a fixed
pole in momentum transfer (energy in the pp channel).
It is well known, however, that the pa, rtial-wave
projections for fixed, cross-channel poles are real in the
physical (T)0, T=lab kinetic energy) region, and
thus nonunitary. Thus one problem is to restore
unitarity without destroying the threshold behavior.

If we consider the partial wave amplitude lzt(T) to be
a function of a complex laboratory-frame kinetic-energy
variable T, we And it has the following singularity
structure:

(1) A right-hand cut (the physical or unitarity cut)
which runs from T=O to T= ~. This cut is a con-
sequence of unitarity in the p-p channel;

(2) A left-hand cut (often referred to as the potential
or driving-term cut) which extehds from T= —tz'/2M
to T= —~, where p, =pion mass and 3f= nucleon mass.

Expressing, through the Cauchy relations, the
amplitude in terms of its singularities, we obtain

and where Dtz(T) and Dz, (T) are the discontinuities in
hi(T) along the right and left cuts, respectively. Further,
since the amplitude is real for ( Ti,'(T(—0), we can
use Hermitian analyticity Lhte (T) =hi(Te)$ to obtain

Dz(T) =2i Imht(T),

which allows us to rewrite (1.1) as

1 " Imht(T')dP 1 rr' Im/zz(T')
hi(T) =— +- dP. (1.2)

T —TT —T

&(T)=B(T)+U(T), (1.3)

where the subscript t is now suppressed.
For reasons that will be discussed in Sec. II, we

introduce a cutoff T1 into the right-hand integral for
h(T), and associate the right-hand cut in h(T) for
T) Ti with B(T); that is,

1 rs' ImB(T')dT' 1 "Imlz(T')
B(T)=- +— dT'. (1.4)

1 T —T

Justification for treating B(T) in the low-energy
(0(T(350 MeV) region as a sum of fixed poles will

be given in Sec. II.
Combining Eqs. (1.2)—(1.4), we obtain a dispersion

relation for U(T):
1 rz Imh(T')

U(T) = dP+
1 rs ImU(T')

dP, (1.5)
T'—TT —T

Partial-wave projections of contributions from 6xed
cross-channel poles, referred to henceforth as Bi(T), also
satisfy an equation having the structure of (1.2), but
they have no right-hand cut since ImB&(T) =0, T)0.
The calculations are carried out by making use of a
decomposition of the amplitude into a Born term, B(T),
and a remainder term, U(T):
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where Tz=2tz'/M, corresponding to the 2s threshold,
since the single-pion-exchange cut is included in B(T).
An important requirement for h(T) is the threshold
behavior

hi(T) Ti as T—& 0. (1.6)

Since this behavior is satisled by our fixed-pole approx-
imation to B(T), we will require it of U(T). That is,
U(T) must satisfy

T' ~' Imh(T')dT'
U(T) =—

S=4M

with subsidiary conditions

r& Imh(T') rz ImU(T')
dT = dT

Pn T'n

Our procedure for unitarizing the Born amplitudes is to
try various constructs for ImU(T) (T( Tz) tha—t
satisfy the subsidiary conditions of (I7). From ImU(T)
we obtain U(T) through Eq. (IS), where Imh(T') is
taken from experiment. ' Finally, through Eq. (I3),
we fit B(T)=h(T)—U(T) with a suitable choice of
poles. It should be emphasized that in this analysis both
h and U are experimental quantities. This procedure is
self-consistent if we obtain a reasonable solution for
B(T), since we can always go back and construct Imh
(through unitarity) from h and thereby reconstruct a
self-consistent U(T).

Our approach differs from Kantor' and from Scotti
and Wong' principally in the inclusion in B(T) of all
the high-energy behavior for h(T). The association of
U(T) with the direct-channel strips in a strip approx-
imation to the Mandelstam representation to the
amplitude is discussed in Sec. II.

The approach differs further from Kantor, as
discussed by MacGregor, 4 in the philosophy of treat-
ment for the left cut of U(T). Kantor builds the
appropriate threshold behavior into U(T), but ignores
that part of Eq. (I7) which comes from integrating over
the left cut. Ke, on the other hand, treat it in a semi-
phenomenological way by constructing various left-hand
cuts for U(T) which satisfy the subsidiary conditions
to Eq. (I7), and which may include some undetermined
(free) parameters. U(T) is then constructed and poles

'R. A. Amdt and M. H. MacGregor, Phys. Rev. 141, 875
(1966); referred to as AM. Obtaining an expression for the x'
correlation matrix which does not depend explicitly on data
normalization parameters was also accomplished by G. Breit,
A. N. Christakis, M. H. Hull, Jr., H. M. Ruppel, and R. E.
Seamon, in Proceedings of the 1Zth Annual International Conference
on High Energy Physics, Du-bna, &64 (Atomizdat, Moscow,
1965), Vol. I, p. 17.

2 P. B.Kantor, Phys. Rev. Letters 12, 52 (1964).' A. Scotti snd D. Y. Wong, Phys. Rev. Letters 10, 142 (1963);
Phys. Rev. 138, 3145 (1965).' M. H. MacGregor, Phys. Rev. Letters 12, 403 (1964).

t 4p
0& 4p.

FIG. 1. Strip approximation to Mandelstam representation
for N-N scattering amplitude.

are fit, as was previously described. The Kantor-type
correction, a subtracted integral over the right-hand
cut, but including the T» cutoff, is also tried as a
limiting case of an approximation to U(T) described in
Sec. IIB (approximation 3).The result is tabulated and
compared to other approximations.

Scotti and Wong represent the left-hand cut in U(T)
by an (/ —1)" order pole at some reasonably large
negative energy, with the residues arranged so as to
satisfy the subsidiary conditions of (I7). They do not
include a cutoff in their right-hand integral.

Finally, we include, for comparison, simple pole its
to the (nonunitarized) amplitudes Reh'"&(T), (U(T)
=0). This is the same model as that defined by Bryan
and Amdt. '

II. THE UNITARITY TERM

A. General Discussion

The fundamental assumption in our approximate
treatment of unitarity will be that the nucleon-nucleon
amplitudes, d noted collectively as 3 (s, t,u), satisfy a
strip approximation to the Mandelstam representation,
where s, t, and I are the energy-squared variables in the
ft'tE channel and crossed Sg channels, respectively.
That is, we consider only those regions of the double
spectral function indicated in Fig. 1. (Figure 1 shows
a Mandelstam plot where the one-pion-exchange sin-
gularity is not included. ) We make a separation of the
amplitude into the part obtained by integrating over
the cross-channel strips (labeled 2, 3, 5, 6 in Fig. 1),
which we call V(s, t,u), the "potential" term, and the
part obtained by integrating over the direct-channel
strips (labeled 1, 4 in Fig. 1), which we denote as
U(s, t,u), the unitarity term.

It is significant that the resonances (poles) in the
Xg(t) channel are "contained" in the double spectral

' R. A. Bryan and R. A. Amdt, Phys. Rev. 150, 1299 (1966).
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functions at very large s or N. To illustrate this we can
calculate the NN channel discontinuity, which is

ds 1 dl
D&= — p„(s',t)+ — p,„(t,u') . (2.1)

4~~ $ —sent 4&~ I —Q

Since the integrands are nonsingular, a resonance
behavior for D& can be achieved only by divergence of
the integrals at ~, and production of these poles should
be insensitive to the precise lower limits chosen in
Eq. (2.1).This argument for the occurrence of the poles
in the distant parts of the double spectral functions is
equally valid for stable (e.g. , the?r meson) and for
unstable (e.g., the p meson) poles. We see, then, that
the low-mass resonances in the NN channel are con-
tained in the cross-channel strips, and therefore are part
of the "potential, " V(s, t,u). It will be our approxima-
tion to keep only the resonant parts of V.

Since we have excluded the nearby s discontinuities
from our definition of the "potential, "we have left the
low-s, -t, -I regions of the Mandelstam diagram for
the potential V (Fig. 1 with strips 1 and 4 excluded)
free of singularities. We expect that a partial-wave
expansion of the NN channel amplitude, that is, a
polynomial expansion in s (s cos8&, with 8& the NN
channel scattering angle), can be analytically continued
to the low-energy region of the ES channel. A low-

energy (N¹hannel) fixed-pole approximation is
equivalent to replacing the EE-channel partial-wave
sum by only the resonating terms, taken in a zero-width
approximation. Thus, our approximation to V (the
"potential" ) is to represent it as a collection of Born
terms B(T).

The question now confronting us is what to do with
the direct-channel strip contributions, U(s, t,u) We.
estimate these contributions by making the following
approximations. The lth partial-wave projection of U is

Although the approximations to be described in the
following sections are very crude and differ drastically
from one another at negative T, they all lead to similar
results for U?(T) in the region 0(T(300 MeV. The
conditions (2.3a)—(2.3c) appear to be of overriding
importance in this region.

+1

Ui(T) = U(T, z, )—P, (z,)dz,
2 -1

'??? ( ??T)
r? p(t', T')dT'

T —T
(2.5)

Chew' has suggested replacing the t' integration in
Eq. (2.5) with a mean-value-type approximation. This
is the approximation we call A.

U "(T,t) =
C ~ t '? p(t, T')dT'

Q?l 1+
w'??? k ???) T' ?'—(2.6)

B. Approximation A

As described in Sec. II, U(T) may be expressed,
through its Mandelstam representation, as

1 " dt' ~I dT'
U(T,z,)=— p(t', T), (2.4)

g, t' —t 0 T'—T
where

t= —2q '(1—cos8,)= —2q '(1—z,),
to= 4p2.

From Eq. (2.4) we can obtain the partial-wave projec-
tion U~(T):

+1

Ug(T) =— U(T,z,)P?(z,)dz„
2

(2 2)
We require U~ to have the correct right-hand cut
[Eq. (2.3a)j, which enables us to solve for p(t, T):

where
T= 2q,e/M, z, = cos8, .

Imh, (T)MT
p(t, T) =?r

CQ? (1+t/M T)
(2 7)

8, and g, are, respectively, the c.m. angle of scattering
and the c.m. momentum of either nucleon in the SS
channel. We will use two different approximations to
U&(T). These we label A and B.They are discussed in
Secs. IIB and IIC. Our approximations will avoid
explicit evaluation of the double spectral functions, but
will share all the characteristics described in the
introduction, which may be summarized as follows:

ImU? (T)= Imh? (T), (0(T(Ti), (2.3a)

U?(T) ~ T' as T~ 0, (2.3b)
~? ImU?(T')dT' ~? Imh?(T')dT'

T'n

(m=1, l). (2.3c)

This expression for p may now be used in Eq. (2.6) to
calculate U~:

1 r Imh, (T') T'Q, (1+t/M T)-
U?" (T, t) = — dT'. (2.8)

e
T' TTQ( (1+t/M —T')

It should be pointed out that our replacement of the
t' integration in Eq. (2.5) is by no means an exact
application of the mean-value theorem, but it has
resulted in an approximation U~~ which satisfies all
the desired characteristics given in Eq. (2.3). The
parameter t will be varied in our study and is considered
as a phenomenological parameter. The A approximation,

~ G. F. Chew (private communication}.
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as treated here, introduces only a single parameter t
into our description of U(T); however, this approxima-
tion lends itself to the introduction of any number of
free (phenomenological) parameters in a way which
preserves the requirements of Eq. (2.3). We can define
a total approximation A as

Im h (AS SEEN

with

Ui (T,o)= P PaUi" (T,ts), (2 9)
Tla b

Fro. 2. Diagram relating to choice of strip width T~ (see Sec.IID).

Ui" (T,a) has the correct right-hand cut and threshold
behavior and has, in addition, E—1 free parameters
which may be adjusted to 6t experiment.

The left-hand discontinuity associated with a partic-
ular choice of t is not needed to evaluate Ui~(T, t),
but is given by

t ~ Imhi(P) -T'-
ImUi" (T,t) = ,'Pi~ 1+-

T' TT—

Eq. (2.3). The parameter j&, which is analogous to
the parameter I, in approximation 2, has been intro-
duced as a means of studying the effect on U(T) of

varying the "structure" of the left-hand discontinuity.
Introduction of the parameter j& also allows us, as in
the case of approximation A, to dehne a total correction
UP(T, o):

(2.14)

with

(—eo (T(—t/2M) . (2.10)
Qi (1+t/3f P)

C. Approximation B

This approximation is similar to that suggested by
MacGregor, 4 which was to construct a lef t-hand
discontinuity (ImUi(T)$ which has the appropriate
moments to produce the required threshold behavior:

~~ ImUin(T') r' Imhi(P)
d T/=- dT

T 0

ri = 1, /, (2.11)

and which will be otherwise physically plausible.
We will further require the left-hand cut to satisfy the
appropriate threshold dependence at T= —Tl., as
derived in Appendix I:

ImUi(T) (T+Tz)'" as T~ —Tr, . (2.12)

A suitable construction for the left-hand discontinuity is

ImUin(T, jz) = (x+1)'i'(x—1) g cr&x', (2.13)

where
x=1+2Tz/T

This expression maps the left-hand cut from the interval

(—~ (T& —Tr,) into the interval (+1)x) —1).
The factor (x+1)'' produces the correct threshold
behavior (Eq. (2.12)j, and the (x—1) factor forces
vanishing of the discontinuity at T= —~, a require-
ment necessary to satisfy the first (m=1) condition of

The coeKcients n; are determined from Eq. (2.3), and

Up(Tj &) is obtained from its dispersion relation:

1 r' ImUi—~(T',js)
UP(T, ja)=- dT

T'—T

1 r& Imhi(T')dT'
(2.15)

7l' 0 T T

D. Discussion of Strip Width T~

We have introduced a cutoff Tj into our approxima-
tion. It is associated in a natural way with the width
of the direct-channel strips in our approximate Mandel-
stam representation. An alternative way of viewing the
cutoff is to say that, in a more sophisticated approach,
V (the cross-channel strip contribution) would be given

by a sum of Regge poles B~. Asymptotically, for large
T, we expect these poles to determine the amplitude.
That is,

(2.16)h(T) —+ Ba(T) as T ~~,
which, by our definition for U(T), means that

U(T) —+0 as T~ro.
Thus both the strip approximation and the Regge
assumption lead to the same asymptotic relationship.

The question then arises as to the exact meaning of
the cutoff T~. It is clear that, in a strip approximation,
there can be no clear separation between the contribu-
tions coming from strips 1 and 2 in Fig. 1 when the
energy is near the upper edge of strip 1. This is illus-
trated in Fig. 2 where we have indicated, schematically,
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ImU(T) = Imh(T), 0(T(Ti
=0, T& T1

(2.17)

We realize the crudity of this approximation, but we

hope that an appropriate choice of T1 will result in
"reasonable" approximations to U(T). In this paper
we consider only T&——400 MeV, for two reasons. First,
400 MeV seems reasonable if we associate U(T) with
elastic unitarity in the EN channel, recognizing that
the first inelastic channel (1V+iV~ X+X+~) opens

up at about 290 MeV and is found to be of little
importance below 400 MeV. Second, our determination
of U(T) is from experiment (the right-hand cut is

always Imh'"&), and "reliable" determinations of p-p
partial wave amplitudes extend at present only to
about 400 MeV '

We plan, subsequently, to investigate the T1 depend-
ence of U(T) by making some educated guesses about
experiment above 400 MeV and extending our calcula-
tions to larger values of T1.In the meantime, we present
the following argument in support of a weak T1 depend-
ence for the pole parameter values we have obtained.
If t is "large, " approximation A can be shown to be
roughly of the form

r& Imhi(T')
Im Ui (T) Ti f(T')d T', (2.18)

p T"(T'—T)

where f(T') is a slowly varying function of T'. The
(T') ' weighting of the integrand in Eq. (2.18) then
means that ImUi(T) is even less sensitive than f(T)
to the upper limit T~. The argument is, of course,
considerably stronger for higher partial waves (large i)
than for p waves (/= 1).It is also only valid for T(&T&.
But for T~T1, our whole approximation scheme
breaks down.

III. PROCEDURE AND EXPERIMENTAL INPUT

Phenomenological its to the p-p scattering data
were obtained by adjusting the model pole parameters
so that the projected partial-wave scattering amplitudes
gave a "best" fit to the p-p scattering da, ta in a least-
squares sense. Instead of using the (p,p) data directly,
we found it more convenient to work with the reduced
matrix representation (RMR) of the data. A detailed
discussion of this procedure is available in Ref. 1.
(We will refer to Ref. 1 as paper AM. ) The RMR is
used to calculate the goodness-of-fit parameter, X',
for the scattering amplitudes predicted by the model.
Actually, our approximations predict the real part of
the scattering amplitude Reh, where

the contributions to the total SX channel discontinuity
PImhi(T)) coming from strips 1 and 2. Since we cannot
determine exactly how these strips are contributing,
we have made the approximation that

6

. + Q (gi g i)r~i(bi h i) (3.3)

where ( )r means transpose, and where X'b„;, is the
sum of X' values obtained at each energy (25, 50, 95,
142, 210, and 330 MeV) in the phase-shift analyses of
AM and equals 259; 5' is the phase shifts at energy T; as
given by the pole model parameters, bo' is the phase
shift vector at minimum X, and energy T, as given in
AM.

QX

CL&g
=—

2M M

where o. is the reduced second-derivative matrix defined
in AM; 8,' is the jth component of 8'. We will use a
shorthand notation, where the sum over energies is
implied but not denoted. Equation (3.3) can be written
as

with
exp-ss(p) &~as(p),

»(p) =~(p) —&o,

QX2= X2—X~be, sic p

(3.4)

and where h is related to the nuclear "bar" phase shifts7
by

hg ——(E/2ik) (e'*'&—1),
singlet amplitude,

h»= (E/2ik) (e"»~—1),
triplet uncoupled amplitude,

(3 2)
hg, ~~i ——(E/2ik) (c os2 p~e"'~ ~+' 1—),

triplet coupled amplitude,

hJ = (E/2ik) sin2»e'&'~ ~+i+'~ ~-»

coupling amplitude,

with E/k= (1+2&/T)' '; J is the angular momentum
and M is the nucleon mass. U(T) was calculated
from the energy-dependent analysis of Amdt and
MacGregor. ' The p-p data are represented at six
energies (Ti,b ——25, 50, 95, 142, 210, and 330 MeV) by
the results of single-energy phase-shift analyses, as
embodied in the RMR. The RMR elements are
essentially the second-order coefficients of a Taylor
expansion for X' around the minimum position (8P).
Since, at the solution, the gradient (BX'/M)

~

po vanishes,
we expect that all of the local dependence of X' on the
phase shifts is contained in the RMR. In fact, we And
that the RMR is a valid (giving X to within 10%%u~ of its
actual value) representation of the data even for
variations in the phase shifts which result in X' increases
of 1000 or more.

Using the RMR to obtain X', we have in a matrix
notation,

h= 13+U, (3 1)
7 M. H. MacGregor, M. J. Moravcsik, and H. P. Stapp, Phys.

Rev. ii4, 880 (1959).
'
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p is the parameters of our model (i.e., coupling constants
and masses).

The X' hypersurface given by Eq. (3.4) still contains
a dependence on the '50 component of the phase-shift
vector. Since our model does not give reliable values
for this phase shift, we will work with the reduced
hypersurface, DX„(b), which is obtained by minimizing
5X' with respect to the '$0 phase shift at each energy.
This is achieved by singling out the row (AS)r and
column 65 of o. which correspond to the '50 phase,
and then rewriting Eq. (3.4) as

(3.5)

Solving for the minimum, Bhx'/BUS= 0, we obtain

1
AS; = ——Prob',

7

The vector h8' appearing in Eq. (3.6) has no 'So
component, and it is the reduced hypersurface AX,'
which we will attempt to minimize with the parameters
p. First, however, we must transform Eq. (3.6) into
the space of Reh )the real part of the scattering ampl
tudes defined in Eq. (3.2)g. We will denote Reh, fori-
simplicity„as a vector h. Then

The solution (Ap;„) to Eq. (3.10) is

hP; = —(own, 'o.) 'own„'Ah(P). (3.11)

Equation (3.11) is iterated until a solution is achieved
(~pmin ~0).

The number of data represented in our analyses is
363; consequently the statistically acceptable value of
X' (the goodness-of-fit parameter) should be around
that number since the number of model parameters is
small. We emphasize, however, that any rigorous
statistical interpretation of X' is unwarranted, when
one considers the crudity of our model. We shall use
it only as a relative measure of the success of various
approximations, but it will be shown that our "best"
approximations yield a X' which is nearly statistically
acceptable.

IV. RESULTS AND CONCLUSIONS

It is obvious that the approximations we have thus
far described are for a low-energy theory and, con-
sequently, will begin to fail above some energy. We
expect that the "potential" term B(T) will fail at
energies where the exchange of heavier systems (greater
than M„) begins to manifest itself in the lowest (/= 1)
states treated by the model. Also, the unitarity correc-
tions are singular if we attempt to evaluate them at
energies near the energy of the strip parameter 1'&

(400 MeV). Because of these considerations, we
decided that the approximations should be studied as a
function of "minimum-impact parameter" a;„. We
first de6ne the impact parameter ai(k) for the /th
partial wave at c.m. momentum k as

where
gii =—88i/Bhp

(3.7)
ai(k) = Ll(i+1)j"'/k, (expressed in fermis),

(4.1)
k= c.m. momentum= (~~~T)'».

can be solved for from Eq. (3.2). This expression for
d8 can be substituted into (3.6) to obtain an expression
for the X' hypersurface in h space:

with
Ax„2= Ah~g~n„yah =khan„'Ah,

d h= h(p) —h(bp) =B(p)+ U(bo) —h(8p) .

(3.8)

Part of our general search procedure will be to linearize
8 in the particle-exchange. 'parameters (p) which we are
determining

(3.9)73(p+~p)=&(p)+ ~p,
with

~pn y

Substituting into (3.8) we obtain

6X,'= f&hr(p)+DPror)a, '(hh(P)+oaP)
=ah'(p)n, 'ah(p)+26 p o n, 'hh(p)

+aProrn, 'oaP (3.10).

In de6ning a minimum-impact parameter a; for the
model we simply mean that for all energies such that

ai (k))amin q (4.2)

phase shifts are determined by the model. For those
energies where the above relationship does not hold,
the phase shift is determined as a free, phenomeno-
logical, parameter. This is accomplished by using the
same reduction procedure as described above for the
phenomenological 'So phase shift LEqs. (3.5) and
(3.6)). It is encouraging to note that the phenomeno-
logically determined phases from the reduction pro-
cedure remain within a few standard deviations (hf
given in Table I) of the "experimental" (8 of Table I)
values. Ideally we would expect that a "best" deter-
mination of the coupling parameters would be obtained
from a study of the long-range part of the interaction,
since the theoretical uncertainties of our model are
smallest there. Unfortunately, the experirweetal un-
certainties resulting from partial-wave analyses are
largest for large a; . It is our prescription, therefore, to
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TAnz, z I. Approximations to U(T) multiplied by (180/s) (k/E) to read in degrees. Tq ——400 MeV.

Phase T~,b (MeV) g (9~2)b g (20~I)b g (40~%)b A(x)b B(0)b B(4)b

25
50
95

142
210
330

25
50
95

142
210
330

25
50
95

142
210
330

25
50
95

142
210
330

25
50
95

142
210
330

25
50
95

142
210
330

25
50
95

142
210
330

25
50
95

142
210
330

25
50
95

142
210
330

25
50
95

142
210
330

25
50
95

142
210
330

7.22
12.48
13.26
6.22
10—12.9

—3.25—7.88—12.80—16.60—21.80—28.9
1.91
6.09
9.88

13.73
15.84
16.32

0.69
2.2
3.52
5.32
7.05
9.03

—0.85
23—2.62
2.7—2.8—3.04

—0.18
0.61—0.01
0.57
1.58
0.70

—0.23—0.48-0.69
1073—2.61
3022

0.015
0.13
0.40
0.86
2.28
2.9'?

—0.048—0.19—0.49—0.58—0.97—0.77

0.039
0.14
0.34
0.59
1.06
1.51

0.004
0.025
0.095—0.26
0.35
1.49

1.38
0.87
2.69
0.61
0.6
1.5

0.55
0.36
0.72
0.43
0.61
1.12

0.28
0.23
0.56
0.21
0.27
0.64

0.17
0.28
0.31
0.25
0.33
0.69

0.35
0.36
0.47
0.15
0.19
0.49

0.41
0.37
0.98
0.41
0.34
0.68

0.41
1.07
0.24
0.22
0.63

0.21
0.28
0.21
0.20
0.42

0.08
().1
0.30

0.17
0.15
0.34

0.21
0.36
().42

0.77—0.28—2.15-1.91—0.64
1.06

0.76
1.64
2.8
3.2
2.36—3.93

0.47
1.07
1.53
1.18—0.07—2.96

0.019
0.065
0.15
0.19
0.12—0.59

—0.04—0.07
0.03
0.23
0.50
0.95

0—0.03—0.14—0.26—0.38—0.51

0.001
0.004
0.002—0.01—0.05—0.17

0
0
0.01
0.02
0.024—0.06

0
0
0
0
0.016
0.07

0
0
0
0—0.006—0.03

0
0—0.004—0.01—0.04—0.08

0.66—0.53—2.57—2.44—1.25
0.41

0.53
1.16
1.97
2,15
1.13—5.24

0.35
0.82
1.1
0.64—0.7—3.63

0.012
0.04
0.07
0.05—0.09—0.88

—0.02—0.02
0.16
0.47
0.86
1.44

—0.003—0.05—0.22—0.44—0.74—1.18

0
0.001—0.01—0.05—0.12—0.28

0
0
0.006
0.008—0.001—0.11

0
0
0
0.01
0.04
0.12

0
0—0.001—0.006—0.02—0.07

0
0—0.01—0.03—0.09—0.25

0.61-0.65—2.82—2.81—1.75—0.22

0.44
0.93
1.49
1.45
0.20—6,42

0.30
0.'?0
0.86
0.28—1.78—4.24

0.01
0.025
0.026—0.036—0.26—1.17

—0.02—0.002
0.24
0.63
1..16
1.98

—0.004—0.05—0.28—0.60—1.14—2.17

0
0—0.02—0.069—0.18—0.43

0
0.001
0.003
0.001—0.021—0.15

0
0
0.002
0.015
0.058
0.19

0
0—0.002—0.01—0.033—0.11

0—0.001—0.01—0.046—0.17—0.62

0.55—0.79—3.15—3.36—2.61—1.60

035
0.68
0.90
0.47—1.34—8.90

0.25
0.57
0.55—0.23—1.98—5.5

0.007
0.013—0.026—0.16—0.54—1.87

—0.01
0.02
0.35
0.88
1.73
3.3S

—0.005—0.63—0.36—0.89—2.07—5.53

0
0—0.03—0.11—0.3—0.88

0
0
0—0.01—0.05—0.28

0
0
0.004
0.024
0.103
0.444

0
0—0.003—0.016—0.06
0.28

0
0—0.01—0.08—0.40—2.6

0.69—0.52—2.6—2.5—1.3
0.26

0.59
1.23
2.01
2.11
0.95—5.7

0.38
0.87
1.13
0.61—0.81—39
0.02
0.06
0.13
0.14
0.03—0.74

—0.04—0.06
0.06
0.31
0.64
1.2

0—0.02—0.13—0.25—0.3'?
—0.54

0
0.005
0.004—0.012—0.06—0.18

0
0.003
0.012
0.021
0.022—0.07

0
0—0.003—0.001
0.013
0.07

0
0
0.001
0.001—0.004—0.03

0
0—0.002—0.008—0.02—0.06

0.6—0.7—3.0—3.0—2.0—0.6
0.43
0.9
1.38
1.23—0.2—7.15

0.3
0.69
0.8
0.15—14
47
0.02
0.06
0.11
O.ii—0.02—0.82

—0.03—0.06
0.08
0.35
0.72
1.31

0—0.03—0.15—0.30—0.47—0.72

0.001
0.003—0.001—0.02—0.08—0.22

0
0.002
0.009
0.016
0.013—0.08

0
0—0.002
0
0.016
0.075

0
0
0.001
0—0.006—0.036

0
0—0.003—0.01—0.03—0.07

~ Phases ($) and "errors" (&p) in degrees from AM (Ref. (1)g. Phases treated as one-pion-exchange contributions by AM have no errors quoted.
h These approximations are defined in the text.
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study the various models (different U(T)) as a function
of a;, to see the effect both on X' and on the pole
parameters.

Determinations of U(T) resulting from a number of
different approximations are tabulated for comparison
in Table I. The first observation to be found in Table I
is the smallness, in general, of the unitarity term when
compared to the amplitude to which it applies. Notable
exceptions to this behavior are e2 aild 'F2, where U(T)
is increased because of coupling to lower (smaller t) and
much larger amplitudes. For these coupled states we
have

~min

0.7
0.89

1.2
1.3
1.5
1.7
1.85
2.2
2.75

s(T~ b)'

P (330)
&(210)
E(140)
D(330)
f'(95)
D(210)
Z(330)
D(140)
G(330)
H (330)

9p,' 20@,'
1185 918
837 612
764 547
618 468
612 466
476 394
432 376
349 329
323 314
284 285

40p,2

808
522
460
413
409
363
360
324
313
284

60@,2 100@~

796 824
514 540
451 475
416 447
410 441
384 409
382 404
333 355
320 340
287 297

ALE II. Determination of x~ for U=A (t) from
4-pole fit to Reh'*&(T) —U(T).

1013
715
638
614
608
580
562
473
447
346

At threshold,

Imh;, ;+i———(sin'e+ sin'8+) .
E

& o(. g j+&/2 $ fx pi+(~/2) +~

(4.3)

(4.4)

Hence we expect the low-energy S-channel cut for the
amplitude h&;+& to be largely determined by e. This
is, in fact, the observed case for the p-p system. In the
low-energy (0—200-MeV) region, e2 is 2—3 times as
large as F2. This situation also manifests itself, though
not so noticeably, in the j=4 amplitude, where 'H4
couples to e4 to produce a relatively large U(T).

The next observation we would like to make about
Table I is the strong similarity between various approx-
imations to U(T). Since the only way in which these
approximations diBer is the discontinuity across the
left-hand cut LImh(T) for —~ (T(—Tr j, the
similarity in U(T) suggests that our approximations
may be insensitive to the precise structure of the left-
hand cut. To further illustrate this point, we direct
the reader's attention to those entries in Table I corre-
sponding to L(A) t= 20+2), L(B)jb ——0j, and L(B)jb——4$.
The left-hand discontinuities associated with these
three approximations are depicted in Fig. 3. These
three different approximations give quite similar
contributions in the energy range of interest (the near
right-hand cut), despite radically different left-hand
cut structures.

Finally, it should be noted in Table I that as T —+ '1&,

the corrections U(T) become very large and probably
unreliable.

It is relevant to point out here that the two approx-
imations studied, A and 8, are derived from essentially
diferent philosophies. In approximation A, the left-
hand cut structure is a consequence of the approxima-
tions described in IIB, while in approximation 8, a
specific structure is assumed with just enough flexibility
to satisfy the conditions (2.3). In either case, U(T)
must be interpreted as a phenomenological representa-
tion of that part of the amplitude required by s-channel
unitarity. The reason for its introduction is to make our
determination of the potential more reliable. With this
purpose in mind, we first deduce the "optimum" value
of t to be used in approximation A. This is accomplished
in Table II, where we have depicted X'(t,a; ). It is

& InsufBeient data prevented determination.

clear from the results of this study that the "optimum"
is around t =40'' (noting that for any a;„x' is smallest
for t =40'') and that there is a rather broad range of
acceptable t values. We select t =40p,' to use for compar-
ison with other approximations t U=O, and U=B
(ji——0)), and also for comparison to the "extreme"
values 1=9'' and t= ~.

Once the unitarity corrections have been investigated,
we can proceed to the pole-fitting calculations. Our
"potential" should represent the low angular-momen-
tum states in the crossed (1') reaction. Thus we choose
a, vr(S=O, J=O, I=1), a p(J=S=I=1), and an
o~(5=1, S=1, I=O) as exchanges embodied in the
potential. These particles represent three of the four
XX S waves. The fourth (J=O, I=O) S wave could
be represented by an q. However, since the p contributes
like the x in PP states, we were unable to distinguish
its contribution from that of the x. Therefore, it was
not included in our description of the potential. The
vector particles (p,c0) represent an admixture of S and
D waves in the I= j. and I=O states, respectively.
Normally they would contribute identically to the
p-p scattering states. However, we will use the results
of electromagnetic-form-factor studies to fix the (f/g)
ratio of the p at 4, and of the co at 0. Under these
circumstances the p and co contributions are distinct.
Finally, we invoke a o meson (I=O, I =0+) to rep-
resent an exchange in the EX, I=O, 'Po state. The
need for such an exchange term is described in Ref. 5.
We will later discuss the fact that, on the basis of EE
scattering data alone, we cannot deduce the existence of
a 0. "particle, "but we use the o. as a convenient represen-
tation of any exchange in the EX state having the
quantum numbers of the o. Our determined (searched)
parameters are g ', g,', g ', g,', and M, . We will take
as fixed the M, M„, M „(f/g) „,and (f/g), parameters.

The results of our analyses are summarized in Table
III, where we have tabulated our determinations for
five different approximations to U(T) as a function of
the minimum-impact parameter a;„. In addition, at
the bottom of Table III we have included the analyses
where only states with t&2 were used to determine the
model parameters. The first part of Table III gives the
goodness-of-fit parameter X' while the remaindei of
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TABLE III. Determination of x and of the searched pole parameters as a function of u and for various approximations to U(T).a; is the "minimum-impact parameter" defined in 4.2. 5(T~,b) is the phase shift and energy (in MeV) corresponding to a;,. The
phases determined by model parameters in these analyses include 8 (T~,q) and exclude all h (T&,q) appearing in preceding rows of the table.
The last row of this table gives determinations where all phases, excluding P waves, were 6tted at all energies.

~min

0.7
0.89
1.
1.2
13
1.5
1.7
1.85
2.2
2.75

All L&1
All Thb

0.7
0.89
1.
1.2
13
1.5
1.7
1.85
2.2
2.75

All l&1
All Ti b

0.7
0.89
1.
1.2
1.3
1.5
1.7
1.85
2.2
2.75

All /&1
All T),b

0.7
0.89
1.
1.2
1.3
1.5
1.7
1.85
2.2
2.75

All t&1
All T),b

h(T),b)

P (330)
P (21O)
p(14o)
D(33O)
P (95)
D(210)
F(330)
D(140)
G(330)
H (330)

P (330)
P (210)
P(140)
D{33O)
P (95)
D (210)
z(33o)
D (140)
G(330)
H (330)

P (330)
P (21O)
P (140)
D(330)
P (95)
D(210)
E(330)
D(140)
G(33O)
H (330)

P (330)
P (210)
P (140)
D {330)
P (95)
D(210)
F(330)
D(140)
G(330)
II (330)

U=O

1280
1047
897
783
740
662
514
421
361
286
418

12.5+0.14
12.8+0.14
13.1~0.17
12.7&0.17
13.3+0.20
13.1~0,20
14.1~0.24
13.3+0.29
13.7+0.41
10.9~0.81
13.3+0.35

2.5a 0.1
2.8~ 0.1
2.9a 0.1
44~ 03
4.2~ 03
6.4~ 0.6
5.9a 0.7

21& 3
9 ~ 3

124 &103
12.2~ 4

3.3~ 0.1
4 ~ 0.1
4.2~ 0.3
7.8~ 0.6
5.2~ Q.i
6.4~ 1
2.3+

20 ~ 2.6
1.2~ 4.3

132 ~55
19 ~ 2.2

A (40'')

Determination of xm

808
522
460
413
409
363
360
324
313
284
329

Determination of g ~

14.2+0.14
14.2~0.15
14.0~0.17
14.0~0.17
13.9~0.2
13.7~0.2
13.9&0.24
13.4+0.29
13 ~0.42
11 ~0.81
13.6~0.33

Determination of g,'
2.8~ 0.1
3.2~ 0.1
3.1~ 0.1
2.9~ 0.3
2.9~ 0.3
2.8~ 0.4
2.9~ 0.4
4 ~ 1.1
2.3& 13

53 ~77
3.5~ 1.3

Determination of g„'
0.93~ 0.1
2.1 ~ 0.1
3.1 ~ 0.3
3.9 ~ 0.6
4 ~07
5.8 ~ 1
4.9 ~ 1.1

10 ~ 2.7
0.9 ~ 4.4
6.8 ~54
5.7 ~ 1.8

Determination of g,'

A (9p')

1185
837
764
618
612
476
432
349
323
284
371

14.4~0.14
14.4+0.14
14.2~0.17
14. ~0.17
14.3~0.2
13.9~0.2
14.4~0.2
13.2+0.29
13.2~0.41
11 ~08
13.1~0.35

3.1+ 0.1
3.4~ 0.1
3. ~ 0.1
3.3+ 0.3
3.3~ 0.3
4 ~ 0.5
3.8~ 0.5

11 a2
5 ~ 2

87 ~89
11.6~ 4

1.5~ O.i
2.9~ 0.1
3.4~ 0.3
5.1~ 0.6
4.2~ 0.7
7 &1
5 ~ 1.1

18 ~ 2.6
3.3~ 4.4

96 ~54
15 ~ 2.2

1013
715
638
614
608
580
562
473
447
346
463

14. ~0.14
14.2~0.14
13.9a0.17
13.9~0.18
13.7+0.19
13.6+0.2
13.5~0.23
13.7&0.2
13.2+0.42

a
13.4+0.3

2.8~0.1
3.1+0.1
3.3~0.1
2.5+0.3
2.5~0.3
2 ~03
2 ~03
0.9~0.4
0.7+0.5

1.7~0.6

0.33~0.1
1.4 ~0.1
2.9 ~0.3
3.1 ~0.6
3.7 +0.7
5 ~1
5.2 ~1.1
2 ~24—2 ~4

0.8 ~1.5

B(0)

1063
748
685
576
569
460
425
351
327
284
372

14.3+0.14
14.3~0.15
14.1~0.17
13.9+0.17
13.9+0.17
13.8+0.2
14.3~0.24
13.3~0.3
13.2~0.4
11 +08
13.2+0.4

3.1~ O.i
3.4+ 0.1
3.1~ Q.i
3.4a 0.3
3.4~ 0.3
4 ~ 0.5
3.9~ 0.5

11 &2
5.4~ 2

91 ~90
12.6~ 0.4

1.2~ 0.1
2.6~ 0.1
3.2+ 0.3
4.8+ 0.6
3.9& 0.7
65~ 1
4.5~ 1.1

18 ~ 2.6
2.9~ 4.3

ioi ~55
15 ~ 2.2

0.7
0.89
1.
1.2
1.3
1.5
1.7
1.85
2.2
2.75

All t&1
All Ty b

P(33O)
P (210)
P (140)
D{33O}
P (95)
D(210)
F (330)
D(140)
G(330)
a(33o)

0.9+0.02
0.9~0.03

~0.04
~0.05

1.3+0,07
1.4&0.08
1.7~0.1
1.2+0.2
2.3~0.4—12 ~4.5
1.6~0.2

1.2 ~0.02
1.13~0.03
1.08+0.04
1.18~0.05
1.18~0.07
1.13&0.08
1.24~0.11
1.04~0.17
1.7 ~0.36—11 ~5
1.0 ~0.16

1.2 ~0.02
1.05~0.03
1.06+0.04
1.26~0.05
1.4 +0.07
1.3 ~0.08
1.5 ~0.11
1.1 ~0.17
2 ~04—11 ~5
1.2 ~0.2

1.2~0.02
1.2~0.03
1.1~0.04
1.1&0.05

&0.07
1 ~0.08
1 ~0.11
1.3~0.18
1.6~0.4

0.6~0.14

1.2~0.02
1.1~0.03
1.1~0.04
1.2~0.Q5
1.3~0.07
1.3~0.08
1.5~0.11
1 ~0.16
2 ~04—11 ~5
1.1~0.2
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TABLE III. (oorttittleti).

~man

0.7
0.89
i.
1.2
1.3
1.5
1.7
1.85
2.2
2.75

All l&1
All Tlrbb

s (Ttab)

P(330)
P (210)
Z(140)
D(330)
P (95)
D(210)
F(330)
D(140)
G(330)
H(330)

U=O

430+3
437~3
434+5
462+8
468~9
515~14
519~16
615+17
575+36
647+68
567~31

A (40'')

Determination of M,
475~5
474~5
464~5
446~ 10
445~10
433~14
437~ 14
451~24
430~43
607~113
453~34

A (9p')

493+5
490+5
466~6
459' 10
461~11
471~14
471~16
544~18
506~37
627+82
567' 33

471+5
471~5
470~5
431~10
430~ 10
396~13
400~ 14
332~30
325~48

a
384~30

B(0)

488+5
486+5
467&6
460~ 10
463~11
472~14
474~ 16
547+ 18
517~37
630+80
575~32

& InsufBeient data prevented determination.
10—
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2
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(a)
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(b)
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Fro. 4. Determination of pole parameters for U=A (t=40ps) as
a function of minimum impact parameter, u ~ .

480—

~ 460—

~ 440—
b
X 420—

experimental state of the p-p system as well as the
degree of success we have achieved in Gtting the phase
shifts with unitarized poles.

The scalar mass obtained in our "best" determination
is high enough (450 Mev) that its effects would not be
seen in reactions like E,4 decay, where it has been
looked for and not found. 9 Durso and Signelll hav'e

demonstrated the equivalence of a continuum ALV"

' Birge et ol. , Phys. Rev. 139, B1600 (1965)."J.W. Durso and P. Signell, Phys. Rev. 135, B1057 (1964)."D. Amati, K. Leader, and B.Vitale Nuovo Cimento 17, 68
(1960); 18, 409 (1960);Phys. Rev. 130, 50 (1963).
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Fro. $. Four-pole fit to partial-wave amplitudes /=1 through t=4 with o; =1.3 F and with U(t) given by U t(f=40tl. ') The.
solid curves are the potential pB(T)) for the parameters given in Table III. The arrows indicate the unitarity term U(T) and the
"experimental" points (indicated with error bars) are from the analyses of Amdt and MacGregor (Ref. 1). The comparison to
be drawn at each energy is between the experimental value and the sum of 8 and U.

2m S-wave contribution to that of a 0-0 meson of mass
400 MeV and g

' 4.7. Evidently, therefore, we
cannot claim the existence of a 0- "particle" from our
analysis, but we do measure the strength of the equi-
valent eGect in that channel that is required to rnatch
the observed p-p phase shifts.

In conclusion, we feel that the inclusion of a reason-
able approximation to U(T) leads to a significant

improvement in the fit to the amplitudes, thereby
giving us increased conMence in the particle representa-
tion for the potential.

APPENDIX I: THRESHOLD BEHAVIOR
OF LEFT-HAND CUT

Here we examine the behavior of the left-hand
discontinuity of the XE scattering amplitude as
q,' —+ —p,', that is, as we approach the near end of the
left cut. The discontinuity is exhibited in Figs. 6 and 7
in the t and q,' complex planes. Expanding the EN —+
1V1ttt' amplitude in the t channel we obtain

2 &~~&'(t,Z,)=Pt Pt(Z, )Atty'~t'(t)(2l+1),
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from which

ImAg~'/&'(t)zg)=gg(2l+1)Pg(zg) ImAgg~~g'(t).

Now for 4p'&t&9p' we have the relationship

g~
ImA ' "(t)= ~A" " (t)~', q.=(t 4'—)'"

t

APPENDIX II: PARTIAL-WAVE PROJECTIONS
FOR ONE-SOSOm EXnraNGE

Tis the lab kinetic energy (MeV). k is the c.m. momen-
tum= (21MT)'/2. 3f is the nucleon mass=938. 2 MeV.
0 is the c.m. energy of either nucleon =3II(1+T/2gl)1)g/'.
6 equals 4g'. p, is the mass of exchanged particle.

as
q

—+0 A N~(t) q
' xp ——1+/32/2k2 = 1+/32/MT.

a=[k(0+M)g'.

We obtain

5
(t F2) 1/2 0 Z

g~

ImA =D,(discontinuity) Pg gag(t tp)'"—
D,-(t—tp)'/'.

If we now decompose this discontinuity into partial
waves in the N1V channel we obtain (expressing D in
terms of q,', s,),

D (q.') = I'
g (z,)D, (q, ',z,)dz„

Dg(q. ')" P g(Z, ) (t 4/32) '"dZ—,

where Z, = 1+t/2q, 2. Noting now that Dg ——0 for t&4/32,
we have

D, (q,',Z,)=0 for Z,)1+2/32/q, ',
or

1+2~2/qs2

J3)J is the projection on singlet state. 8JJ is the projec-
tion on triplet uncoupled state. 8J,J & is the projection
on triplet state /=J —1. 8J,J+& is the projection on
triplet state t=J+1.B~ is the projection on coupling
state.

Note: I=O, EE phases are multiplied by a factor
(—3) if the exchanged particle has isospin= 1.

A. Pseudoscalar (J~=O ) Exchange

Bg=G[(xp—1)Qg(xp) —8g, pg,

=G[(*o+1)Q ( )—Q ( o)
—Q - (»)3,

—(G/(2 J+1))[Q~ (»)—Q~—1(xo)j
B~,~+1= —(G/(2J+ 1))[Q~+g(xp) -Q~(xp) j

B = —G[J(J+1)]'"/(2J+1)
&&[Q".(")+Q.—.(")-2Q.(*.)j

and
1+2/tt2/qs2

Dg ~ (—1)'
qs2~p2 -1

(t—4/g2) '/2ds

B. Scalar (J~=O+) Exchange

B = (G/2a)(1+a' —2axo)Q (xo),

from which
Dg (q 2) pt' ( q

2 /32) 3/2

qe2~ —
t

2

(1+a'+2axp)
BJJ G QJ(xp) QJ+l(xp) QJ—1(xp) )

which in terms of T=2q /M2and X=1+2/32/MT
variables become

Dg(T,X) (—T—2/32/M) 3/2

~ (X+1)3/2

as T —+ 2/32/3E or —X—+—1.

(2J+1)

(1+a'+ 2J(1—a'))
QJ-1(xp)

+[2J(axp —1)—1jQg (xp)

(2J+1)
[1—3a'+2J(1—a')j

Q~+g(xp)

Fro. 7. Near end of left-
hand discontinuity of A in
g&2 variable. ,AVXVQXX

2
+[2J(a* —1)+2a*o—17Q;(xo)—2agg;, o

Ga[J (J+1)]'/2
gJ— [Q.—(*.)-Q. (*.)7.

(2J+1)'
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C. Vector (JP= 1 ) Exchange

(1+a') 2(f/g)'
3+ Q~(go) 2—(f/g)E(go 1—)Q~(xo) ~—~,o3 — L(*o—1) (1+a+a'+ago)Qz(go)

2Q (1—a)'

(1+a +ago)4, 0 pa4, 1j

(1+2a+a' —4agp)~-=-G 2Q; (")+2Q. .(")+ Q.(g)+2(f/g)LQ+ (go)+Q —(go) —(go+1)Q.(")3
28

(f/g)'
+ {2(3a+go+2ago+a xp+axo )Qg(gp) —(1+4a+a +2agp)LQJ'+y(gp)+Qz g(gp) j+—aug y}

(1—a)'

—G f (4J+1+4Ja—a)
Bg,g g

—— —L2J(1—a')+(1+a)'jQg g(xp)+2(3J+1+Jagp)Qg(gp) —2 — Qg g(go)
(2J+1) 2a g — (1-a)

8Jaxp (f/g)'
(4J+1)+ Qg(xo)+ 5+ ~5g, g +- {f(1+a')gp+2J(xp—1)(1—a')+6a/Qg g{gp)

(1—a) 1—a) (1—a)'

+L4Ja'g, (x,—1)+2(6J—1)a(xo—1)—1—6a—a')Q (xo) —(3+-',a')8, }
G —P(J+1)(1—a') —(1+a) jQ + (g )+2L3J+2+(J+1)ag ]Q (go) —2ah,

(2J+1) 2a

— 4(J+1)(1+a) ( 8(J+1)axo 8a—1 Q+ {*)—14J+3+ Q (g)+
(1—a) (1—a) (1—a)

(f/g)'
f(gp (1+a') —2 (J+1)(1—a') (gp —1)+6a)Qg+r (gp)

(1—a)'

—(1+6a+a'+2a{6J+7)(go—1)+4(J+1)a'go(go—1))QJ {go)+(14a+4a'(go—1))4,o+ (Sa'/3)4 ij
G)J(J+1)$'IP

2(2J+1)(*o—1)Q~(gp)+ (1+a)LQ~-i(go) —Q~+~(gp)3
(2J+1)P

(f (1+3a) (f/g)'
+2~ — 2(2J+1)(gp—1)Qz(go)+ LQJ—1(go) QJ+1(gp)] +

I
g (1+a) - (1—a)'

&&{2(2J+1)(1—a)'(x,—1)Q (x,)+(1+6a—a'+2a'go)c QJ—1(gp) QJ'+$(gp)$ 2a 8g, l}

The coupling constants (g's and p's) are defined in Ref. 5.


