
PHVSICAL REVIEW VOLUM E 152, NUM HER 4 23 DECEMBER 1966

Faddeev Equations with Inelastic Processes
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Starting from the general Lippmann-Schwinger equation, we study the effect of inelastic processes on the
scattering of three-body states. We show that it is possible to incorporate the inelastic eBects into Faddeev-
type equations in two diferent ways. The first approach is a straightforward generalization of the single-
channel Faddeev equations to the multichannel form. However, we have to introduce the concepts ofposition
and purticle labeling in order to obtain a meaningful generalization. The second approach, which is derived
from an extension of the concept of a complex potential, yields single-channel Faddeev equations with a
modified input. The essential difference between this input and the input for the elastic case is the presence
of a completely connected term. The two approaches are shown to be equivalent in their common region
of validity. Under the resonance approximation, both approaches yield one-dimensional equations. The
structure of the completely connected term is investigated for certain specific models and further simpli-
fications on it are obtained. We also observe that the concept of the inelasticity parameter in the two-body
case does not seem to have a natural generalization.

handled by the multichannel approach using, for ex-
ample, a set of matrix X/D equationss; or by using a
modified single-channel formalism involving some func-
tion expressing the effect of inelasticity. ' The second
procedure is more potent in that, unlike the erst pro-
cedure, it is not limited to only two-body inelastic
states.

In Sec. II, we follow the first procedure and discuss
inelastic scattering within the framework of a set of
X-coupled 3-body channels, and we obtain a generaliza-
tion of the Faddeev equations. Since the multichannel
Faddeev equations are obtained from a set of matrix
Lippmann-Schwinger equations, an apparent ambiguity
may arise in the decomposition of the potential matrix
V into three parts analogous to the single-channel de-
composition. However, this can be easily resolved by a
careful definition of particle and "position" labels.

In Sec. III, we consider the second approach, where
we allow for the possibility of multibody states. Starting
from the multichannel multibody Lippmann-Schwinger
equations, we obtain a single-channel three-body Lipp-
mann-Schwinger equation with a modified potential.
From this it is then shown that we can obtain the
single-channel modified Faddeev equations which de-
scribe the scattering of the three-body state in the
presence of any general inelastic process. An important
new feature, however, now emerges in the structure of
the modified Faddeev equations. The analog to the
two-body amplitude consists here of not only the dis-
connected term from the off-shell inelastic two-body
amplitude, but also of a completely connected term.
The effect of the inelastic states cannot, therefore, be
completely determined through modifications of the
disconnected input two-body amplitudes alone.

In Sec. IV, we show that it is also possible to obtain
the single-channel modiled Faddeev equations starting

I. INTRODUCTION

ECENTLY, the successful work of Faddeev' and
others' ' in constructing a mathematically correct

theory for the nonrelativistic scattering of three-particle
systems has generated a considerable interest' in the
three-body problem. While a relativistic generalization
of Faddeev's work now seems in sight, ' some serious
attempts have already been made" in applying Faddeev
equations to strong interaction dynamics at low and
intermediate energies. On the other hand, a physical
situation may involve several other nearby states which

may exercise considerable influence and should, there-
fore, be included for any meaningful comparison with
the experiments. Also, some recent attempts (see, for
example, Ref. 6) in this direction already seem to indi-
cate that these states may play a considerable role in
the energy regions of interest. It is to this question that
we focus our attention in this paper.

Our starting point is the multichannel multibody
Lippmann-Schwinger equation. ' Drawing the analogy
with two-particle scattering, one can adopt two basi-
cally different approaches to handle the inelastic states.
In the two-body case, inelastic scattering can either be

' J. D. Bjorken, Phys. Rev. Letters 4, 473 (1960).' For example, one may use the modi6ed X/D equations with
inelasticity; see G. Frye and R. L. Warnock, Phys. Rev. 130,
478 (1963).

1475

*Present address: Northeastern University, Boston, Massa-
chusetts.' L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960)
fEnglish transl. : Soviet Phys. —JETP 12, 1014 (1961)g; Dokl.
Akad. Nauk SSSR 138, 565 (1961); 145, 301 (1962) LEn lish
transls. :Soviet Phys. —Doklady 6, 384 (1961);7, 600 (1963) .' C. Lovelace, Phys. Rev. 135, B1225 (1964); in Lectures at the
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from the E-coupled channel Faddeev equations ob-
tained in Sec. II, thus showing the equivalence of the
two procedures in this common region of validity. In
Sec. V, we carry out a partial-wave analysis of both the
coupled-channel Faddeev equations and the single-
channel modi6ed equations. Section VI shows that the
resonance approximation yields one-dimensional equa-
tions in both cases. Section VII considers some possible
further simplifying approximations, and Sec. VIII con-
sists of a short resume and discussion.

Throughout the present discussion we shall generally
ignore considerations of relativistic generalization, "
spin, and statistics. These complications are not really
relevant to the central object of the present discussion,
and can be added later to any given problem.

II. MULTICHANNEL APPROACH

Given an initial three-particle channel and the various
possible production processes, the total number X of
distinct three-body channels is determined. We shall
assume as usual that the interactions are all two-body
processes, although the inclusion of three-body processes
presents no additional complication. We shall also as-
sume that the three particles in each channel are dis-
tinct (symmetrization can be accomplished afterwards
as usual). We take the following generalized (off-shell)
I.ippmann-Schwinger7 equation to hold:

N

T„,= V„.+P V„G T „, p, v=1, , X. (2.1)

T„„and V„„are the elements of the scattering amplitude
and the potential matrices between the channels p and

v, G is the free-propagation Green's function appro-
priate to the channel e, and satisfies

have well-dined" solutions, whose nonzero elements
are appropriate two-body coupled scattering amplitudes.
We may define

so that

T'= Us+U'GT, k=1, , M (2.5)

(2.6)

Ts=h'+h'G Q T' k=1, ~ ~, ~.
leak

(2.7)

(2.8)

where the sum over k includes only those potentials
for which the particle k is in the ith position. We
remark that the equations

This is a rather large number of amplitudes and
equations, and one would prefer to have just three
equations, in a natural generalization of the elastic
case. It appears possible to do this, using a "positional"
notation. In listing the particles present in a channel,
we shall do so in an order such that any given particle
label occupies the same position in the list as it does in
the lists for all other channels in which it appears. This
procedure can run into trouble only when there are
two candidates for the same position in some channel
or when a particle is forced into different positions by
requirements on other particles. A typical example of
this is illustrated in the Appendix, and such pathological
cases can generally be resolved by invoking the require-
ment that the particle labels in any three-body channel
be different. In any case, all physical examples ex-
amined do not have this difhculty.

We now de6ne"

G.(Z)=La, -—Z]-', +=i, "., N, (2.2)
P= V'+ V'Gi' (2.9)

Ho" being the free Hamiltonian for the channel n, and
Z the total energy.

In order to obtain Faddeev-type equations, we must
decompose the potential. If we de6ne U p~ to be zero
unless particle k is present in both channel n and P,
and then to be the potential for the reaction of the
other two pairs of particles, then it is clear that so that

T*'= V'+ V'GT, (2.10)

have well-defined solutions (which are the appropriate
sums over h~, and therefore consist of coupled two-body
scattering amplitudes). A simple specific example of the
foregoing is given in the Appendix.

In order to obtain Faddeev equations, we proceed as
usual by de6ning

(2.3) (2.11)

where 3II is the total number of distinct particles. The
equations

ks= Us+ U'Gks, k =1, , M (2.4)

"Though our considerations are nonrelativistic, the deriva-
tions can be carried through as easily on relativistic equations
such as the Bethe-Salpeter equation LPhys. Rev. 84, 1232 (1951)g
since the essential structure is the same.

T'= P+PG(T'+T') .
'

(2.12)

"The solutions are well defined because the kernel and the
inhomogeneous term have the same disconnected structure. See
Refs. 1, 2, 3.

"The free subscripts p and v are always channel indices, and
independently take on the values 1 through N. The free super-
script i takes on the values 1, 2, 3; when i, j, k occur together as
superscripts they are assumed to be any permutation oi 1, 2, 3.
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The amplitude T' may be interpreted as the sum of
the set of diagrams in which the particle in the ith
position does not interact initially.

If we put the channel indices into Eq. (2.12), it
becomes

de6ning

t„„'
tiJt

t„v3

1

t„,= 0
0

0 0
t V2 0 )

0 t„v3

(2.14)
N

T„:=t„+gt„'G (T, '+T,'). (2.13)
TJlv

TP, v

TII,V

and
1

0

We may obtain a different form of these equations by We then have, for example,

T1.
T2v

&TNv

t2v

, tNv.

t11

t21

~tNl

t22 .

tN2 ~

tlN 61+
"t2N 0

tNN

0 0
G2E

0 T1V

T2v

GNK TN p

(2.15)

III. COMPLEX-POTENTIAL APPROACH

We now wish to approach the problem from a different
point of view, one which is applicable when there are
arbitrary numbers of channels containing arbitrary
numbers of particles. The similar situation in the two-

body problem is handled by the introduction of a
complex potential (equivalently, an inelasticity pa-
rameter). We shall proceed in the same spirit from the
generalized Lippmann-Schwinger equation

(3.1)

where the matrices are in a channel space not restricted
to three-body states.

We shall de6ne P as the projection operator onto the
three-body state of interest (note that P connnutes
with G). Our desired amplitude is P9'P—= T, and by
taking projections on Eq. (3.1) one finds

T= W+WGT, (3.2)
where

G=Pg,
W=PSP,
5= V+ VB(1—P)S.

(3.3)

(3 4)

(3.5)

There are a number of general comments which can
be made at this point. First, as can be seen from Eq.
(2.15) or Eq. (2.13), one only needs 3E equations to
find a given amplitude, as the T„v for fixed v close upon
themselves. Second, when some of the particles are
actually identical and the appropriate symmetrization
is done, the number of amplitudes and equations will
reduce from 3X to the number of physically distinct
processes. Third, the number of equations increases very
fast with the number of production mechanisms, going
roughly as the cube of the number of distinct particles.
Fourth, the lowest-order correction to the elastic scat-
tering amplitude is trivially obtained from the first
iteration of Eq. (2.13). Finally, this multichannel for-
malism is inherently restricted to inelastic channels
containing exactly three particles.

Equation (3.2) is exactly a single-channel equation with
a modified potential W. The structure of W is ex-
tremely complex, but it is clear that it can unambigu-
ously be decomposed into its disconnected parts 8"
(i = 1, 2, 3) and a completely connected part Wo.

We can give an explicit representation for 8" by
de6ning P; as the projection operator onto the states
containing the particle i. Then we de6ne'2

V'= (P VP )' (3.6)

where the superscript indicates that the particle i does
not interact (note that this is not a positional notation).
We now define

Then
Vi+ Vi g (1 P)&i

W'= P~'P.

(3 7)

(3.8)

T&= W&+W&GT, p, =O, 1, 2, 3, (3.10)
and

t~= W~+W~Gt~, I =0, 1, 2, 3. (3.11)

Again, Eq. (3.11) actually has well-defined solutions.
We have

3

T=Q T~ (3.12)

and
T"=t"+ti"GQ T" ti=O, 1, 2, 3.

vip
(3.13)

We remark that t' is the coupled amplitude for 2+3 —+

2+3 via all allowed intermediate states; similarly for
t' and t'. We note that t', t, and t' are disconnected
amplitudes; t' is completely connected. The essential
difference, aside from the fact that t*' (i=1, 2, 3) are
now coupled amplitudes, between Eqs. (3.13) and the

The connected part 8' is given implicitly by

W= W'+W'+W'+W'. (3.9)

We can proceed to obtain four Faddeev equations by
de6ning as usual
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elastic-scattering equations is seen to be due to the
presence of an additional term (and an additional equa-
tion) arising from the presence of completely connected
graphs in the potential 8', whose origin is due solely
to the existence of inelastic processes. As the coupling
to the inelastic channels tends to zero, the quantities
8"', P, and T' all tend to zero, " and the elastic equa-
tions are recovered.

We would like to rewrite these equations in a form
more closely analogous to the elastic case. Toward this
end, we observe that 8' can be decomposed into three
parts, according to which pair of particles interact first
(and labeled by the initially noninteracting third par-
ticle). We write

aild

so that

WO W01+W02+ W03

Toi Woi+ WoiGT

3
To P Toi

(3.14)

(3.15)

(3.16)

If we now define

then

Ti Ti+ TOi

3

T=P T'.

(3.17)

(3.18)

T iii+I 'G (T
' '—+T ) (3.19)

where
33 = ti+ (1+tiG)14 oi+ (1+tiG)WoiGNi (3 20)

The disconnected part of I' is just t', and if we write

I'= t'+I' (3.21)

If we substitute Eqs. (3.15)—(3.18) into Eq. (3.13), we
obtain"

In order to investigate I', we need to know more
about 8' '. We define

S'= V'+S'g(1 P)—V

or equivalently
S'= V'+ V'g(1 —P)S

where V'is given by Eq. (3.6). Then

w"=p(s' —r') p

(324a)

(324b)

(3.25)

AW'=Pr'A g(1 P)r'tP. — (3.27)

the discontinuity of the connected part is thus given
by Eq. (3.9) as

Equation (3.25) gives explicitly the representation of8" in terms of the potentials. The subtraction in Kq.
(3.25) is easy to understand: Between three-body
states, and in particular for our state of interest, vi is
just the disconnected part of S'. Thus, 8""must con-
sist of an initial scattering of particles j and k into an
inelastic state, subsequent scatterings, at least one of
which must involve particle i, among the inelastic
states, and finally a transition back to the state 1, 2, 3
(see Fig. 1).The Eq. (3.23) for J' gives just an iteration
of these diagrams, with a modified propagator (see
Fig. 2).

It is clear from Eqs. (3.24) and (3.7) that S' and r',
and hence 8"', have branch cuts on the positive real
axis of the total energy' arising from all the relevant
inelastic channels, but not from the elastic channel. In
fact, from Eqs. (3.4) and (3.5) we may obtain for the
discontinuity'5 of 5'

AW

=PSALM(1

P)StP. — (3.26)

From Eqs. (3.7) and (3.8) we can find the discon-
tinuities of the disconnected parts of 8':

then we have
I'= (1+t'G) P'(1+Gt') (3.22)

AW'=AW —Q AW' (3.28)

and
g'= W"+W"G(1+t'G) J'. (3.23)

OI
2

FIG. 1. Schematic representation of lV '. A square indicates
that only inelastic states are involved; a vertical line between
particles is a single potential interaction; the multiple horizontal.
lines indicate propagation of an inelastic state.

"If the elastic problem has a three-body interaction V0, tIIeg8"' goes to V'.

Equations (3.19) are of exactly the same form as the
elastic Faddeev equations, only with a modified input.
Aside from the fact that the ti are now coupled two-body
amplitudes, the inelasticity makes itself felt only in
the presence of the completely connected terms I'.

Due to the presence of the modified elastic propagator
in Eq. (3.23), J' and hence I' have an elastic branch
cut as well as the inelastic cuts.

We may finally remark that it can be easily seen
that Ii necessarily begins with a two-body transition
amplitude, since (1+t'G)W" can be written as a transi-
tion aniplitude times something involving only in-
elastic processes, followed by a transition via a single
interaction to the elastic state.

IV. EQUIVALENCE OF THE TWO APPROACHES

In the previous sections, we have described two dif-
ferent approaches for the treatment of inelastic states
in three-body equations. The question naturally arises

'4 In the nonrelativistic problem the energy under consideration
is the kinetic energy and hence all thresholds occur at the same
point, namely zero. In the relativistic case the appropriate energy
&s the total energy and hence all the thresholds are separated."S+ is the adjoint of 8 and t1W = t/2ipW —W+j.
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FIG. 2. Representation of J'
and Eq. (3.23). The symbols have
the same meaning as in Fig. 1. A
circle indicates a scattering where
all states may be present.

gY

N'

S„„=V„,+Q V„~G~S~„, (4 1)

whether, when it is possible to apply the two approaches
to the same situation, one obtains the same amplitudes
and equations. One would expect so, since the total
amplitude T and the subamplitude T' have a definite
physical meaning. We shall examine this question in
the domain of common validity of the two approaches,
namely the situation described in Sec. II.

First, let us see what the complex approach becomes
in this situation. Equation (3.5) becomes, for S,"

(4.10) by introducing the two-body multichannel scat-
tering amplitudes t„,':

N

t„„'=V„„'+Q V„'G t „'. (4.11)

Note that the summation over n now includes the elastic
channel, and that these are the physically realizable
amplitudes which appear in the multichannel Faddeev
equations of Sec. II. It is straightforward to establish
the following important identity:

rvv tvv tvl (1+Gltll ) Gltlv (4.12)

(4 2)8'=Spy.

where we have used the notation of Sec. II and G1= G from which it follows that the solutions of Eqs. (4.8)
Equation (3.4) is now and (4.10) may be expressed as

We may use the positional decomposition of Sec. II
to define" and

(4.13)

N

S„„'=V„v'+Q V„~'G~S~, (4 3) n'= p ttS'GS(SS1&+SS1'). (4.14)

r„,'= V„„'+Q V„'G,r, „'
%=2

(4 4)

S„,'= r„,*+P r„'G (S,'+S,"). (4 5)

Since the particle and positional notations have been
chosen to agree for channel 1, we have

(4.6)

N
W"= Q r1 'G, (S 1'+S 1"). (4.7)

Let us remark that V' of Eq. (3.6) is U' of Sec. II, and
that the S' and 7' dined here are closely related to,
but not identical with, the S' and r' of Sec. III.

We have, as always,

This illustrates explicitly the claims made in Sec. III;
namely, that t' is the full multichannel elastic-scattering
amplitude and that I' begins with a physical transition
amplitude. v„„' and S„,' for p&1 and v&1 can be
understood as the two- and three-body amplitudes,
respectively, for scattering when the coupling to channel
1 has been turned off."

In summary, Eqs. (4.14), (4.13), (4.9), (3.19), and
(3.18) give the results of the complex-potential ap-
proach to the problem of expressing the elastic ampli-
tude in a situation with X three-body channels.

We now wish to examine the other approach: We
shall start from the multichannel Faddeev equations as
given by Eqs. (2.13) or (2.15) and express them in
single-channel form by elimination of the transition
amplitudes. A direct reduction of Eq. (2.15) by straight-
forward elimination yields fin the notation of Eq.
(2 14)j

Equation (3.11) has, for its first three components, 2 11 {t11+E ttnGa+(I x) ta;1}

tr= 'r11 +r11 Glt

and Eq. (3.20) may be written as

u'= V+n'+n'G u'

(4.8)

(4 9)

N

+{t11+Q t1~GEE(1—&) 't~t}G1KT11, (4.15)

where
N

n'= (1+t'G1) 2 GrtS(SS+ptS )pt
/=2

(4.10)

We may gain further insight into Eqs. (4.8) and

"The Eqs. (4.12) relate the full coupled-channel amplitudes 1„„
(describing the scattering of X-coupled channels) to the un-
coupled amplitudes r„„Ldersicbi ngthe scattering of (1V—1)-
coupled channelsg for p, v=2, ~ ~, X Approximations on. Eqs.
(4.12 lead to the uncoupled phase method; see, for example, R. E.
Kreps and P. Nath, Phys. Rev. , this issue 152, 1249 (1966) and P.
Nath and G. L. Shaw, Phys. Rev. 137, 8711 (1965).
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where
t22 ' ' 't2N 62 0
~ ~ E. (4.16)
tNg. . . tNN 0 GN

The difliculty with Eq. (4.15) is that it is not in
Faddeev form, and it is not at all transparent how it
may be recast into such a form. This is essentially due
to the fact that the matrix preceeding G~ in the kernel
is nondiagonal.

We shall now show that there exists a proper reduc-
tion of the multichannel Faddeev Eqs. (2.13) which
brings them. into the desired single-channel form. We
write Eq. (2.13) with v=1:

Tvl tel +tvl Gl(T11 +Tll )

N

+Q t„'G (T s&+T ss)'. (4.17)

We may set ts= 1 and rewrite Eq. (4.17) as

Tll (1+tll Gl) tll (1+GsT11)

all center-of-mass motion and over-all rotation in the
center of mass system are eliminated, the number of
variables in the integral equations decreases from nine
to three. Also, we would like to investigate whether the
concept of inelasticity parameter, so useful in the de-
scription of two-body scattering, has a natural general-
ization to the three-body case.

We shall define our angular-momentum states in the
spirit of Omnes" and Hranson, LandshoB, and Taylor, '8

rather than by successive coupling of angular mo-
menta. "In the over-all center-of-mass system, the three
momenta form a triangle; if the energies are fixed, so is
the shape of the triangle, and all that remains is its
orientation. This can be specified by the rotation of a
reference frame, fixed with respect to the triangle, rela-
tive to the space-fixed axes. We define our angular-
momentum states (in the over-all center-of-mass sys-
tem) byso

~JMX»~»s)

=A dnd(cosls)dySsst *(nPy)
~ ysysps), (5.1)

+(1+tss'Gs) ' Q ts„'G„(T,s'+T„s"). (4.18)

We now combine Eqs. (4.18) and (4.17), and use Eq.
(4.12) to obtain

T„g'= s-„s'(1+GsTss)+Q ~s'G~(T~ +sT~s'). (4.19)

Tss*——u'+u'G, (Ts,&+T„'), (422)

with u' given by Eq. (4.9). This is the desired result,
showing that the two approaches are in fact equivalent.

V. PARTIAL-WAVE DECOMPOSITION

The partial-wave projections of the three-body ampli-
tudes are the physical objects of interest, especially in
the investigation of resonances and bound states.
Further, when the variables associated with the over-

Equation (4.19) implies that

Tvs —Svs (1+GQTQ]) p (4.20)

where S„„'is given by Eq. (4.5). Equation (4.20) is the
crucial equation in the reduction; it also allows us to
identify the amplitudes of the complex and multi-
channel approaches as being the same, since 5~~'
=W'+W" and the total amplitude is the same in both
approaches. Upon substitution of Eq. (4.20) into Eq.
(4.17), we obtain

Tll t11 +A + (tll +A )Gl(T11 +Tll )
+u*GgTss', (4.21)

where n' is given by Eq. (4.14). Finally, Eq. (4.21)
may be recast (since n' is completely connected) into
the Faddeev form

where ~; is the energy of the ith particle; n, P, y are the
Euler angles of the rotation, and A is a normalization
constant. It can easily be shown that this actually is a
state of angular momentum J with projection A. on the
space-fixed s axis, and projection M on the body-fixed
s axis. We choose the normalization of the angular-
momentum states such that the identity has the
decomposition

].= Q da)skosdhss~ JMA(oscosn)s)(JMA~s~s&s~. (5.2)
JMh

If we choose the momentum states to be normalized by

(1sl P') =~"'(P—ls'), (5 3)
then

(5.4)A =
I ((2J+1)/8srs)mqmsmsf'ts

Because of rotational invariance, all partial-wave
matrix elements have a factor 8JJ ~gg. and no other
dependence on h. or A.' which we henceforth suppress.
Thus, after eliminating these factors, the partial-wave
projection of Eqs. (3.19) takes on the form

(JMa&s~~s
~

T
~
JM ~s'sss'cps')

= (JMG)sM~siu i
JM (ds» tds )+P dMs dMs dt's

X (JM~ssssgs
~
u'~ JM"~s"~s"~s")G(~s"~s"(os")

X (JM"o) "cos"(as"
i
T '+ T"

i
JM'~s'ebs'(os') . (5.5)

"R.Omnes, Phys. Rev. 134, 81358 (1964).
D. Branson, P. V. LandshoG, and J. C. Taylor, Phys. Rev.

132, 902 (1963).
"See, for example, A. Macfarlane, Rev. Mod. Phys. 34, 14

(1962).
~00ur conventions on rotation matrices are those of Ref. 18.

We use A=c=1.
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Fro. 3. (a) Rela-
tive orientation of
the momentum tri-
angles in the general
connected case. The
Euler angle g, for
our conventions, is
shown. The dashed
intersecting lines are
normal to their re-
spective triangles.
(b) Relative orienta-
tion of the momen-
tum triangles for the
disconnected case pi
=p1'. The angle I is
shown.

(b)

Thus, in the complex approach, the essential addi-
tional complication over the elastic case comes in the
fact that the contribution from I', as expressed in Kq.
(5.6), does not have the simple structure of Eq. (5.7).
In the multichannel approach, the connectedness struc-
ture is still the same as in the elastic case, namely that
of Eq. (5.7), but there are now present channel indices
and sums over then, and kinematic modifications.

In order to examine whether a natural generalization
of the inelasticity parameter exists, let us write down
the partial-wave projection of the three-body multi-
channel discontinuity equation in the limit as the
energy approaches the positive real axis from above:

We have, after inserting a complete set of momentum
states,

(J~ro»sMslI
I
J~ ~t res res )

N' J
Im(M»res» I T» I3IAdy»» )=P

v 1 M"~J
da)g"CkO2"d(O3"

=PEyfPs2823 d d cosg d S~~

XI'(~»s~s, et ~s Ms, $g), (5.6)

where I'(re, a&', frig) is the center-of-mass momentum
space matrix element of I'. It is clear that this matrix
element depends only on the shape of the initial and
final triangle, and their relative orientation Lsee Fig.
3(a)$. This relative orientation is specifjed by the
Euler angles giving the rotation of the primed body-
6xed system as seen from the unprimed body-fixed
system, In the case of the matrix elements of t', because
of the 8-function in the momentum of particle i inside
the integration, there are 6-functions in two of the angles,
and the rotation is restricted to be about the axis p'
I see Fig. 3(b)]. If, for example, we choose the body-
Gxed z axis along ptX ps, and. the x axis along pr, then
we have as usual"

(J~»&»sly~I J~»»as)

X(HID»sMg
I
Tt„IM»» res )8(G)t +» +res E)

X (3IIcet'(os'(os'
I
Tt„

I
3II"res"res"res")*. (5.9)

Ke have set M'=M and have suppressed J and A..
Note that the integration region is finite, because of
the triangle restriction. In the multichannel two-body
problem, the analogous equation has only one integra-
tion (and no sum over M"), which can be done using
the 5-function from the discontinuity of the propagator.
One can then bound the inelastic contribution to the
sum, independent of the functional form of the elastic
contribution. Specifically, we have (in an obvious nota-
tion, with p„ the phase-space factor)

» (E) l(klTt lk) I'

1
=Im(kl Tttlk) —ps(E) l(kl T»Ik)l &~ . (5.10)

4"(E)
m2m3 J

~(&1 &1 ) E AM&' +M'y
1 v J 0

Xe '""I'(&»s&sp&&4&s&s I) (5.7)

The inequality holds independent of any assumed func-
tional dependence of the elastic amplitude, and hence
we may write

where
AMp —SMp (0)7l/2)0) ) (5.8)

I is the angle of rotation about yr, and t'(~&res~s,
ce&'res'~s', u) is the two-body (oA'-shell) scattering ampli-
tude of particles 2 and 3 expressed in terms of the
three-body center-of-mass variables. The combination
of 6's and the exponential is just the X) function for a
rotation about the x axis. The angular-momentum
matrix element of P will have additional phases due to
the fact that the rotation will not be about the x axis,
but about y2.2i

"Speci6cally, for a rotation R of angle 8 about pm, we have

DMM, Jo(R) —e iM4gg+fsr'ggg' Q gMJoaM, je—iv8-
where qb12 is the angle between p1 and p~. See also Ref. 6.

Im(kl T»lk)= pt(E) I(kl T»lk&l'
+ (1—rP)/4p (E), (5.11)

where

0&tl(E) &1. (5.12)

The quantity p is the two-body partial-wave inelasticity
parameter.

In order to follow a similar procedure on Eq. (5.9),
we must first remove the disconnected parts of the
amplitude, because of their explicit 8-function. We are
then allowed to set ~,'.= co;, and to consider the equation
for the on-shell (cot+cos+ars=E) connected part of
ImT~~. The problem reduces to finding an upper bound
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for the quantity

&=—Im(Mor tor&ors
I
T»'IM~torsors)

dort dors dors fI( ort+ors +ors —E)

If we substitute Eq. (6.1) into Eq. (5.7), we Gnd that
the angular integration can be done, yieMing a sum of
terms, each of which is a product of a function of the
or, (and p) times a function of the or (and. r).ss In a
condensed notation, we have (where or stands for orr,

M2qM3

X{1m(Mortorsorsl Ttt'IMo t'ops'ors'))s. (5.13) (M" lt 'IM" )

Unfortunately, because of the residual integrations in
the second, term of Eq. (5.13), a functionally inde-
pendent bound does not exist. The essential reason is
that the measure over which the function is significantly
nonzero can decrease while the maximum of the func-
tion increases, as we change the functional form. "Thus,
a natural generalization of the inelasticity parameter
seems unlikely. This is not altogether surprising in
view of the inherently complicated nature" of three-
body unitarity.

Vt. RESONANCE APPROXIMATION

The most widely used approximation in elastic three-
body computations is the resonance approximation,
largely because it yields one-dimensional equations.
The purpose of this section is to show that the inelastic
problem, under either approach, also becomes one-
dimensional under this approximation. The physical
origin of the resonance approximation is the assumption
that each two-body scattering amplitude is dominated
by a single partial wave in which the amplitude has a
resonance. At the resonance pole, the residue is known
to be separable in the initial and final variables; this
form is chosen to hold everywhere. Specifically, if there
is a resonance in the tth partial wave, we assume that
the o6-shell multichannel two-body amplitude has the
form'4

., a.(v)a. (c')
(qlt„„(o) I

q')= (2l+1)Pr(j j'), (6.1)
D(a)

where q and q' are the initial and final relative momenta
in the two-body center-of-mass system, j is the unit
vector in the direction of q, 0 is the extended energy,

g„ is a form factor, and D(o) is a function which van-
ishes at the resonance position and insures unitarity and
analyticity. One such choice of D(o) in the nonrela-
tivistic case is

where p (E) is the phase-space factor for channel n.

"If Im(Morrorsorrr)T»'~hays) is, as a function of rr, y, and s, a
function, of bounded variation g over the surface of integration,
then 8 (~ ~+1/4A, where A is the area of the surface.

"For an expression of three-body unitary in its full glory in
s-matrix form, see Ref. 2.

'4For a discussion of the resonance approximation see, for
example, Refs. 2, 4, or 5,

= fI(or,—or, ') P f„'(),M,or)h„'(),M', or') (6..3)

The sum over ) arises from both the integration and
the sum in Eq. (5.7). With the more complicated
approximation of any number of contributions of the
type of Eq. (6.1) to the total amplitude, one still ob-
tains an expression of the form of Eq. (6.3). For the
sake of clarity, we shall choose arbitrary (but 6xed)
values of J, A., v, M', and co' and write

T '(M or) = (JM~(0 I T„„'IJM'Aor') (64)

and similarly for t'. The multichannel partial-wave
Faddeev equations then become

Substitution of Eq. (6.3) into Eq. (6.5) yields

Ts'(M, or) =P f„'()r,M,or)rlr'(), or,),
where

(6.6)

Q'()t or )= 5 (or —or )h '(X M' M')

+ g dM"b(or '—or ")h '(X M" or")
M"a

&&G-(~")2 Lf-r() ",M",~")4'()",~")

+ f„s(X",M",~")y'(X",»")j. (6.7)

This is easily recognized as a coupled set of one-
dimensional equations. This is, of course, to be expected,
since the multichannel kernel has exactly the same
connectedness structure as the kernel for the single-
channel elastic case.

Let us now turn our attention to the results of the
complex-potential approach. In order to use the reso-
nance approximation in the simple form of Eq. (6.1),
we shall use the results of Sec. IV, which express the
complex-potential approach in the case of X three-body
channels. By combining Eqs. (6.3) and (4.14), we may
write the partial-wave projection of n' in the form

(Mor ln'IM"or")=P ft'(X M or)a'(or;)t, M",or"). (6.8)

"For a general treatment see J. L. Basdevant, Phys. Rev.
138, 3892 (1965).

T '(M or) =t '(M or)+ g dor"(Mor
I
t„'IM"or")

M" cg

&(G (or")LT r(M",or")+T '(M",or"). (6.5)
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By taking the partial-wave projection of Eq. (4.9) for
I', we obtain

{MM ~N'~M"M")=p fj(X M,M)L5{M;—Co;")hj(X,M",M")

+I'((v, ,X,M",co")], (6.9)
where

I'((o, ,X, M",o&")= a'((o;,7,M",o&")

N
n'= P tv'GpOt/„'G, r,~'/

P, y~2
(7.1)

to come back to the elastic channel is to have something
annihilate into j and k, with i again as a spectator. An
example of such a situation is provided by 3-pion scat-
tering with +EX and ~ST as the inelastic channels.
Equation (4.14) for n' becomes

II/+/( I M!II II/)G (
III)

y f /'(yll/ Mll/ ll/)(g( III I/)h /'(gill Mill II)

where Ot/„' is the part of (St~/'+Sp„~) which does not
end in r' LEq. (4.5) ensures us that S'+S' does have
such a decomposition). Now, the equation for
analogous to Eq. (6.3) for t' is

Again, note that the double-primed variables appear
only as parameters in the inhomogeneous term of Eq.
(6.10). Applying the notation of Eq. (6.4) to Eqs. (5.5)
and (6.9), we have

=I/((o; —co ) Q f„'(X,M p&)h, '(),M', a&'), (7.2)

where the function It is the same in Eqs. (6.3) and (7.2).
Thus, from Eqs. (7.1) and (6.8) we may write

I'(M (v) =Q fg'(X M (o)y'(X (o ) (6.11)

where

/2/I'(X, (o;) =8 (co;—(o )hj (X,M',co')+I'(&o;,X,M', a&')

+Q d(o"{8((o,—a),")hg'(X M",co")+I'((o; 'A M" cv")}
Mt 1

+fg'(It.",M",co")y'(X",cog")]. (6.12)

Equations (6.12) are clearly a coupled set of one-
dimensional equations, and we expect this feature to
persist in the more general case involving non-three-
body channels, since an equation of the form of Eq.
(6.8) should hold whenever a resonance approximation
can be defined. Equations (6.12) differ from the purely
elastic equations in two ways: First, the two-body
amplitudes are modified due to the presence of inelastic
states; second, there is now an additional term in both
the inhomogeneous term and the kernel. However, in
actual calculations, the experimental resonances are
always used" to determine the two-body amplitudes,
so the inelasticity actually only appears in the addi-
tional term. Ke may remark again that probably one
of the most significant (and annoying, from a computa-
tional point of view) features of this term is its complete
connectedness, which manifests itself in that fact that
the term I' must not contain a 5 function in co;.

VII. FURTHER APPROXIMATIONS

In this section we shall examine two cases for which
I takes on a simple form. The Grst case is when the
interactions are such that if particles j and k annihilate
into something else with i as a spectator, the only way

"See, for example, Ref. 6.

Substitution of this form into Eq. (6.10) yields

I'(~; 7,M",~")=P J'(co,,7,~,",7 ")hj (X",M",~"), (7.4)

J'(///I/X/~g /Ij, )

0/( I I I
7 /I) P d III+/( I Mill II/)G (+III)

~t tt

y f g(y// Mill ~/Il)g (~ III ~ Il)+

Xg/(~ ) Mill lll)G ( lll) f /',

(7
/I/ Mill III)

y J;( «I 7/// !Iy») (7 5)

We may summarize by saying that for this case if we
write the resonance approximation as

(M/d)t'iM'a&')= P f'(7 M co)

&& ft/g), .l/(a&, —a),')}0*'(X',M', ~') (7.6)

(M(u~N'~M'co')=Q f'(X, M~)(4g5(~; —~ )

+J'(o&;,X,M,X')}tt'(X',M', o&') . (7.7)

The form in Eq. (7.7) provides the simplest non-
trivial fashion in which inelasticity can appear. At the
same time, it includes an entire class of possible in-
elastic diagrams (see Fig. 4). We emphasize that, for

Fro. 4. Inelastic diagrams
included by Eq. (7.7) for the
case of the channels ~mw and
7IEE.
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«D

FIG. 5. (a) Lowest order inelastic contributions to a for allowed
two-body reactions of the type ss. -+ ICE. (b) Lowest order in-
elastic contributions to N for allowed two-body reactions of the
type 7i-7I ~ neo.

certain models, such as the ones considered here, this
class may in fact be the complete set. If we consider
J' as a function of the over-all energy, we can see from
the definition of 8' that J' contains all the inelastic
branch cuts, as well as the elastic cut.

In the general case, Eq. (7.2) leads to

a'(te, ,X,M",ro")

=Q Q 0*'(~ X M
"X")h '(X"M" ce") (7 8)

This gives

I'(co;,X,M",ce")

=P P I"(&o;,X,(og",X")hr'(X",M")o)") (7.9)

u'= ttt'+P ttp'Gp(rpt'+ rpt") (1+Gttttr) . (7.10)
P=2

This 6rst-order correction in fact vanishes for the model
considered above, since the particle i must be a spectator
in the final interaction. Thus, the lowest nonvanishing
correction is the second-order term in the expansion of
u' [see Fig. 5(a)]. However, there are models for which
the 6rst-order correction does not vanish, for example
xmm scattering with the inelastic channels emcee, and
dna~ [see Fig. 5(b)]. By using the Eqs. (6.3) and (7.2)
for t and r in Eq. (7.10), one may obtain a representa-
tion for I' of the form of Eq. (7.9) as an explicit integral
over known functions.

One of the physically most interesting applications
of lowest-order equations such as Eq. (7.10) is the
computation of the shift due to inelasticity of the mass
of three-body resonances and bound states. Our equa-
tions are of the form [e.g. , see Eq. (6.12)]

~()=f()+&()~() (7»)
There is a pole' at s=M if there is a vector ~ such that

E(M)v= v. (7.12)

and a correspondingly more complicated version of
Eq. (7.7).

Another case in which l takes on a simple form is the
weak-coupling approximation, in which we approxi-
mate the contribution of the inelastic states by the
lowest nonvanishing terms. Ke may expand N' to
lowest order using Eqs. (4.9), (4.14), and (4.5) as

Because of time-reversal invariance, for our kernels this
implies that there is also a vector N such that

Then
uE(M) =u. (7.13)

lim[(s —M)g(s)]= —v(uf)i''(M)v. (7.14)

VIII. DISCUSSION

In the preceding sections we have shown how one
may incorporate the inRuence of inelastic scattering on
elastic three-body amplitudes. Although we have re-
stricted ourselves to two-body interactions in the elastic
channel, the extension to three-body interactions can
be accomplished without difliculty. In the same spirit
as in the two-body problem, we have considered two
distinctly different approaches, namely a multichannel
approach and a formulation derived from a complex
potential approach. Both these approaches were shown
to lead to Faddeev-type equations, and were shown to
be equivalent in their common domain of validity. The
formulation based on the complex potential approach
led to equations identical with the elastic equations,
with the exception that the two-body amplitude was
now replaced by the coupled two-body amplitude plus
a completely connected term due entirely to inelastic
effects, and which thus contained all the complicated
cut structure associated with these processes. Both
formulations reduced to one-dimensional equations, in
a fashion completely analogous to the elastic case,
under the resonance approximation. Further simplifica-
tion of the completely connected term occurred in some
special cases.

The relative merits and demerits of the two ap-
proaches in the context of practical calculation are
essentially the same as for the corresponding approaches
in the two-body problem. The multichannel approach
may be more useful in a physical situation which can
be described realistically by a few three-body channels.
For a larger number of channels or for a more general
situation the single-channel modified Faddeev equations
of the complex approach may be more appropriate.
Since the number of channels does increase quite rapidly
with the number of production processes, the latter
approach is probably necessary (due to computer
limitations) in all except the simplest situations.

If we add a small term D(s) to the kernel, then the new
pole position Mz is given to lowest order as

Mr M ——uh(M—)v/uZ'(M) v. (7.15)

In our case, h(s) is just the Green's function times the
inelastic contribution to Eq. (7.10); the other quantities
in Eq. (7.15) can be computed from the elastic problem.
Thus, the results of an elastic calculation allow one to
estimate the effect of a small inelastic contribution
relatively easily in the three-body problem, as in the
two-body problem.
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One interesting application of the inelastic equations,
particularly in the multichannel form, is in the self-
consistent dynamical calculations (bootstrap) of three-
body resonances. For example, the co meson should
appear as a resonance in the coupled three-body ampli-
tudes for the states ~~+ and mwco, where we take as
two-body input the coupled amplitudes for zz and ++.
Since the or meson is involved. both as an input and as
an output, a self-consistent calculation is therefore
possible. Similarly, one can look for the N* as a reso-
nance in the coupled AN and AN* channels and do a
bootstrap calculation. This calculation should be of
interest, since the three-body states are known'7 to
contribute signi6cantly to the nucleon states.

In the analysis of the three-body scattering at high
energies, the Inost natural approach is through the
function I of Sec. VI and VII. It plays a role similar to
that played by the inelasticity parameter in the two-
body problem, but unfortunately the requirements on
it are not nearly so simple. What is actually needed are
realistic models for this function, embodying both the
correct connectedness and analyticity structures, and
depending on only a few parameters. Once this is
achieved, one should have a powerful and fruitful
approach for the analysis strong-interaction three-body
problems.

Of course, in order to treat a realistic physical situa-
tion, one must take into account the necessary complica-
tions arising from relativistic considerations, spin, and
statistics. However, these are independent considera-
tions, and the inelastic equations are no more dificult
to generalize than the purely elastic equations. Thus,
we believe that the essential features of inelastic scatter-
ing, as outlined in the preceding sections, would be
unaltered even in a fully realistic treatment.

APPENDIX

In this Appendix, we should like to illustrate in

slightly greater detail some of the points mentioned. at
the beginning of Sec. II. The requirement that no
channel contain two identical labels is essential for a
meaningful formulation of the problem, even in the
single-channel case (symmetrization on labels of physi-
cally identical particles is a separate question). As an
illustration, we shaH consider the three-pion problem
with EX as the two-body inelastic state. We label the
three pions as 1, 2, and 3. We have 1+2—+ 4+5, where
4 is a E and 5 is a X. We are not allowed to write
2+3 —+4+5, since then we would have three-body
channels containing identical labels, namely 112 and
233. Thus, we write 2+3 ~ 6+7 and similarly 1+3—+

8+9.This gives us the channels 123, 345, 167, and 289.
We remark that the physical amplitude for mew —+

xEK has contributions from all of the last three chan-

nels, which collapse after syrrnnetrization on the pions.

'7 See, for example, P. Nath and K. V. Vasavada, Phys. Rev.
152, 1259 (1966). See also Ref. 2.

In order to clarify our notation and procedures, let
us consider a somewhat more complicated problem. In
addition to the potentials for all elastic scatterings, de-
noted by E' subscripted with the appropriate particle
labels, we allow the following production potentials:

1+3+-+3+5
2+3&-+3+4

1+2~ 1+4
1+4~4+5.

(A1a)

(A1c)

(A1d)

This leads to the channels containing particles 123,
134, 235, and 345, which we label as channels 1, 2, 3,
and 4, respectively. Our matrices U' now have the forms

+23

U1- b

0
.0

U'= c
0

. 0

0

U5— 0
0.0

b 0 0
E34 0 0
0 0 0
0 0 0.
c 0 0

Eg4 0 d
0 Egg 0
d 0 E45.

0 0 0"
0 0 0
0 E23 b

0 b 834.

U2
0
8.0

0

U4
0
0

. 0

0 a
0 0

&35
0 0

0 0
Eg3 0
0 0
u 0

0
0
0 t

0.
0
8
0

+35~

If we now relabel the channels according to our posi-
tional relabeling rule, they become, respectively, 123,
143, 523, and 543. The potentials V' are now obtained
from Eq. (2.8) as

V'= U'+ U',
V2 —U2+ P4

V3 U3

The amplitudes defined by Eq. (2.9) and these V' have
matrix elements which are clearly the multichannel
two-body scattering amplitudes of all of our allowed
processes.

An apparent difliculty may arise in this straight-
forward position labeling procedure when the reactions
are such that a particle is forced to have diferent posi-
tions or two particles compete for the same position in
some channel. For example, if we take the reactions

1+2+-+ 1+4,
1+2 &-+ 2+4,
1+4~ 2+4,

the channel are 123, 143, and 423. It is not possible to
relabel the channels so that every particle always oc-
cupies the same position, and thus it is not clear that
one can even define the V'. In fact, it is not possible
to define them simply by using Kq. (2.8). However,
they do exist, and the reason is that particle 4 actually
plays two distinct roles in the reactions, and thus U4
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may be divided into two non-interacting parts. Speci-
6cally, we shall replace particle 4 by particles 5 and 6
and rewrite the reactions as

1+1~1+5,
1+2~ 2+6,
1+5+-+2+6.

The channels are now 123, 153, and 623; and V' are
given by Eq. (2.8). The physical content is unchanged.

If one tries to add reactions which mix the roles played
by particle 4, and thus prevent the separation into 5
and 6, there necessarily result three-body channels con-
taining identical labels. For example, if we allow 1+3 —+

4+3 we have the additional channel 443. In the general
case, it seems that if the reactions are such as to give
only channels not containing identical labels, then any
confusion is only apparent and can be resolved in the
manner illustrated above.

PHYSICAL REVIEW VOLUME 152, NUM HER 4 23 DECEMBER 1966

Nonlinear Density Effect in the Transmission of li:s Mesons
through Matter~

E. F. BEALL

g)epartrnent of physics and Astrononty, Unimrsity of Maryland, College Park, Maryland

(Received 1 August 1966)

We note that the attenuation of a monochromatic beam of E2 mesons in an absorber is not, simply describ
able in terms of a single "mean free path, "even when the extent of the absorber is large in comparison with
the Z& mean decay length. The normal attenuation factor exp ( NoL) is to b—e corrected by a factor whose
logarithm is nonlinear in the density N. The magnitude of this extra eRect is discussed with the aid of a
simple-minded model. The relation of the eRect to the E1—E2 mass difference is brieQy noted.

INTRODUCTION

'HE purpose of this paper is to point out that the
transmission of a pure, monochromatic beam of

E2 mesons through a sample of material which is much
longer than the E& decay length cannot be completely
described in terms of a single "mean free path, "but that
the transmitted intensity contains an extra factor whose
logarithm is nonlinear in the density of the material.
The eGect in question is sot due to the interference of
two exponential terms. The eGect is latent in the usual
formalism for the propagation of neutral kaons through
matter, but has not (to our knowledge) been pointed out
previously because it is obscured by certain standard
approximations.

We also discuss very brieQy the possibility of using
this density eGect to determine the sign of the E&—E&
mass difference.

ASSUMPTIONS

The appropriate general equations for the propaga-
tion of neutral kaons through an absorber have been
written down and solved exactly by Good. ' The equa-
tions, and their solutions for the case of a pure E~ inci-

~ Supported by the U. S. Atomic Energy Commission (AEC
ORO-2504-94) .' M. L. Good, Phys. Rev. 106, 59l. (1957).See also K. M. Case,
ibid 105, 1449 (1956). .

dent beam, respectively, may be written

d )a&(x)~ t nr(x)q
I

= i/1/K+2srkÃfss(0) jl
d*l, ,(*)& 4s(X)l

tr ns(x) ~+L2wxzf„(0) ll —nt(x)f

1 f'Liter+1/2rrgng(x) )
I; (1)

Pyc k[ioss+1/2rs jns(sc))

(nt(L) ns(0) — L
exp i(27''fss(0)+1)—

kns(L) 1—Es X

f iQ)s 1
I
exp —

I + IL( 1 I (Pic 2As)

+-'. ( —i&) I (1—")'"—1l-
A1

~~

(iosr 1 It

I
exp —

I +
Epvc 2A,i

L-—l (t —&)E(1—")""—13— . (2)
Ay

The quantities in (1) and (2) are as follows: ar, s(x) is the
probability amplitude for E&,2 mesons at a distance x
into the absorber. co1,2 indicate the de Broglie frequencies


