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Partially Conserved Axial-Vector Current Restrictions on Pion
Photoproduction and Electroproduction Amplitudes
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We discuss numerically the restrictions imposed by the partially conserved axial-vector current (PCAC)
on the pion photoproduction amplitude V&&+&(0) and on the pion electroproduction amplitude Ve& &(0).
We find that the magnetic-dipole dominance and the narrow-resonance approximations are unreliable.
The nonresonant s waves make an important contribution to VI(+) (0), and we find that the PCAC pre-
diction for this amplitude is reasonably well satisfied. The electric and longitudinal multipoles appear to
make a much bigger contribution to V&& &(0) than does the magnetic dipole M &+, which is strongly sup-
pressed by the kinematics.

g (0) g (k') —Ftv(k') (k') '
~&v -g~(0)

= Vs' &(v=vn ——(M r)s=0 ks) (1c)

Here F tv(k') is the isovector nucleon Dirac form factor;
Fsv(k') and Fss(k') are, respectively, the isovector and
isoscalar nucleon Pauli form factors; g~(k') is the
nucleon axial-vector form factor fg~(0)=1.18); and

g„(0) is 'the pion-oif-mass-shell pion-nucleon coupling
constant Lg„=—g„(—M '), g„s/47r =14.6). The pion
photoproduction amplitudes V~~+ ) and the pion
electroproduction amplitude V6& & will be specified
more precisely below. When k'=0, Eqs. (1a) and (1b)
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I. INTRODUCTION AND CONCLUSIONS

S has been much emphasized recently, ' the partially
conserved axial-vector current (PCAC) hypoth-

esis, supplemented by current commutation relations,
relates any weak or electromagnetic process in which a
zero four-momentum pion is emitted to the same process
in the absence of the pion. In particular, when applied
to pion electroproduction, PCAC implies the relations'

(g.(0)/~~)F s'(k')
= Vt&+&(v= v» ——(M.f)'=0, k'), (1a)

(g.(0)/~~)F s'(k')
= Vt&'&(v= vent (M r)'=0, ——k') (ib)

become the photoproduction relations of Fubini,
Furlan, and Rossetti', and Eq. (1c) becomes a relation
between the axial-vector and charge radii of the nucleon.

The main purpose of this paper is to give a careful
numerical analysis of Eqs. (1a) and (1c) at k'=0. In
the dispersion integrals for V~'+) and V6(—) we keep
only the multipoles which resonate around the Ne (1238)
and the N*~(1520), and the nonresonant s waves. As a
preliminary, in Sec. II we state the needed kinematics
and briefly derive Eqs. (1). In Sec. III we give the
numerical discussion, using the photoproduction analy-
ses of Schmidt and Hohler4 and of Walker' in the region
of the first two pion-nucleon resonances.

We reach the following conclusions:
1. The magnetic-dipole (M t~) contribution to

Vt&+& (0) from the neighborhood of the N*(1238) equals
only about 0.75 times the left-hand side of Eq. (1a).
Estimates based on the narrow-resonance approximation
indicate a larger M~+ contribution, but we find that the
narrow-resonance approximation for the N*(1238)
overestimates integrals over the resonance by about
60%. When the resonant F&~, Ms, and Fs multipoles
are included, the value of Vt&+& (0) is reduced to about
0.6 times the left-hand side of Eq. (1a). However, the
nonresonant s waves make a large contribution to the
integral, ' making the total integral for Vt&+&(0) equal
to about 0.85 of the value predicted by PCAC.

2. The dispersion integral for Ve& &(0) is stot mag-
netic-dipole-dominated, because the M~+. contribution
is kinematically suppressed. For instance, the multipole
Zr~ (electric quadrupole) in the Ne (1238) region makes
a contribution three times as big as the multipole M~+.
to Ve& &(0), even though the E&+ multipole is much

' S. Fubini, G. Furlan, and C. Rossetti, Nuovo Cimento 40,
1171 (1965).

e W. Schmidt and G. Hohler, Ann. Phys. (N. Y.) 28, 34 (1964);
W. Schmidt, Z. Physik 182, 76 (1964).' R. L. Walker (private communication).

6 The nonresonant s wave also makes an important contribution
to the sum rule relating the isovector nucleon magnetic moment
and charge radius to photoproduction cross sections —see F. J.
Gilman and H. I. Schnitzer, Phys. Rev. 150, 1362 (1966).
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smaller than the Mi+. The value of Vs& }(0) depends
sensitively on the hard-to-measure longitudinal multi-
poles. Under the dubious assumption that the known
proportionality of longitudinal and electric multipoles
for zero photon momentum holds unchanged for large
photon momenta as well, Eq. (1c) predicts an axial-
vector form factor which falls off somewhat more
slowly with k' than does Ftv(ks).

The results of this paper should not be regarded as
anal, since the input multipole data may change as
better analyses of photoproduction become available.
What is definitely indicated, however, is that a compar-
ison of Eqs. (1) with experiment must avoid unreliable
narrow-resonance and M~+-dominance approximations.

II. KINEMATICS AND DERIVATION OF
PCAC RELATIONS

A. Kinematics

FIG. 1.Born approx-
imation diagrams.

4t'

/
I

Pp

isospin structure of the matrix element is given by

(~N
~

J~I2
~
N) —&2&+}V~&+}+g&—}V~&

—}

.„(N~ I "~N)= &" V &",

with'

~&+}=Xfr*y,*,'(r.r,~-r,r.)X,',
a&o} X r*&P ersr X r (10)

6
&+,&&} Q V &+,&&}(p p (M f)2 k2)

Let us consider the reaction In Eq. (10), &P„Xfr, and X,i are, respectively, the
isospinors of the anal pion, the Anal nucleon, and the

y(k)+N(pt) ~ &r(q)+N(p2), (2) initial nucleon. The space-spin structure of the matrix
element is given by

where the initial gamma may be real or virtual. The
external particle masses are, respectively,

3'= 9"'& ) (6)

and by ~k[ = (ke'+k')'" and
~
q[= (q&&'

—(M f)')'" the
photon and pion momenta. The photon and pion
energies are given by

go=
Ws Mrfs+ (M f)'—

(7)

k2 p2 M 2 q2 (M f)2 p2 M 2 (3)

We de6ne invariant-energy and momentum-transfer
variables s and v& by

p= —(pi+ps). k/(2M'), pn ——q k/(2MN); (4)

these are related to t/t/', the invariant mass of the 6nal
pion-nucleon system, by

y yB= (g 2 M}vs)/(2MN).

All noninvariant quantities used in this paper refer
to the reaction center-of-mass frame, in which k+pt
=q+y2=0. %'e denote by y the cosine of the angle
between the photon and pion directions:

x (p.)o(v;) (p). (»)

Defining (a,b) =a eb k akb e, w—e may take theO(V, )
as

O(Vi) = siys(y, y),
O(V2) = its fpi+ p2,

o(v)=
O(V4) = fsfy, p,+p2) iMN+—5( Y;Y) r'
O(vs) = its(k, q),
o(v,) =&,~k,~},

g2~= i;
Q3 1

(12)
94

q5~= —1;
g6 i ~

The numbers p, ~ specify the crossing properties of the
invariant amplitudes:

V;&+ '&(p pn, (M.f)',k')
= (W,+)&ifvvf&+ 2}(—v, pn, (M.f)', k'). (13)

To make the normalization precise, we state the
contribution of the Born approximation diagrams of
Fig. 1 to the invariant amplitudes. )In the following
equations we take the external pion to be physical

The matrix element for the electroproduction reaction
of Eq. (2) takes the form

with e„ the electric charge, e~ the virtual photon
polarization vector (which satisfies k e=0), and with
Jzl' and Jz~, respectively, the third component of the
isospin current and the hypercharge current. The

7 Our notation follows that of a review article on pion electro-
and weak production in preparation by one of the authors (S.L.A.).
Our amplitudes are related to those of CGLN PG. F. Chew,
F. E. Low, M. L. Goldberger, and Y. Nambu, Phys. Rev. 106,
1345 (1957)g as follows:
covariant amplitudes —LVi, Vs, V4, V4$&+'& 4his pspsr

=2/A, B,CrL})&+ &coLN,
Center-Of-maSS amplitudeS —LFf g&+'& fhjs pspsr

= (8rrW/kf jv)P j&+ &coLNr
multipOleS —

t Mi+, ete.g&+'& 42»»p r
= (8rrW/3f N) PM&+, etc.g &+'&cQLN.
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The amplitudes 5;~ have simple multipole expansions':

V (+)&— = Q (/M +E )P '(y)
l=0

+ Z P(t+1)M(-+R—]Pi—i'(y),
l=2

S,v= P $(t+1)M,++iM, ]P,'(y),
l=&(14)

r, = g ( M„+—F.„)P„,"(y)
l=i (17)

+ 2 (Mi +@ )Pi-i"(y)-, -
l=3V5(+)&—P V (—)&—

(M r= M ); F (k') is the pion charge form factor.)
g„Fi"(k') / 1 1

2M' (v~ —v vii+ vl

g„Fiv(k') f 1 1
P's(+) &=

4Miv'vn kvn —v vs+ v)

g,Fs (k')t' 1 1
P's(+) &-

2Mst &vn —v vii+ v)

y4(k) &=
2M'( kvii —v vii+ VI

2g„(F—iv(k') 2F (k')

k' (2M' vs 4Msrva k'~—
V6(+)&—p

Here Xf and X, are the nucleon Pauli spinors, and the
Z's are chosen as follows:

Ziv ——z(e. e—e.kk e),
&sv=e ge. (kXe),
Zs" ie k(——y s—y kk e),

A A

Z4v ie (J—(—(I e .—j k. k e),
Zsv= —ik'e. kk e/kp, (16)

A

Zs = —ik'e yk e/kp.

While the consequences of PCAC are most simply
expressed in terms of the invariant amplitudes V;, pion
photoproduction and electroproduction experiments are
most easily analyzed in terms of the center-of-mass
frame amplitudes 8;~, dined by7

6

eiP'i(+P&=g 8: v(+ &X*X X.

&8= 2 (Mi+ M(= —F-i+ E(-)Pi—"(y)
l=2

ko& '= Z (1+1)J-+Pi+ '(y) &« —P '(y»-—
l=0 l=2

kp&p'= Z IV~4-—(i+ ) (+] i'(y)'
l=l

The index l~ of the multipole specifies the orbital
angular momentum (i) and the total angular momentum

(J=l+s) of the final pion-nucleon system. It is

straightforward, but tedious, to calculate the linear
transformations connecting the amplitudes V; and 8;~.'

B. Derivation

The PCAC relations of Eq. (1) come from the identity

i d'xe '&'Q,*(—,+M ')(X(ps)
~
Ttcl,J,"'(x), (Jz '(0)+Jz (0))])X(pi)) s)

=-z d4x.-"y*(-o.+M. )~(xp)y (p) ~ LJ " (.), J"'(0)+Ji'(0)]l&(pi))ei

—q, d'x e '4 Qa( —~ +'M ')(X(Ps) ) TfJ "'(x) (Jars(0)+ Jar(0))])E(pi))ei, (18)

which is obtained by integration by parts. Using the partially conserved axial-vector current hypothesis,

MNM 2gA

() J "'(x)= (v '(x)
g.(o)

we see that the left-hand side of Eq. (18) is just

N~7r gA 6

Q zz(ps) o(v;)u(pi) P(z(+& v;(+1+(z(-&v;(-&+(z('& v, ('l]+Born terms,
g.(o)

where V; denotes the non-Born part of the amplitude V;.

(20)

4 See, for example, R. Blanlrenbecier, S. Gartenhaus, R. Huff, and Y. Nambu, Nuovo Cimento 17, 775 (1960); P. Dennery,
Phys. Rev. 124, 2000 (1961).' M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960); Y. Nambu, Phys. Rev. Letters 4, 380 (1960).
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Let us evaluate the two terms on the right-hand side of Eq. (18) in the limit as q
—& 0. The equal-time com-

mutator term approaches

—zM 'iP,*(X(P2)) dsxXsA'(x) J),rs(0)+JP(0)
@0=0

~ $(P1))el. (21)

Because of the integration over all space, possible gradient terms in the commutator do not contribute, and we
6nd for this term

(M sgA(ks)/ks)a& —
&u(ps)O(Vs)u(pl). (22)

(To simplify the algebra we have dropped terms proportional to k e=p.) The term proportional to q„ in the
limit as q, ~ 0, can be evaluated by keeping only the one-nucleon-pole terms. "This gives

Tc 7 p2+ZMN—M 'l&t,*u(p2) Z'gAy ques
— 2217),(F1"(k')Ts+Fl (k'))—o)skv(F2 (k')Ts+Fs (k'))j

2 —2ps' q

7 Pi+2M&v Tc
+szL'yx(FZ (k )Ts+Fl (k )) &lvks(F2 (k )Ts+F2 (k ))$ zgAQ'q'ys u(pl)el

2pl' q 2

Flv (k')
Mc gA a u(P2)O(Vs)u(Pl)+(a F2 (k )+a F2 (k ))u(P2)O(V1)u(Pl)

k'

F (k') ( 1 1 ) ( 1 1
ai+&~ + ~+ai &~

—
~

u(P2)O(V1)u(P1)+the other Born terms . (23)
2 (VB V VB+P) (PB V VB+P)

g.(0) aA(k')

M&v gA(p)

—Flv(k') (k')—'=Vs& '(v= PB ——(M.r)2=0, k').

Comparing Eq. (20) with Eqs. (22) and (23), we get the relations

(g, (0)/M &v)F2P (k2) =Vl&+& (v = vB ——(M.r)2 =0, k'),

(g, (0)/M&v)F2B(k2) = Vl&'&(P =PB= (M.r)2=0, k'),
(24)

If we take v= vB=O to mean "first set vB ——0, then set v=p" the bars in Eq. (24) may be dropped, since the Born
approximation to Vl vanishes at vB ——0 (for all v&0). This completes the deviation of Eqs. (1).

III. NUMERICAL ANALYSIS

We now proceed to a numerical analysis of Eqs. (1a) and (ic) at k =0. Introducing the abbreviations Ul&+& (())= Vl&+&(v= vB= (M r)'=k'=0) Vs& &(0)—= Vs& &(v=vB——(M r)'=k'=0), we write the equations in the form

a g g gA'(o) , g.
F v(P) = V (+&(0) —Flv'(0) = Vst &(0).

M&v g„(0) Mzv gA(0) g„(0)

In order to calculate V~(+) and V6(—' from experimental photoproduction data, we assume that V~(+) and V6(—)

both satisfy unsubtracted fixed-momentum-transfer dispersion relations in the energy variable v"'.

Vl&+&(v, vB, (M.r)2, k2) =
—Z„(—(M.r) )Flv(k)f 1

+
EVB P PB+Pl

vg +M~ +M z&/(2 MN)

( 1 1
dv' ImV1&+ (v', vB, (M )' ks)~ + ~, (26)

& v' —p v'+ pi

"See S. L. Adler, Ref. 1, where the rules for calculating the "pole insertions" are discussed. In Sec. II 3 we have ignored questions
of gauge invariance. It is easily shown LS. Adler and Y. Dothan, Phys. Rev. 151, 1267 (1966), and M. Nauenberg, Phys. Letters 22, 201
(1966)g that when the final pion is off mass shell, the photoproduction or electroproduction amplitude is not divergenceless, but has a di-
vergence proportional to (q'+M 2)g„L(q—k)2)/L(9 —k}2+3II 2 i. In order to maintain the correct divergence, additional terms must be
added to the Born approximation calculated from the diagrams of Fig. 1. However, these additional terms vanish when q=k g=o,
and thus do not a6ect the results of this paper. See also S. Fubini, Y. Nambu, and A. Wataghin, Phys. Rev. 111,329 (1958).

"Validity of the unsubtracted dispersion relation for Ul&+&(0) is indicated by the Regge-pole analysis of photoproduction given by
G. Zweig, Nuovo Cimento 32, 689 (1964}.
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1 1 1
Vs(—)(v, vt), (M.f)' k') =- dv' ImVs( )(v', vt), (M f)' t's') +I.~+M.+m.2/(,2j/I &) v —v v +vt(

I

which imply that

g, V, (+) (()) dp g„
Im

gr(0) Us (0) 7l' M +M 2/2M' v gs (0)

Vt(+ (v', 0,0,0)

Vs(-) (v', 0,0,0)
(27)

In order to calculate the integrand of Eq. (27), we make a multipole expansion, keeping only those multipoles which
can at present be determined from experiment. These are: (i) the nonresonant s-wave multipoles E()+ and Lo(,
The E()+ makes a large contribution to charged pion photoproduction; (ii) the multipoles 3II)~('"), E)~(s s), and
L "/'), which are important around the I=-sl)/'e(1238); (iii) the multipoles Ms ('" Es ('/'& and Ls ('/'& which
are important around the I= stÃ*e(1520).

Doing the necessary arithmetic, we And

g7 2' g„
Ut(+)(v () () ())= pE~(r/s)+sE~(s/s)+sjlrlt (s/s)+2Et (s/s) —~~(t/s)+tE~(&/s)jl~ j s (28s)

g, (0) W' 3II~s g„(0)—

gr g„E (t/s) —E (s/s) 2W(L (t/s) I (s/s)) jul (s/s)

Us( &(v,0,0,0) =
g, (0) W' —Mg 3 g, (0) W—Ms/ W2 ~))rs W+~N

F'—MN'

3(3W+~~)Et+(s/s) 8WI t~(s/s) 3~~(t/s) (~~—5W)E~(t/s) 8WL~(t/s)-

W2 j)II 2 W2 /)II
2 W+~ Ws ~ 2

. (28b)

The multipoles appearing in Eq. (28) are not actually the physical multipoles, since they refer to zero final
pion mass (M =0).We relate them to the physical rnultipoles by the prescription

-M- &» 3I
g.(o)

E
L ~ l+ Mg~~M7r

&
I q l~./-~. &

(29)

L)p/E)+ ~ 1, l&0,
L$ /E( —(1—1)/I, I& 2. (3o)

"For a more detailed discussion see S. L. Adler, Phys. Rev.
140, B736 (1965)."J.D. Bjorken and J. D. Walecka, Ann. Phys. (N. Y.) 38, 35
(1966);P, Dothan and R. P. Feynman (private commnnciation).

where the subscripts on
I ql indicate that Iql is to be

computed from t/t/' with M f=0 or M, respectively.
The prescription of Eq. (29) gives the unphysical
multipoles the correct threshold behavior and, approx-
imately, the correct nearby left-hand singularities. "
Using Eq. (29) eliminates the obnoxious factor g,/g, (0)
in Eq. (28) and leaves us with simple integrals over the
physically measurable multipoles.

From pion-photoproduction experiments, the electric
and magnetic multipoles can be measured. However,
the longitudinal multipoles can only be measured in
pion electroproduction experiments; so far little data
is available. Consequently, we will have to make a
guess as to the magnitude of the longitudinal multipoles.
When the photon momentum

I
k

I
approaches zero, the

longitudinal and electric multipoles become propor-
tional with known coeKcients, "

For want of a better estimate, we will assume that these
proportionalities hold for nonzero lkl as well. In other
words, we take

Lo+=Eo+ L~~=E~+. L~= —~xE

in the numerical work described below.

(31)

' G. F. Cheer, F. E. Low, M. L. Goldberger, and Y. Nambu,
Phys. Rev. 106, 134S (1957).

A. Narrow-Resonance Apyroximation

We begin by discussing the narrow-resonance approx-
imation for the magnetic dipole (Mt+(s/ )) contribution.
It is convenient here to use the CGLN modeP4 for
3fy+( ) which, as Schmidt and Hohler and Schrnidt4
have shown, is in good agreement with photoproduction
experiments. According to this model

47og W
I ql lkl exp(s&s. s)»»s. s

(3I2)— (32)
sf'I ql'/~ '

with f'=0.08, bs, s the pion-nucleon scattering phase
shift in the (3,3) partial wave, and

I ql evaluated with
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TABLE I. Parameters for multipoles. TAME II, Multipole contributions.

bb'g
( q~ g &g A

(units of (units of (units of Multipole (units of
M) M) M) OR iV ')Resonance

Ea (1238) +0.112—0.0080
+0.0155
+0.0628

(3/2)

jV1 (3/2)1+
(1/2)

(1/2)

8.85 1.65 0.860

tV*a (1520) 10.80 0.8603.20

g, 8 470
Vi (0) (magnetic dipole= I ~

JI/1~ 9 23'~

sin 83,3

(33)

M,r=M . Substituting Eq. (32) into Eq. (27), we find
for the magnetic-dipole contribution to Vt&+l (0)

Multipole

(1/2)

jVO (3/2)

I,0+(I/2)

I0 (3/2)

~1 (3/2)

PI (3/2)

(3/2)

jV, (1/2)

(1/2)

Total
PCAC prediction

Contribution to
Pg /g. (0))Vt&"&(0)

(units of M 2)

+0.055
+0.081

+0.413—0.088

—0.031
+0.042

+0.472
+0.550

ContrIbutIon to
h./g. (0)EP's' '(0)

(units of M s)

+0.0329—0.0212—0.0365
+0.0238
+0.0133
+0.0471—0.0333
+0.0018—0.0305
+0.0281
+0.0255

g g~'(o)
— ——Ptv'(0) M '

~x- g~(0)

gg'(0) 0.045
=23' ' —+

gg(0) M '

According to the narrow-resonance approximation, "
I= j., giving

Vi (0)
~
magnetic dipole (narrow resonance) 0 62/ice ~ (34)

to be compared with the value predicted by PCAC
Lthe left-hand side of Eq. (25)j,

(g„/cVsr)I's~(0) =0.55/3f.s. (35)

Actually, the narrow-resonance approximation is very
misleading. Direct numerical evaluation of I, using the
experimental (3,3) phase shift, " gives I=0.63, so that
actually

Vi (0)
~
magnetic dipole 0 39/~e ~ (36)

B. Resonant Contributions

We turn next to the evaluation of the resonant
contributions to Vt'+&(0) and Vs& '(0), using Walker's
photoproduction analysis. Walker' has parametrized
each resonant multipole OR around the E*(1238) and

'5 G. F. Chew, F. E. Low, M. L. Goldberger, and Y. Nambu,
Phys. Rev. 106, 1337 (1957).

'sWe obtained the same numerical result using the (3,3)
phase-shift parametrizations of Schmidt (Ref. 4) and of L. D.
Roper, University of California Report No. UCRL —7846 (un-
published). For an independent evaluation of this integral, see
D. Lyth, Phys. Letters 21, 338 (1966).

tr See W. I. Weisberger, Phys. Rev. Letters 14, 1047 (1965);
S. L. Adler, sbsd 14, 1051 (1965.).

In other words, the narrow-resonance approximation
overestimates the integral I by 60%. LThe narrow-
resonance approximation is also misleading when used
to evaluate the gz sum rule. If only the (3,3) contribu-
tion to this sum rule is kept, one gets go=1.4 when the
integral is evaluated using the experimental m.E cross
section, "and g~ =3 when one uses the narrow-resonance
approximation. $ To sum up, the narrow-resonance
approximation for the Ã*(1238) is useful for making
order-of-magnitude estimates, but should be avoided in
quantitative tests of sum rules.

the 1Vaa(1520) in the form"

8~W ~ (I il I n/I a I)sr/2

Micr Wn W —iI'/2—

) tl( y'1+0.7735( q( n'/3I.
I' = I'it

~

~I el.»+0 7735
I ql /~.

(37)

The parameters A, I'it, Wa, and ~if~it are listed in
Table I. Using Eqs. (37) and (31) we have calculated
the integrals for Vi'+&(0) and Vsi i(0), obtaining the
results listed in Table II.

We note, first of all, that according to Table II the
Mt+

"~ i contribution to Vt'+i(0) is

Vi (0)
~
magnetic dipole 0 41/~e

in good agreement with the value of 0.39/M ' obtained
above from the CGLN —Schmidt-Hohler work. The
multipole E~+(3'& makes a significant contribution to
the sum rule because it appears in Eq. (28a) with a
coefficient three times as large as the coeKcient of
M~+(3/2&. Walker's ImE~+('/2' has a constant negative
sign across the Na (1238).If the suggestion of the CGLN
model" Lthat Immit+"" changes sign from negative to
positive around the (3,3) resonance peag should prove
to be correct, then the value for the E~+('/2' contribution
given in Table II may be an overestimate.

Looking at the contributions to Vsi &(0), it may at
erst seem surprising that the small E&+('") multipole
makes a much bigger contribution than the large
M,+is~'& multipole. But a glance at Eq. (28b) shows
the reason why —the ratio of the coefficients of M&+(3/')

"Equation (37) does not give the multipoles mls, Es the
correct threshold behavior, but the E**(1520)is far enough from
threshold so that this is not too important. To make the o8-
mass-shell correction we have multiplied each OR by P ~ q ~sr f p/
~q(sr~ sr g, so that the off-mass-shell multipoles all have the
correct threshold behavior.
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E(3/'8B
1+ie)
(5/'28
)+le)

C. Nonresonant S Wave

It is well known that there is an important s-wave
contribution to charged-pion photoproduction. Since
the s-wave pion-nucleon phase shifts are of order
15'—20' in the low-energy region, the imaginary parts
of the s-wave amplitudes will make an important
contribution to the integrals for Ur(+)(0) and V3( )(0).
We estimate this contribution as follows. The Born
approximations for the s-wave multipoles Eo+(+ " are"

1 t

8M~ 9M~ lOM~

CE NTER- OF-MASS BE R GY W

Fxo. 2. Ratio of electric to longitudinal multipoles, for k~=0.

and Zq+(3/2) in the integral for V3( &(0) is

E (+)B-
8'—M~ 4.70 8'—3f~ 0.88

3E~ 3f
(43)

1 — 1—V' p1+V~-
inl ), V= i@i/q3.

M 2V E1—Vj

1 —3 (3W+MB)

W2 —M„'
(W—M))/)

(39)
3 (3W+M3/)

which is numerically = —0.02 at the peak of the
N*(1238). In other words, the M)+('") contribution is
very strongly kinematically suppressed. The longi-
tudinal multipoles contribute with strength comparable
to the electric multipoles. To emphasize the dubious
nature of the approximation of Eq. (31) for the longi-
tudinal multipoles, we have computed the Born
approximations E~+"") and L~+(' " from the diagrams
of Fig. 1, splitting them into parts proportional to the
electric charge e and the difference of the nucleon total
magnetic moments p~ —p„.

Z~(~+) —(1/v/2) (Z~(-)+Z~(()))
(+)+Z «)j (44)

If we assume that the isoscalar amplitude (which is
small anyway) is not much different from its Born
approximation, " then the experimental results imply

Pion-photoproduction experiments, as analyzed by
Schmidt, indicate that (i) in charged-pion photo-
production, the multipole Eo+ is equal to the Born
approximation; (ii) in neutral-pion photoproduction,
(M///W)Z~ is independent of energy, and at threshold
is roughly one-half of the Born approximation. The
charged and neutral pion amplitudes are related to
Eo+(+') by

(3/2) B BZ~ (3/2) B+( /3 )Z (3/2) B

L (3/2)B BI )
(3/2)B+ ( )I ( )(3/2)B

40 ReEO+(+) =— W 4.70
04

M)I/+M M))/

(Numerically, the e terms, which come largely from the
pion-exchange graph, are much larger than the p, terms,
which come from the crossed nucleon graph. ) One can
verify, by direct calculation, that at ~k~ =0 (for
all /32M 0)

ReE~(—) -E~(—)B

Ke get the imaginary parts of the multipoles Eo+('" '"'
by using the Fermi-Watson theorem, which tells us
that

(3/2)B E (3/2) B
&+(~) &+(v)

I (3/2) B L (3/2) B
&+ (~) &+(u)

(41)

But at the physical threshold
~ q~ =0 we find for real

photons that

ImEO+(' ') =sinb~ ReEO+(' )

= sinI)~LReZ~(+)+2 ReZ()+( )$,

ImEO+(' ') =sin83 ReEO (3/')

= sinI)3)ReZ()~(+' —ReZ()+( )],

(46)

(3/2) B/I (3/2) B 1 gg

(3/2) B/I (3/2) B 0

In Fig. 2 we have plotted the ratio of the numerically
dominant e terms as a function of energy. Clearly, in
determining the longitudinal multipole contributions
to V3( &(0), assumptions such as Eq. (31) are unreliable
and there will be no substitute for measurement
of the longitudinal multipoles in electroproduction
experiments.

with 5~, 53 the I=-,', ~ s-wave pion-nucleon phase shifts.
The numbers given in Table II have been obtained

by using Eqs. (45) and (46), integrating from threshold
to a center-of-mass energy 8'=10 M, and taking the
the pion-nucleon phase shifts from Roper's l =4
analysis. " Adding the s-wave result to the other

"This is suggested by the CGLN model, in which the isoscalar
amplitude is given by the Born approximation, but the isovector
amplitude diGers appreciably from the Born approximation due to
the presence of the dispersion integral over the X*{1238).

~0 L. D. Roper, Ref. 16.
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contributions to V&&+'(0) raises the total to about
0.85 of the value predicted by PCAC." If we assume

"If ReEo+&+~ is taken to be zero, the Eo+&'~'& and Eo+&'~'&

contributions to Vr&+&(0) become 0.062j24' s and 0.066' s,
respectively. Thus, as expected, the s-wave contribution comes
mainly from the charged-pion photoproduction amplitude
E0+& ). The only multipole signi6cant in the low-energy region
which we have omitted from our analysis is M& . While ReM& is
known, the P» pion-nucleon phase shift becomes large only when
the inelasticity in this channel is also large. This means that
ImM& cannot then be reliably determined by the Fermi-Watson
theorem.

Eq. (31) for Ls+, the result for Vs&
—

&(0) obtained from
the resonant multipoles is changed very little.
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Feedback Mechanism for the n-p Mass Difference*
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A feedback mechanism which can yield the correct sign for the n-p mass difference is described in detail,
and is shown to have its origin in the inelastic part of the Compton-amplitude contribution to the mass shift.

I. INTRODUCTION

ECENTLY, a new derivation of the e-p mass dif-
ference has been given" which provides a pos-

sible mechanism for reversing the sign of previous
estimates of this effect. The basic assumptions made in
Ref. 1 were:

(i) The electromagnetic interaction may be treated
as a small perturbation compared to the strong
interaction.

(ii) The self-energy operator of the nucleon, due to
both strong and electromagnetic interactions, satisGes
an unsubtracted dispersion relation.

(iii) The bare mass ms associated with the nucleon
Geld is independent of these interactions and hence is
the same for both neutron and proton.

These assumptions have the following consequences.
Because of isotopic-spin symmetry in the absence of
electromagnetic interactions, the neutron and proton
masses are the same. When the electromagnetic inter-
action is turned on, these Inasses will be different;
for example, because of that unitarity contribution to
the nucleon's self-energy function whose intermediate
state consists of a photon and a nucleon. In addition to
and because of this electromagnetic eBect, the masses
of the intermediate nucleon and pions, which enter
into the strong-interaction contribution to the nucleon
self-energy unitarity integral, are also shifted. This
shift can provide a feedback mechanism to reverse the

*Supported in part by the U. S. Atomic Energy Commission.
~ H. M. Fried and T. N. Truong, Phys. Rev. Letters 16, 559

(1966); 16, 884(E) (1966).
'H. Pagels, Phys. Rev. 144, 1261 (1966). This work is smiilar

in spirit but different in detail from that of Ref. 1.

sign of previous estimates, ' which are based essentially
on the nucleon-plus-photon contribution.

Applying this idea to the question of the x+-x'mass
difference, one can see that if the dominant unitarity
contribution to the pion self-energy is due to the XX
intermediate state, as suggested by the large x-X
coupling constant and also by the success of the
original derivation of the Goldberger-Treiman relation
for the x+ lifetime, then the feedback mechanism is
not eGective. Hence the x+-~ mass difference can be
understood qualitatively by the elementary classical
argument, or more quantitatively by the calculation of
Bose and Marshak. 4

In this paper we make the same assumptions (i),
(ii), and (iii), but we try to give some insight into the
feedback mechanism by contrasting the result of Ref. j.
with that of the conventional level-shift formula, the
latter written in terms of an integral over the diBerence
between the neutron and proton Compton scattering
amplitudes. ' We emphasize that these methods and
formulas are not in disagreement; rather, our formula
attempts to extract and rearrange a portion of the so-
called inelastic contributions to the absorptive part of
the Compton amplitudes. In Sec. II we shall brieRy
discuss the conventional mass-shift formula and the
passage to the description in terms of physical masses,
unitarity integrals, etc., and then derive a new, exact
formula for 6m=m„—m„. This formula is only an

'For example, M. Cini, E. Ferrari, and R. Gatto, Phys. Rev.
Letters 2, 7 (j.959).

«S. K. Bose and R. E. Marshak, Nuovo Cimento 25, 529
(1962).

'W. N. Cottingham, Ann. Phys. (N. Y.) 25, 424 (1963).Ex-
tensive references to the recent literature may be found in G.
Barton and D. Dare, Phys. Rev. 150, 1220 (1966).


