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A general formulation for rearrangement collisions using projection-operator techniques is presented. This
formulation is suitable both for multichannel direct and for multichannel resonant reactions in which inter-
mediate compound states are formed. A method for the construction of projection operators is discussed, and
explicit expressions of the projection operators are derived for general three-body rearrangement collisions.

I. INTRODUCTION

'HE general theory for rearrangement collisions
(symbolically denoted by a+9 ~ c+d) was first

formulated by Lippmann in 1956.' The basic concepts
used in the formulation are that the Hamiltonian B for
the reaction system may be decomposed into the un-
perturbed and the interaction parts in two different
ways, and that the total-reaction wave function may be
transformed from one basis to the other by manipulating
between the two different ways of decomposing of the
Hamiltonian. Hence

II=K;+V,=Hf+Vf,
where H; is the Hamiltonian of the noninteracting re-
actants a and b in their initial states, and V; is the inter-
action between a and b. Similarly, HJ and V~ are de-
fined for the final-state products c and d. The total wave
function + of the reaction system is given by the
integral equation

where +' ) is the time-reversed state vector.
One of the difhculties associated with this general

formulation is the lack of orthogonality between the
initial and final states of the system. This results in a
situation where approximations which are in fact
always necessary may yield nonsensical results. This
difficulty was later removed by Mittleman' who used
optical potentials 'U; and 'UJ which are chosen so that
they give the exact elastic scattering

1b.(+) —X,+ (1/g, (+))'Q,P, (+)

0'f xf+ (1/(tf )Uff'f

(1.10)

(1.11)

Since (af(+))—'a, (+)X, contains no amplitude for outgoing
waves in the final states, ' the transition matrix is then
given by the asymptotic behavior of the second term

(xfl Vfl +'+'&= (+' 'I V'I x'&
with

+(-)=Xf+(1/af(-)) Vf+(-),

with
+(+)=X,+ (1/a, (+))V,+(+)

(E—EE,)X,=O,

a,(+) =Z—II,ye&.

(1.3)

(1.4)

When Eqs. (1.10) and (1.11) are utilized, the transition
matrix may be rewritten as

This equation is of course not in a form convenient for
obtaining the rearrangement amplitude, since the
propagator (a,(+)) ' is not diagonal in the final set of
unperturbed states X~ which are solutions of

(&—&f)xf=0. (1 5)

Lippmann has shown how the state vector +(+) may
be transformed from the original basis to the basis of
the rearranged system':

@(+)—(1/gf(+))g,.(+)x,+(1/(tf(+))Vf+(+) (1 6)
with

Now if we construct an operator II so that it projects
onto the perturbed states of the system, we then have

11,x,=x, , 11;e(+)=y, (+), (1.13)

Operating on 0 (+)
I Eq. (1.2)$ by II, from the left, we

obtain
P, (+) =X,+ (1/a, (+))II~V;+(+), (1.15)

where we have used the commutator property LII;,(t, +'j
=0. Comparison of Eq. (1.15) with Eq. (1.10) reveals

aj &~) =E—H&azq. (1.7) 11 V.@(+)—~,P, (+) (1.16)
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Utilizing relations given by Eqs. (1.13) and (1.16) in
Eq. (1.12), we obtain

&=&+" 'ILV' ll'jl+'+'& (1 17)

~ For a careful discussion of the outgoing boundary conditions
see E. Gerjuoy, Phys. Rev. 109, 1806 (1958);Ann. Phys. (N. V.)
5, 58 (1958).

e M. H. Mittleman, Phys. Rev. 122, 1930 (1961); 126, 373
(1962).
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and similarly

(1.18)

Thus, we obtain a transition matrix with transitions
only between mutually orthogonal states.

The Lippmann-Mittleman theory, though exact in its
general form, does not give a clear picture of resonant
phenomena4 which are characteristic of a large class of
rearrangement collisions. In addition this theory, as do
the usual theories for scattering collisions, utilizes the
concept of decomposition of the total Hamiltonian into
the unperturbed and perturbation parts. Such a concept
is not always useful for rearrangement collisions, since
there is no unique way of decomposing the Hamiltonian.
The interaction which may act as a perturbation in the
initial state becomes binding in the Anal state, and
hence, in principle, there is no interaction which may be
treated as a unique perturbation. It is therefore desirable
to have a theory which requires no decomposition of the
Hamiltonian and which gives a clear picture of the
resonant phenomena. For this reason we adopt the
projection-operator techniques suggested by Feshbach"
to formulate the problem of rearrangement collisions.
This is presented in Sec. II. In Sec. III, a method for
construction of the projection operator is given in great
detail for rearrangement collisions.

a+b ~ a+b
~ c+d

~e+f
-+ etc.,

(2.1a)

(2.1b)

(2.1c)

(2.1d)

where each of the possible reaction paths may be
represented by a set of open channels. Hence, Eq. (2.1a)
corresponds to a set of scattering channels in which the
elastic-scattering channel will always take place, and
Eqs. (2.1b) to (2.1d) correspond to different sets of
rearrangement channels in which various transmuta-
tions may take place.

Let p, denote the projector which projects onto the
jth set of open channels and which satisfies the idem-
potent and orthogonal relations

II. REARRANGEMENT-COLLISION FORMALISM

Consider a reaction system in which jo different re-
action paths are energetically accessible. Ke have

where the X„,'s and the p&„'s are the appropriate wave

functions for the noninteracting reactants and products
with v and X labeling the intrinsic states, respectively,
where the f„r's and the g&„'s are the scattering and re-
arrangement amplitudes and where the r s are the
channel coordinates. We have chosen j=1 to represent
the scattering set of open channels. Note that in general
the projectors are not projection operators, since they
are not necessarily Hermitian. The sum of all the pro-
jectors is however Hermitian. ' The lack of Hermiticity
in the inidividual projector arises from the possibilities
of interchange of fiux between diGerent sets of open
channels. The projectors nevertheless become Hermitian
at large channel coordinates, so that asymptotically as
expected there is no removal of Aux in various channels.
The asymptotic Hermiticity of projectors will be shown

in Sec. III where a method for the construction of the
projection operators which are expressed in terms of
projectors is given. It should be noted that our discus-
sion in this section requires only the existence of the
projectors.

The projection operator for the open and closed
channels denoted by P and Q, respectively, can now be
constructed in terms of the projectors:

(2.5)

We note that sometimes it may be convenient to include
some open channels in the Q subspace. Clearly if all the
rearrangement channels are closed, the projector for
scattering channels becomes the projection operator I'.
In this case pr should of course possess the Hermitian

property p&
——p&t. From Eq. (2.2) it is clear that

p~P= p~ p~Q=o (2 6)

When the projection operators P and Q are utilized, the
Schrodinger equations

p; is capable of projecting out the jth set of open
channels from the total-reaction wave function of the
system O'. Asymptotically, we have

Pre .- P 7t„r(/exp(ik; r&))br„
7'gazoo y

+f,r (k;,rr) Lexp (ik;„rr)j/rr), (2.3)
.- p 4 vgv(k„r;) /exp(ikrgr, )jr,1, (2 4)

P~P~'= P~4' (2.2) (2.7)

where b,y is the delta function. Then it is obvious that for the reaction system (a,b) may be rewritten as'
4 See however, the formalism of Faddeev and Weinberg: L. D.

Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960) LEnglish
transl. :Soviet Phys. —JETP 12, 1014 (1961)$;Dokl. Akad. Nauk.
SSR 138, 565 (1961); 145, 301 (1962) )English transls. : Soviet
Phys. —Doklady 6, 384 (1961); 7, 600 (1963)g; S. Weinberg,
Phys. Rev. 130, 776 (1963); 131, 440 (1963); lBB, 3232 (1964);
C. Lovelace, r'bid 135, 31225 (1964)..' H. Feshbach, Ann. Phys. (N. Y.) 5, 357 (1958);19, 287 (1962).

s L. Fonda and R. G. Newton, Ann. Phys. (N. Y.) 10, 490
(1960).

with
(Xp—E)$%'=0 (2.8)

(2.9)Xp PB+IIQ ——QH P.
E QBQ—

If I' does not include all the open channels, the 8 in

' Such an operator was Qrst discussed by M. Coz. )See Ref. 10.j
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Eq. (2.9) should be replaced by E+io) with o) ~ 0+. The
effective Schrodinger equation (2.8) is an exact repre-
sentation of Eq. (2.7) with the Q subspace transformed
into a nonlocal optical potential which corresponds
physically to potentials arising from virtual excitation
of the system. It has been shown by Feshbach' that
resonances come from bound-state solutions of QHQ in
the effective Hamiltonian! Eq. (2.9)$.

Operating on Eq. (2.8) from the left by the projector
p;, we obtain the set of coupled equations for rearrange-

In order to have a clear picture of the resonant and
direct contributions to the transition amplitude, it is
desirable to decouple the reaction wave functions into
resonant and direct parts. By de6ning the following
wave functions,

jo

pA =p~u&+) ~v+ Z Bcn~n~"""p~'&
g.(ap) ~r~j

j=1, 2, ~ ~ jo, (2.21)

ment collisions: the reaction wave function for the jth set of channels
20 may be rearranged as

{E BC„,}P~4—'= P BC~,.„,P, 4, j=1, 2, .jo (2.10)

with

B&'.„,=p; H+HQ QH p;,
E QHQ—

(2.11)

p.+=p, ui+)&)i,

1 a0 20

+ {2 ~.P,HQ~.+ Z B&*-...;&-"p, A,
g. ( 0)

j= 1, 2, jo (2.22)
BC~,.„,. = p; H+HQ QH p;, (2.12) with

E QHQ— jo

P =P+ 2 B&'-u, n,' A,
g., ( 0)

(2.23)
where we have used the idempotent and orthogonal
properties of the projectors. If there are no bound-state
solutions of QHQ, where p; defined by Eq. (2.23) represents an operator

series. To see that the decoupled expression for p,%
given by Eq. (2.22) is equivalent to Eq. (2.18), it is
suKcient to substitute Eqs. (2.21) and (2.23) into Eq.
(2.22) and to compare their expanded series.

Substitution of p,4 from Eq. (2.22) back into the
definition of h. ; given by Eq. (2.15) yields the set of
coupled equations for the resonance structure functions:

(QHQ-~. )Q~.=0, (2.13)

ap jo

{E—Be„,& o)}p @=p A.p,HQC.+ p B&*„„;&o) p,'+,

lying within the energy regions of concern, the coupled
equations may be rewritten as

with
j=1, 2, jo (2.14)

~-=Z~- =E(ec'-IQHp Ip+&/(E —h-),

ap

Q {(E 8)8 . 6—. —W+—',iF .}h-~
a'=1

=(QC-IQHp. l p "')

where the A. js are the resonance channel-structure
functions.

Solving Eq. (2.14) formally, we obtain

p 4'=p u&+)Bi.

1 ao jp

{gA p, HQC + p B&'.„,.„,.& o)p, .%},
g.(ao)

j1
j'Aj

j. (2»)
with

~,.&-o&
uj (2.19)

(2.15)
le~-&(ec-I

Be„&»=B&'.„.—p p,HQ QHp, , (2.16)
a=1

le~-&(Qc-I
B«'-.; ")=Bc.,'; —& p~HQ

a=1 E—h

(2.17)

jo jo 1
+Z E(Q~.IQHp, ~„., Ip, e) (2.24)

a.( 0)

20 1
= g «(e+-IQHp, p Helec'- &

j=l g.(ao)

jo
F..=g F..;

j=1

jo 1
= —2 Z im(QC-IQHp, p,Helec. .&, (2.26)

j=1 g .(ap)

jo jo
(Qc'-IQHp B&-'p p'

g., (ao)

where p;u&+) is the appropriate solution of

{E—g(& &~o)}p.u&+) —0 (2.20)
p'HQ! Qc'- ) (2 27)

g., (ap)
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where 6; is the shift from the quasistationary energy
arising from the coupling with the jth set of open
channels, F; is the decaying width of the compound
states QC into the jth set of open channels, and 6nally
8' is the complex shift arising from multiple back-forth
coupling between channels. The complex shift is usually
very small. We note that it is sometimes convenient to
introduce the concept of averaged width

ao

(F,&=+,-' P F.;.

The transition matrix V'; for both scattering and re-
arrangement collisions can now be obtained from the
asymptotic behavior of I'4 given by Eq. (2.22):

where V~(» is the transition amplitude arising from
potential scattering in Eq. (2.20), where the second
term is the transition amplitude for resonant scattering
and reactions arising from various compound-state
formations and where finally the last term is the tran-
sition amplitude for direct scattering and reactions.

For isolated resonance (i.e., taking ne=1), the reso-
nance structure function can be readily solved from
Eq. (2.24):

A-= (Q~-Ie&p I p ""'&

io io

+E Z(e~-leap, ~...,'IP, ~&
a;(')

with
ap

~, =Z(p, -'IP, IIQIQ~.». , (2.29)

V';=9', f»8»+1';&"&+V;'f~& j=1,2, ~ ~ js (2.28)
where

(E—h '+-,'iI' '), (2.31)

h '= 8,+A +Re(W ), (2.32)

F '=F —2 Im(W ). (2.33)

io9'"= &(P" &I5('-.,"i"&lp tf&, (2.30)

It is now apparent that h ' and F ' are, respectively,
the resonance energy and total width. Substitution of
A from Eq. (2.31) back into Eq. (2.29) yields the
expression for the resonant transition matrix:

„(P; -'IP,IIQIQ~. & io io

(ec- I NVtl P»'+»+ 2 & (Qc. I e&p, 5(';;.; I P~'&&
E h'+-,'iF '—

g p~~ g.(1)

(P" 'lP &elec'-)(Qc'-Ie&p I p "'& ' (P" '13('.;.; "'L~'"'3 'P'Ifelec-&(Qc-Ie&p I P "'&

E 8,'+-', iF '— E—8 '+~~iF '

~ (P" & la IIQ'
I Q~-)(Q+- I e&p 'E~'"l3 '5t.; ml P»"')

(2 34)
E 8'+-,'iI' '—

where we have used Eqs. (2.21) and (2.23) to carry out
the expansion for the resonant transition matrix. In
most practical cases, the transition matrix for resonant
scattering, or reaction, may, to a good approximation,
be represented by the first term. Clearly, if all the re-
arrangement channels are closed, then I'=p&, and
the scattering transition matrix takes the familiar expres
sion'

(I' -'l~~ele~. )(e~.le»l~ "'&
cZ't —q"(s)+

E Sa &a+ s sFa
(2.35)

where W in this case is identically zero.
A similar expansion for the direct transition matrix

can be readily obtained from Eq. (2.30) using Eq.
(2.21). The expansion so obtained is nothing but the
Born series for rearrangement collisions (for j&1) with
resonances which are associated with bound states in
the Q subspace being projected out. This modified Born
series is suspected to be convergent and has been proven
recently for some special cases. '

A. Chen, S. Tani, and S. Borowitz, Phys. Rev. 137, 8236
(1965).

III. REARRANGEMENT PROJECTION
OPERATORS

The formal theory presented in Sec. II provides a
convenient basis for interpreting experimental data on
resonant reactions by using the concept of resonance
energy and width. In order to carry out an explicit
calculation of these quantities or of the cross section,
the appropriate projection operators must be con-
structed. A projection operator for rearrangement colli-
sion was first derived by Mittleman, ' but the result was
so discouragingly complicated that arbitrary functional
forms for the reaction wave function were later assumed
by Coz' in order to obtain a simpler expression for the
projection operator. Recently, a new method which re-
sulted in much simpler expressions for projection opera-
tors was proposed by Chen and Mittleman. " The
method, however, was limited in that the recoil of the
target must be neglected except for very special cases."

' M. H. Mittleman, Ann. Phys. (N. Y.) 28, 430 (1964).» M. Coz, Ann. Phys. (N. Y.) 35, 53 (1965);36, 217 (1966)."J.C. Y. Chen and M. H. Mittleman, Ann. Phys. (N. Y.) 37,
264 (1966)."J.C. Y. Chen, Phys. Rev. 148, 66 (1966).
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Fro. 1. Coordinates for a
three-body collision system.

vrith

I i,1')=—x1(r1) exp(ip, k,"r1),

I i,v)—=x„(r1) exp(ip. k,„R r,),

I f l1)=41(r1) exp( —ipb41& r1)

(3.1o)

(3.11)

(3.12)

Here we shovr hovr the recoil of the target may be
accounted for in a three-body reaction system.

%e consider a three-body rearrangement collision of
the type

VQ

p,e= Ii, i'&F,, (R)+p Ii,.)F„(R), (3.i3)

where
I i,1'),

I i, t ), and
I f,) ) are the recoil states.

The desired projectors which project onto the set of
scattering and rearrangement channels can be defined,
respectively, as

ac+f1—& a+bc, (3.i)
'Ap

v=1

where a, b, and c are distinguishable. Let (X„(r1)) and
($1(r2)) denote, respectively, the sets of wave functions
of ac and bc with their coordinate de6ned as in Fig. 1.
The total reaction wave function must satisfy the
asymptotic boundary conditions

p2+= E I f,~)G, (R), (3.14)

where the unknown scattering and rearrangement func-
tions satisfy the asymptotic expressions inferred from
Eqs. (3.8) and (3.9):

lim +~ g X„(r1)(Lexp(ik' yb)]5.1
pb b~, ri finite

+f„(k;,pb)Lexp(ik, „pb)]/pb), (3.2)

F1 (R) .- exp(ik, 'R),

F„(R) .- f„(k;,R)Lexp(ik;„R)]/R,

(3.15)

(3.16)

~- Z ~.( )g.(k', p.)I-p('k. p.)]/p
Gb(R) .- gb(k, ,R)I exp(ikr1R)]/R. (3.17)

pa ~~, r2 finite

v here we have assumed that there are vp scattering
Ao rearrangement open channels.

Following Chen and Mittleman" we make use of the
geometric relations provided by Fig. 1: (i,i'Ii —p —

p I+)=0
(, Ii-p.-p. l~)=o,
(f xI1—p, —p, Ie)=0, &=1, 2, ",x, . (3.is)(3.4)y, =R—pbr2, 11b= M,/(Mb+M. ),

yb=R+p, r1, p, =M./(M +M.), (3 5) Since we have constrained the scattering and rearrange-
ment channel coordinate to be R by introducing the
recoil states

I Eqs. (3.10) to (3.12)], the unknown func-
tions Ii &, F„and G), can easily be expressed in terms of
4 by solving the above set of linear equations. Substi-
tution of the solutions so obtained for the unknown
function back into Eqs. (3.13) and (3.14) yields im-
mediately the explicit expressions for the projection
operators. Such an algebraic manipulation can in general
be carried out in terms of matrix notations. For the
sake of clarity we consider here a simple case in vrhich

only the elastic and the lowest rearrangement channels
are open (i.e., taking 1p=Xo=i). When utilizing the
de6nitions for the projectors given by Eqs. (3.13) and
(3.14), the set of linear equations reduces for this case
to the following:

where M„gab, and M, are the masses of a, b, and c
particles, respectively. In view of the fact that the X„'s
and the p1's vanish exponentially as their respective
arguments r~ and r2 become large, we may write from
Eqs. (3.4) and (3.5):

p, = I p, I~ R pbR r2+o(1—/E),

pb= I ebl&+p. & r+o(1/~)

(3 6)

(3.7)

Substitution of Eqs. (3.4), (3.6), and (3.7) into Eqs.
(3.2) and (3.3) yields

VO

0—&Ii, i') exp(ik, 'R)+Q Ii,1)f,(k;,&)lim
R -+~, ri finite

These asymptotic expressions ensure that p14 and p2%'

satisfy the appropriate asymptotic boundary conditions.

and The above conditions for the projectors are mathe-
matically equivalent to the following equations:

X I exp(ik, „R)]/R, (3.8)
Xp

lim 4 ~ g I f,x)gb(k, ,R)I exp(ikr1R)]/R (3.9)
R -+~, r3 finjt&e A 1

F1'(R)+'g1'1(R)F1(R)+~1'1(R)G1(R) ~1'(R) y

g1 1*(R)F1(R)+F1(R)+611(R)G1(R)= U1 (R), (3.19)

61.1*(R)F1.(R)+d 11*(R)F1(R)+G1(R)= V1(R),
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with

gi. i(R) = &i,1'I i,1&, 61 1(R)= g, 1'I f,1),
Aii(R) = &i, i I f,1), 611*(R)= (f,i I i, i),

(3.20)

Ui (R)=&i,i'I@&, Ui(R)=(i, il@&,

~ (R) =&f,i I+)
(3.21)

It can be easily shown that the projectors are Herrrutian
asymptotically, since the overlapping integral ap-
proaches zero exponentially as R becomes large. Prom
Eqs. (3.26) and (3.27) we then have

pi,„„-I:1—I ~1 il ') '{li, i'&(i, i'I+ li, i&&i,il
—Ii, i'&pi 1&i,i I

—Ii, i&gi 1 &i,i'I }i (3.29)

where the integrals indicated by brackets in Eqs. (3.20)
and (3.21) are over coordinates that are common on
both sides in the brackets.

Solving Eqs. (3.19), we obtain

Pl'(R) P (R){Li I ~11 I )Ui'+I +1'1~» 'gl'1) Ui

+Lnii1~11 ~1'l)~1}, (3.22)

Pi(R) =P(R){L1—I ~1'll )Ul+L~l'1 ~11 'gl'1 )U1'

+I gl'1 ~1'1 ~11)l 1}i (3 23)

G (R)=~(R){L1—l~ ~ I'%+I:n ~ *~ *—& ~ *)U ~

+Lgl'1~1'1 ~11 )Ul} y (3 24)
with

P(R) '= Li —I ~1 1I')I 1—
I ~»I')—L~i.,*~11—Ui. i*)

+L~l'1~11 'gl'1) y (3 25)

where the overlapping integrals, the 6's, approach zero
exponentially as R becomes large. By substituting the
asymptotic expressions for 4 into Ui, Ui, and Vi I

see
Eq. (2.21)), it can be easily seen that the unknown
functions given by Eqs. (3.22) to (3.24) satisfy the
asymptotic expressions required by Eqs. (3.15) to
(3.17), respectively.

Substitution of Fi. and Fi back into Eq. (3.13) and
Gi into Eq. (3.14) yields, respectively, the projector for
the elastic-scattering channel

(3.30)

P= 8{pi+pa}8, (3.31)

where 8 is the antisymmetrization operator in the case
of fermions. It can be easily shown that ~ with I'
given by Eq. (3.31) satisfies the boundary condition

lim 2%~xi(r) {exp(ik; y;)+Lfi+gi)l exp(i&, p, ))/p, },
p j~oo

j=a, fi (3.32)

which are clearly Hermitian.
The projection operator I' for the open channels is

then obtained by summing over the projectors; we
have P,=pi+pi. Clearly P is idempotent from Eq.
(3.28). From inspection of Eqs. (3.26) and (3.27), it is
apparent that P is also Hermitian even though the
projectors themselves are not Hermitian. This then
demonstrates that I' so constructed is a projection
operator.

Since the exchange scattering arising from the Pauli
principle can be considered as a special case of rearrange-
ment collision in which identical particles are involved,
the application of the derived projection operator to the
exchange scattering is straightforward. As an example
we consider the problem of elastic electron-hydrogen
or neutron-deuteron exchange scattering. This corre-
sponds to the case of taking a and f1 in Eq. (3.1) to be
the same. The appropriate projection operator then
takes the form

and the projector for the rearrangement channel

(3.26)

where f and g are now the direct and exchange scatter-
ing amplitudes.

Generalization of the method presented in this section
to systems involving more than three particles is not at
all trivial. At the present, we have not yet been able to
construct, except for some special cases, a general re-
arrangement projection operator for more-than-three-
particle systems without the recourse to infinite series.

Pi Pi ~ Pi Pi 1 P1P& (3.28)

It is a straightforward to show that the projectors given
above the idempotent and mutually orthogonal
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