
KINEMATIC SINGULARITIES

where I and I ' are the minimum orbital angular mo-
mentum summed in the generalized MacDowell rela-
tions of Eq. (20), will have no impermissible kinematic
singularities or zeros in the variable lV. If any of the
conditions of Eqs. (22) are satisfied, then L =L and
L'= L', so that the variable s may be used and Eq. (26)
simplifies to

Al. sI.ss, (s) =s e e{('s (—rN+ts)'j

XLs—(rN tt)'j& —~ ' 'Ar~sr, s,s (s). (27)

If condition (22d) is satisfied, then the modified partial-
wave amplitude of Eq. (27) must be divided by s't' to

remove that over-all factor. In Eqs. (26) and (27), the
powers na z are the asymptotic powers of the I- and
t-channel backward amplitudes which are given in
Regge-pole theory by as s=ns s(s=0) for the leading
direct-channel Regge trajectory for spin 5—+ S' scat-
tering and 0&o.g g& —1 if there is no direct-channel
Regge pole.

Of course, in a practical calculation, one may choose
not to work with the AL's', r,s (W) amplitudes as given
by Eq. (26) or (27). A variety of approximate treatments
of the kinematic singularities is possible, but the forms
given here seem to be the point at which these ap-
proximations should start.
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To resolve the difhculties that arise if the P and/or P' Regge trajectories pass through J=0 at a negative
value of the center-of-mass energy squared, Chew has conjectured that the determinant of the physical D
matrix does indeed vanish, but that the N matrix is such as to lead to vanishing residues at the pole. e
investigate whether this phenomenon of a simultaneous zero of the N and D functions can occur in potential
theory. Standard arguments exclude this possibility for suKciently well-behaved potentials. However, it is
easy to explicitly construct amplitudes which do involve a coincident zero. Using the Gel fand-Levitan-
Marchenko equations, we derive a representation for the potential in terms of the Fredholm determinant of
the integral operator that appears in the N/D equations. We show that if the s-wave amplitude has co-
incident zeros, the corresponding potential behaves like 1/r near the origin; conversely, such potentials give
rise, in general, to coincident zeros. However, these zeros are unrelated to any Regge trajectory, so that
(except perhaps for potentials which diverge more strongly than 1/r at the origin) the phenomenon hypoth-
esized by Chew cannot occur in potential theory.

I. INTRODUCTION

'HK assumption that the Pomeranchuk and I"
Regge trajectories are approximately linear sug-

gests that they cross J=O at negative values of s, the
square of the center-of-mass energy. However, a pole
in a J=O amplitude at a negative value of s would
correspond to a particle of imaginary mass, as well as
to a singularity in the physical region of the crossed
reaction. Thus the residues of the I' and I"poles in all
physical processes would have to vanish at J=0. Gell-
Mann has hypothesized' that this occurs because of a
dynamical dominance of channels with spin for which
J=O is nonphysical. It is difBcult to understand, how-
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ever, why the ~ and I"should choose these "nonsense"
channels when the force in the mx s wave, for example,
appears to be strongly attractive. Chew has suggested'
that they choose "sense, " meaning that the determi-
nant of the physical J=O D matrix does vanish, but
that the physical X matrix is such as to lead to vanish-
ing residues at the pole. We refer to this phenomenon as
a Eegge ghost.

Where there is only one physical channel, a Regge
ghost is simply a simultaneous zero of E and D, say at
s=sg. This implies that D also vanishes on the un-
physical sheet at s&, so that there is a virtual Regge
trajectory which at J=O passes directly beneath the
trajectory on the physical sheet. When there are Ã
coupled two-body channels, one can show by writing
the 5-matrix element in terms of the determinant of
D that the latter vanishes on all 2~ sheets at s=sg, so
that there are 2N trajectories coinciding at J=O. If for
some value of J one of these virtual trajectories comes
close to the physical region of the physical sheet, it
could have experimentally observable consequences.

' G. Chew, Phys. Rev. Letters 16, 60 (1966).
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ments exclude the possibility of extinct ghosts. 4 ' If

r~ V(r) )dr&~, (1.3a)

e~"
~
V(r)

~

dr & ~ (1.3b)

for some positive p and a, then the usual s-wave Jost
functions f(+k) can be defined and are analytic in the
strip

~
Imk

~
(p/2, and it ca.n be shown that

D(k)= f( k), —

f(k) f(—k)—
E(k') =

2ik

(1.4a)

(1.4b)

FIG. i. The contour C, composed of L, R, and a circle at infinity.

PIn what follows we shall refer to a simultaneous zero
of N and D for some specific value of the angular mo-
mentum as an extinct boured state, ' or ext6zct ghost (EG),
without necessarily implying that any Regge trajectory
is involved. The term I'egge ghost will be reserved for
an extinct ghost which does lie along a Regge trajectory. $

Atkinson and Halpern' have shown that a coincident
zero of N and D implies that the homogeneous integral
equations for N and D can be solved. This can be
understood by noting that when E(so) =D(sg) =0, one
may divide out the zero; the quantities

iV(s)
ri(s) =

s—sg

D(s)
d(s) =

s—sg

(1.1a)

(1.1b)

' D. Atkinson and M. B.Halpern, Phys. Rev. 149, 1133 (1966).

will obviously satisfy a homogeneous system of E/D
equations, since d —+ 0 at ~. It follows that the Fred-
holm determinants of the Fredholm integral equations
for N and for D vanish. Furthermore, ' since the in-
homogeneous equations satis6. ed by N and D are also
satisfied by

iV'(s) = iV(s)+) e(s) = Ls—(sg—X)fn(s), (1.2a)

D'(s) =D(s)+Ad(s) =
t s—(sg—X)fd(s), (1.2b)

where ) is arbitrary, the position of the EG is not de-
termined by the X/D equations for one channel and
one partial wave.

In this paper we investigate whether extinct bound
states can occur in ordinary potential theory, and, if
so, what dynamical conditions will produce them. For
sufficiently well-behaved. potentials, standard argu-

with D defined so that D(k') ~ 1 as k' —+m. Here k is
the center-of-mass momentum; from now on we shall
use s to denote k'. LIf V(r) has the representation
V(r) = J„',"dp p(p)e I"/r, (1.3) implies that ps)0 and
that J„',"dp p(p)/p(~. j

In terms of the Jost wave functions P(&k, r), which
are solutions of the s-wave Schrodinger equation
approaching e+'s" asymptotically, the Jost functions
f(&k) are given by

y(~k) =ib(~k, 0).
If there were an EG, we would have

f(k) =f(—k) =0 (1.6)

D. CONSTRUCTION OF AMPLITUDES
CONTAINING EXTINCT GHOSTS

In order to construct examples of partial-wave ampli-
tudes containing extinct ghosts, we shall utilize
Levinson's theorem, which relates the variation of the

4 M. Goldberger and K. Watson, Collision' Theory (John Wiley
8r Sons, Inc. , New York, 1964), p. 279.

5 That no EG will be produced by such potentials has been
argued by Professor R. Sawyer, whom we wish to thank for several
private communications.

for some point k on the imaginary axis. Then the
Wronskian W)$(k,r),f(—k, r)j would vanish at r=0,
which is impossible since t/t/' is r-independent and equal
to 2ik at r ~oo. LIf f(k) vanishes at k=0, the zero is
simple, ' so again no EG is possible. j

On the other hand, it is easy to construct s-wave
S matrices which exhibit extinct ghosts (Sec. II).These
S matrices are found to correspond to potentials which
go like 1/r' near the origin (Sec. III). Specific examples
are discussed (Sec. IV). Conversely, potentials with
1/r' behavior for small r can be shown to lead in general
to simultaneous zeros in N and D for some values of the
angular momentum f (Sec. V). However (Sec. VI),
the extinct ghosts which we have found do not lie on
Regge trajectories, and hence do not correspond to the
phenomenon conjectured by Chew.
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phase shift from threshold to infinite energy to the number of virtual states. For example the s-wave D
number of zeros of the D function: function for the Hulthen potential,

(1/z-)I bg(~) —b((th) j= Nz—N—g
(no Castillejo-Dalitz-Dyson poles). (2.1)

To prove this theorem we merely require that the
partial-wave S matrix approach unity as s ~en (faster
than 1/lns). A more useful relation is obtained by
evaluating the contour integral

1 (d lnS~
Ids=Nz Nr, —

2xi 4 ds i
(2 2)

On the physical sheet, a bound state appears as a pole
of S, a virtual state as a zero, and a resonance as a pair
of zeros at complex conjugate positions. Thus

(2.4)Nz —Nz= Na —Nv —2N~.

'Therefore, using (2.3) and (2.4) in (2.2) we derive

d lnS
ds Nz Nv—2N—z 2N—G. (2.5)——

2x'$ I, ds

In particular, if the left-hand cut of S consists solely
of Nl. poles, then

1 d lnS
ds=/z, ,

2z'z I ds

where the contour C is illustrated in Fig. 1 and Nz(Nr)
is the number of zeros (poles) of S inside the contour C.
The contribution from the circle at infinity vanishes,
since 5~1, IsI ~ ee, and the integral across the
right-hand cut gives

d lnS 2
ds= —Lb (~ )—8(th)] =—2 (Nz+Ng) . (2.3)

2+i g ds

1
~(v) =-

2ma'l e "& —1i

00

D(k)=II 1—
e (ts—2ika)i

which vanishes on the unphysical sheet at k= —(i/2&)
x (~—x/~), I=1.

If the right-hand side of (2.6) is nonzero we have
extinct ghosts. The simplest example is that of 2 left-
hand poles and nothing else, so that

k+ipt k+ips
S(k) = (2.8)

k—ipt k ip—s
and there is one extinct ghost (8(ee) —&(th)= —&).
(In the 5matrix it is, of course, impossible to distinguish
a bound-state pole from a "force" pole; however, the
corresponding potential does depend on how the poles
are interpreted. )

III. POTENTIALS CORRESPONDING TO
S MATRIX WITH A GHOST

(a) Gel'fand-Levitan-Marchenko Equations

In the previous section we have constructed examples
of amplitudes containing extinct ghosts. However, as
was pointed out in the Introduction, such extinct ghosts
cannot exist in potential theory for sufficiently well-

behaved potentials. In order to determine what type
of potential cue produce extinct ghosts, we shall use the
Gel'fand-Levitan equations, which enable one to con-

struct a local potential that reproduces a given partial-
wave amplitude.

Given an s-wave, nonrelativistic S matrix that
satisfies

(2 6)Ng —Ng —Ny —2Ng =2Ng.
(a) IS(k)I=S(0)=5( )=1,
(b) 5(—k)-'=5(k)=5*(k) ',
(c) S(k)—1 has an absolutely integrable Fourier

transform, one can always construct a potential that
reproduces this 5 matrix in the s wave by using the
procedure given by Marchenko ~:

T()=-2—A(, ),
dr

In this case we can explicitly exhibit the 5 matrix in
terms of the positions of the poles. For example, the
s wave nonrelativistic 5 matrix whose only singularities
in the k =ps plane are poles is just

~s ~k +i pq ~s~k+ib, ~5(»= nI IIII'= l,k —ip,i - Ek-ib, i
Kv (k—iss) Ãz (k —ii~) —n~

&&III . III
s=tkk+stts) ~=& (k+sl' )'—n '

(3 1)

(2 7) where A (x,y) is the solution of the equation'

A (xy)+F(x+y)+ d& A (x,i)F'(i+y) =O
~ (3 2)

6 V. Marchenko, Dokl. Akad. Nauk. . SSSR 104, 433 (1955).
r L. Faddeyev, Uspehhi Matern Nauk. . 14, 57. (1959) (English

transl. :B. Seckler, J. Math. Phys. 4, 72 (1963)g.
s The scale is determined by choosing the reduced mass p, =& so

that Schrodinger's equation is
dS
d~(x) =E&(~)-&'34 (&)

where p;, b;, ns, I', a are positive real numbers. Note
that the left-hand side of (2.6) must be even or we
cannot satisfy the condition S~ 1 both as k —+ 0 and
as k ~~. Equation (2.6) is satisfied even if there are
an infinite number of left-hand cut poles, as in the case
of the exponential potential or the Hulthen potential
in the s wave. These potentials give rise to an infinite
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we can derive from (3.2) a Fredholm integral equation
for a(x,s):

f(s)e z[~—(—z )+&(—s ') [

a(s,x) — ds' a(s', x)—s —s

Es„:
l, ib

I'ro. 2. The contour C'.

and F(r) is given by

1 +~
F(r) = dk —e""L1—S(k)]

2x

+i P ResS(k)

= f(s)e-*~(-' . (3.6)

Or, if we define the integral operator X:

X(s,s'; x) =I E(s,s—'; x) = I) (s—s')

f(S)e
—z[~(—z)+&(—z')I

(3 7)
s —s

we can write (3.6) as

X(s,s', x) a(s', x) =f(s)e—~(—'&. (3 g)

We note that the kernel E is I' for all @~0, since
s'"f(s) —+0, s —+ —~ and sr, (0.

(3 3)

(b) Relation to the N/D Equations

Hereib, m =1, . , X~, are the positions of the bound-
state poles in the k plane.

The potential which produces a given s-wave ampli-
tude is unique only if there are no bound states. If there
are E~ bound states, there will exist an E~ parameter
family of "phase-equivalent" potentials, all of which
reproduce the given amplitude. However, they will
all have the same behavior at the origin. 7 Also, the
potential determined by (3.1)—(3.3) is still unique.

F(r) can be expressed in terms of the left-hand cut of
the amplitude

1V(s) =
f (s')D (s')ds'

s —s
(3.9a)

1 " (gs')E(s')ds'
D(s) =1——

7r s —s
(3.9b)

If we write, as usual, A =ED ', such that D is real
analytic with zeros at the bound-state poles of the
amplitude and E has only the left-hand cut, then X
and D satisfy the coupled singular integral equations

Considering

S(k)—1
A (k=Qs) =

2'
We have normalized D to approach unity as s —+~.
(Such a D f'unction always exists under the assumptions
we have made about the S ma, trix. )

If we substitute (3.9a) into (3.9b) we derive a
Fredholm equation for D(s):

(C is the contour pictured in Fig. 2) for r) 0, and noting
that the last term in (3.3) cancels the bound-state pole
contributions, we derive

(s')
D(s) — ds' D(s') =1. (3.10)—$ —$

In terms of the operator X(s,s'; x) defined by (3.7)
this can be rewritten as

Here

F(r) =— f(s)e ~( '&ds. —
where

Xt(s,s'; x=0)D(s') = 1,

Xt (s,s'; x) =X(s',s; x) .

(3.11)

ImA (s)
f(s) = s&SLg0

Also interesting is the fact that n (s)—= ImlV'(s)/m
=f(s)D(s) satisles the equation

X(s,s'; x=0)(3n(s') =f(s). (3.12)
(excluding contributions from any bound-state poles
located in this region). If we now represent A (x,y) in
the form

Therefore if the operator X(x) is not singular at x=O
it is clear that a(s, x=0) =n (s). If the potential

A(x,y)= a(s,x)e ~(—'&ds,
L

(3.5) U(x) = —2— ds a(s,x)e-z~(—'
dS
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of the Fredholm determinant of X(s,s', 0). However,
this behavior can hardly be construed as a short-
coming of the E/D method, since the appearance of a
ghost corresponds to a rather violent change in the
potential; namely, the introduction of a 1/rs singularity
near the origin. Naturally the amplitude can behave
wildly in such circumstances, no matter what method
one uses to calculate it. However, if one constructs a
model based on a left cut as input and discovers that
one is near a ghost, extreme caution should be used in
drawing conclusions from the calculation.

V(r)=X(x+1)/r&, (5 1)

where X is a positive constant. To settle ambiguities of
m. in the phase shift, we imagine that V(r) is gradually
turned on, and that the displacement of the wave func-
tion from the free wave is measured.

Consider first the s wave, and suppose that the energy
s=k' is so large that except for the 1/r' peak, V(r)«s.
Then, except near the origin, the wavelength of the
wave function changes slowly as a function of r. If
p(r) is the wave number, then

~p=p(r) —P(")= —(1/~) V(r), (5 2)

(where e is the velocity of the particles), since b(kinetic
energy) = vip= —U(r). Then since ~(r)/dr=p(r), where

g(r) is the phase of the wave function, the phase shift
produced by the part of the potential at r&rp, rp being
outside the 1/r' peak, is just

00

V(r)dr,
rp

(5.3)

which goes to zero at infinite energy.
Thus the phase shift at k —+~ comes only from the

X (X+1)/r' singularity at the origin. This would also be
true if the potential were exactly X(X+1)/r' at all r,
but for the latter potential 8(eo) =8(any energy)
= ——,'Xs.. Therefore for the actual V(r)

V. PHASE SHIFTS AND EG PRODUCED
BY ~1/r' POTENTIALS

Will a potential which has repulsive 1/r' behavior at
small distances always lead to extinct ghosts? To investi-
gate this question we first find out what phase shifts are
produced by such potentials. We suppose that V(r)
is exponentially small at large distances, nonsingular
at finite r, and that as r —+ 0

representation and prove the orthodox Levinson theorem
1/m. L8(0)—8( ao )j=Xii. With our normalization ofphase
shifts, 8(~ )=0 for this potential, so

8(0)=s.Xg. (5.5)

bi(~) = —-', (L—1)s.. (5.7a)

It is convenient at this point to redefine the phase shift
by setting 5i(0) =0, whereupon (5.7a) becomes

8i( ~ ) = —vrLEii'+-,' (L—l)$. (5.7b)

When there are E~' bound states and Xg' extinct
ghosts, the D function may be represented in the form

Lbg (0)—=0j

Di(s) =exp—
s—Sp

p

bi(s')
ds

$ —$ $ —Sp

&al s—s~,.l Ng~ s—sg,.lx rr rr
Sp—Sgl J & sp —$0&l

where sp is the subtraction point, and s~,.l and sg,.l
are the positions of the bound states and extinct ghosts.

It follows from (5.8) that for large s, apart from pos-
sible logarithmic factors,

Or, from (5.7b),

D (s) ~ ssi(~ilm+Nsl+Ngi (5.9)

Turning now to arbitrary angular momentum, we
recall that the amplitudes generated by V(r) can be
continued in l." Writing V(r) =X(X+1)/r'+e(r), one
may group the 1/r' term with the centrifugal potential
l(l+1)/r'; the remaining potential V(r) is finite at
r —+ 0, and has a 1/r' tail. Thus the amplitude will be
analytic in the "effective angular momentum" I.
defined by

L(L+1)= l(l+1)+X(X+1), (5.6)

hence in the actual angular momentum /. Owing to the
square-root singularity in the map connecting l to L,,
(5.6), the amplitude will have a branch cut connecting
the points l= ——,&i@.(X+1)J~'. This is a trivial com-
plication; we restrict attention to Ret& ——,'.

For l real and non-negative the effective potential
V ff= l (l+1)/r'+ V (r) has a real, repulsive 1/r' sin-
gularity at the origin. By the same argument as for
s waves, we conclude that Bi(0)=s-Xii'. But now the
1/r' peak leads to

8(eo ) = —-,'Xs. . (5.4) Di(s) ~ s k&z-'&+Noi (5.10)
To 6nd 8(k= 0), we note that the low-energy behavior

and the bound states cannot be affected by cutting oG
the 1/r' peak at, say, 10"7 BeV. The low-energy wave
functions are, after all, strongly excluded from this
peak. Now the amplitude generated by the cut-off
V(r) will have the standard analytic and asymptotic
properties which allow one to construct the E/D

Although the partial-wave 5 matrix generated by
V(r) approaches a constant as k —+eo, this constant is
not, in general, unity, because -', (L—l) is not, in general,
an integer. Correspondingly Di(s) does not approach a
constant. Now in defining an KG as a simultaneous zero

"H. Bethe and T. Kinoshito, Phys. Rev. 128, 1418 (1962).
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of "N" and "D,"one must obviously specify the asym-
ptotic behavior of D to within one power of s, to pre-
clude the possibility of adding or deleting simultaneous
zeros at will by multiplying or dividing both E and
D by factors of the form (s—so). In order to fix pre-
cisely what asymptotic behavior is to be allowed, we
note that if E and D are to obey dispersion relations
containing no arbitrary subtraction constants apart
from normalization, D must not diverge as fast as gs.
On the other hand, if D converges more rapidly than
1/gs, it is possible to multiply E and D by a factor
of the form (s—so), thereby obtaining an Ã and D
which contain an additional simultaneous zero but
which still obey dispersion relations involving no
subtraction parameters. Consequently, from (5.10)
we have the condition

(5.11)

Thus for given real t (in the range of interest), the
number of extinct ghosts is determined by the condition

Since I.&/, Et-.' will be non-negative, as it should be.
Taking 1=0 as an illustration, it follows from (5.6)

and (5.12) that V(r) will produce no s-wave EG if
X~ 1.There will be one EG if 1&X ~3, two if 3&) ~ 5,
etc. In the examples of Sec. IV, the 5 matrix was con-
structed to approach unity asymptotically, so that
Ds(s) ~ 1, s~~. In this case the existence of one
ghost corresponds to -', (L—t) =1, so that X=2, which is
why the coefficient of the 1/rs peak always came out
to be 6.

VI. REGGE TRAJECTORIES

Do the extinct ghosts which 1/r' (small r) poten-
tials produce lie on Regge trajectories& Disregarding our
relativistic motivation, there is no reason to expect
that they do, since an EG in some speci6c partial wave
is rIot a pole of the S matrix. In fact, since —', (L—t) is
a continuous function of /, it is clear that if there is an
EG for one / there will also be one for a continuous
range of / surrounding this value. Thus these EG are
not "Regge ghosts" of the type proposed by Chew where
a Regge trajectory is extinguished at only one value of
/. If they lie on Regge trajectories at all, they corre-
spond to a situation in which a virtual trajectory lies

directly beneath a bound-state trajectory in the s
plane for a continuous range of /. Such trajectories must,
of course, remain "parallel" for all /, since they are
analytic functions of /. One may verify, however, that
d[—', (L—t)j/dl&0, with (I.—t) ~0 [cf. (5.6)] as
l ~+ ~. Thus, from (5.12), Eo' must be zero for
sufFiciently large /, so that there cannot be an EG for
all /. Consequently the EG which we have found in
potential theory do not lie on Regge trajectories. "

VII. CONCLUSION

Whereas for well-behaved potentials extinct ghosts
do not exist, it is easy to construct partial-wave ampli-
tudes, relativistic or nonrelativistic, which do exhibit
these ghosts. We have shown that such nonrelativistic
amplitudes are generated by potentials with repulsive
1/r singularities at the origin. Conversely, a potential
with a X(X+1)/r' singularity at the origin (X)1) will

always produce an extinct ghost in the s wave. However,
if an extinct ghost exists for some value of the angular
momentum /0 then one will appear for all /~/0, al-
though for su%ciently large / there will be no extinct
ghosts. Therefore these potential-theory extinct ghosts
do rot lie on Regge trajectories and thus, except perhaps
for singular potentials (worse than 1/r' at the origin),
the phenomenon conjectured by Chew cannot take
place in potential theory. Even though most of our
intuition about Regge poles arises from potential theory
this result does not necessarily make Chew's mechanism
unlikely —since only in a crossing symmetric relativistic
theory does the physical requirement for such a mech-
anism arise.
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