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where L and L’ are the minimum orbital angular mo-
mentum summed in the generalized MacDowell rela-
tions of Eq. (20), will have no impermissible kinematic
singularities or zeros in the variable W. If any of the
conditions of Egs. (22) are satisfied, then L=L and
L’=1L’, so that the variable s may be used and Eq. (26)
simplifies to

Apg,187 (s)=ss's{[s— (m~+n)*]
X[s— (m—p)* ]}~ 24 1y g 187 (5).

If condition (22d) is satisfied, then the modified partial-
wave amplitude of Eq. (27) must be divided by s/2 to
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remove that over-all factor. In Egs. (26) and (27), the
powers ag 5 are the asymptotic powers of the #- and
t-channel backward amplitudes which are given in
Regge-pole theory by as s=ag s(s=0) for the leading
direct-channel Regge trajectory for spin S— .S’ scat-
tering and 0>ag s> —1 if there is no direct-channel
Regge pole.

Of course, in a practical calculation, one may choose
not to work with the Az g, 1s7 (W) amplitudes as given
by Eq. (26) or (27). A variety of approximate treatments
of the kinematic singularities is possible, but the forms
given here seem to be the point at which these ap-
proximations should start.
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To resolve the difficulties that arise if the P and/or P’ Regge trajectories pass through J =0 at a negative
value of the center-of-mass energy squared, Chew has conjectured that the determinant of the physical D
matrix does indeed vanish, but that the NV matrix is such as to lead to vanishing residues at the pole. We
investigate whether this phenomenon of a simultaneous zero of the NV and D functions can occur in potential
theory. Standard arguments exclude this possibility for sufficiently well-behaved potentials. However, it is
easy to explicitly construct amplitudes which do involve a coincident zero. Using the Gel’fand-Levitan-
Marchenko equations, we derive a representation for the potential in terms of the Fredholm determinant of
the integral operator that appears in the N/D equations. We show that if the s-wave amplitude has co-
incident zeros, the corresponding potential behaves like 1/72 near the origin; conversely, such potentials give
rise, in general, to coincident zeros. However, these zeros are unrelated to any Regge trajectory, so that
(except perhaps for potentials which diverge more strongly than 1/72 at the origin) the phenomenon hypoth-

esized by Chew cannot occur in potential theory.

I. INTRODUCTION

HE assumption that the Pomeranchuk and P’
Regge trajectories are approximately linear sug-

gests that they cross J=0 at negative values of s, the
square of the center-of-mass energy. However, a pole
in a J=0 amplitude at a negative value of s would
correspond to a particle of imaginary mass, as well as
to a singularity in the physical region of the crossed
reaction. Thus the residues of the P and P’ poles in all
physical processes would have to vanish at J=0. Gell-
Mann has hypothesized® that this occurs because of a
dynamical dominance of channels with spin for which
J=0 is nonphysical. It is difficult to understand, how-

* Research supported in part by the National Science Founda-
tion and in part by the Air Force Office of Scientific Research,
Office of Aerospace Research, U. S. Air Force, under Grant No.
AF-AFOSR-232-66.

t Junior Fellow, Society of Fellows. Present address: Harvard
University, Cambridge, Massachusetts.

I Present address: State University of New York, Stony Brook,
New York.

1 M. Gell-Mann, in Proceedings of the 1962 International Con-
ference on High Energy Physics at CERN, edited by J. Prentki

(CERN, Geneva, 1962), p. 539.

ever, why the P and P’ should choose these “nonsense”
channels when the force in the =r s wave, for example,
appears to be strongly attractive. Chew has suggested?
that they choose ‘‘sense,” meaning that the determi-
nant of the physical /=0 D matrix does vanish, but
that the physical V matrix is such as to lead to vanish-
ing residues at the pole. We refer to this phenomenon as
a Regge ghost.

Where there is only one physical channel, a Regge
ghost is simply a simultaneous zero of N and D, say at
s=sg. This implies that D also vanishes on the un-
physical sheet at sq, so that there is a virtual Regge
trajectory which at J=0 passes directly beneath the
trajectory on the physical sheet. When there are N
coupled two-body channels, one can show by writing
the S-matrix element in terms of the determinant of
D that the latter vanishes on all 2V sheets at s=sg, so
that there are 2% trajectories coinciding at J=0. If for
some value of J one of these virtual trajectories comes
close to the physical region of the physical sheet, it
could have experimentally observable consequences.

2 G. Chew, Phys. Rev. Letters 16, 60 (1966).
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Fic. 1. The contour C, composed of L, R, and a circle at infinity.

[In what follows we shall refer to a simultaneous zero
of N and D for some specific value of the angular mo-
mentum as an extinct bound state,® or extinct ghost (EG),
without necessarily implying that any Regge trajectory
is involved. The term Regge ghost will be reserved for
an extinct ghost which does lie along a Regge trajectory.]

Atkinson and Halpern® have shown that a coincident
zero of N and D implies that the homogeneous integral
equations for N and D can be solved. This can be
understood by noting that when N (s¢)=D(s¢)=0, one
may divide out the zero; the quantities

n() =Y (1.1a)
S—S¢

d(s)= DE (1.1b)
S—SG

will obviously satisfy a homogeneous system of N/D
equations, since d — 0 at . It follows that the Fred-
holm determinants of the Fredholm integral equations
for N and for D vanish. Furthermore,® since the in-
homogeneous equations satisfied by IV and D are also
satisfied by

N'($)=N(s)+M(s)=[s— (s¢—N)In(s), (1.2a)
D' (s)=D(s)+Nd(s)=[s— (s¢—N)1d(s), (1.2b)

where \ is arbitrary, the position of the EG is not de-
termined by the N/D equations for one channel and
one partial wave.

In this paper we investigate whether extinct bound
states can occur in ordinary potential theory, and, if
so, what dynamical conditions will produce them. For
sufficiently well-behaved potentials, standard argu-

3 D. Atkinson and M. B. Halpern, Phys. Rev. 149, 1133 (1966).
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ments exclude the possibility of extinct ghosts.*5 If

/“’ r|V(r)|dr< oo, (1.3a)

and

/w e* |V (r)|dr< o (1.3b)

for some positive u and @, then the usual s-wave Jost
functions f(<=%) can be defined and are analytic in the
strip |Imk| <w/2, and it can be shown that

D(k)=f(=Fk), (1.4a)
N(k2)=w, (1.4b)
2tk

with D defined so that D(k?) — 1 as k2—w . Here & is
the center-of-mass momentum ; from now on we shall
use s to denote k2. [If V(r) has the representation
V()= Sus® du p(u)e=#"/r, (1.3) implies that ue>0 and
that fu® dp p(u)/u<eo.]

In terms of the Jost wave functions ¢ (4=, 7), which
are solutions of the s-wave Schrodinger equation
approaching ¢¥%" asymptotically, the Jost functions
f(=k) are given by

f(£k)=y¢(xk, 0). (1.5)
If there were an EG, we would have
f&)=f(—k)=0 (1.6)

for some point # on the imaginary axis. Then the
Wronskian W[ (k)¢ (—k,7)] would vanish at =0,
which is impossible since W is 7-independent and equal
to 2tk at r — . [If f(k) vanishes at £=0, the zero is
simple,* so again no EG is possible. ]

On the other hand, it is easy to comstruct s-wave
S matrices which exhibit extinct ghosts (Sec. IT). These
S matrices are found to correspond to potentials which
go like 1/#2 near the origin (Sec. IIT). Specific examples
are discussed (Sec. IV). Conversely, potentials with
1/7* behavior for small 7 can be shown to lead in general
to simultaneous zeros in NV and D for some values of the
angular momentum / (Sec. V). However (Sec. VI),
the extinct ghosts which we have found do not lie on
Regge trajectories, and hence do not correspond to the
phenomenon conjectured by Chew.

II. CONSTRUCTION OF AMPLITUDES
CONTAINING EXTINCT GHOSTS

In order to construct examples of partial-wave ampli-
tudes containing extinct ghosts, we shall utilize
Levinson’s theorem, which relates the variation of the

4 M. Goldberger and K. Watson, Collzsum Theory (John Wiley
& Sons, Inc., New York, 1964), p

5That no EG will be produced by such potentials has been
argued by Professor R. Sawyer, whom we wish to thank for several
private communications.
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phase shift from threshold to infinite energy to the
number of zeros of the D function:

(1/m)[:()—d;(th) ]=—Np—Ne¢

(no Castillejo-Dalitz-Dyson poles). (2.1)

To prove this theorem we merely require that the
partial-wave S matrix approach unity as s —o (faster
than 1/Ins). A more useful relation is obtained by
evaluating the contour integral

1 d InS
(e o

_ )dS=NZ—NP,
ds

2.

where the contour C is illustrated in Fig. 1 and Nz(V p)
is the number of zeros (poles) of .S inside the contour C.
The contribution from the circle at infinity vanishes,
since S—1, |s| — «, and the integral across the
right-hand cut gives

1 rdlnS 2
ds=—[5()—5(th)]=—2(Ns+Na). (2.3)

2wi) g ds T

On the physical sheet, a bound state appears as a pole
of S, a virtual state as a zero, and a resonance as a pair
of zeros at complex conjugate positions. Thus

Np—Nz=Np—Ny—2Ng.
Therefore, using (2.3) and (2.4) in (2.2) we derive

1 dInS
dS—NB—NV— ZNR= ZNG. (25)

(2.4)

27ri L dS

In particular, if the left-hand cut of .S' consists solely
of Ny, poles, then

1 AV
dS=NL,

2w L ds

and

Nr—Np—Nvy—2Ngr=2Ng. (2.6)
In this case we can explicitly exhibit the .S matrix in
terms of the positions of the poles. For example, the
s wave nonrelativistic S matrix whose only singularities
in the 2=+/s plane are poles is just

N5 (h4ip ¥o shtib;
s<k>=n( : )H< )
i=t\k—1ip,/ =1 \k—1b;

Nv tk—1vi\ Ve (B—il0n)— om?
XH( ) Xy
b= \k4-305/ m=1 (k41T )2 — i’

where p;, bj, vk, I'm, am are positive real numbers. Note
that the left-hand side of (2.6) must be even or we
cannot satisfy the condition S — 1 both as £— 0 and
as k— ., Equation (2.6) is satisfied even if there are
an infinite number of left-hand cut poles, as in the case
of the exponential potential or the Hulthén potential
in the s wave. These potentials give rise to an infinite
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number of virtual states. For example the s-wave D
function for the Hulthén potential,

)
2ma?\e"l*—1 ’

D(k)=}1(1_m>’

which vanishes on the unphysical sheet at k= — (i/2a)
X(m—Nn),n=1, --+, o, n>4/A.

If the right-hand side of (2.6) is nonzero we have
extinct ghosts. The simplest example is that of 2 left-
hand poles and nothing else, so that

s ki k+iPz,
E—ipy k—ips

and there is one extinct ghost (§(e0)—d(th.)=—m).
(In the S matrix it is, of course, impossible to distinguish
a bound-state pole from a “force” pole; however, the
corresponding potential does depend on how the poles
are interpreted.)

V()=—

is

(2.8)

III. POTENTIALS CORRESPONDING TO
S MATRIX WITH A GHOST

(a) Gel’fand-Levitan-Marchenko Equations

In the previous section we have constructed examples
of amplitudes containing extinct ghosts. However, as
was pointed out in the Introduction, such extinct ghosts
cannot exist in potential theory for sufficiently well-
behaved potentials. In order to determine what type
of potential can produce extinct ghosts, we shall use the
Gel’fand-Levitan equations, which enable one to con-
struct a local potential that reproduces a given partial-
wave amplitude.

Given an s-wave, nonrelativistic S matrix that
satisfies

(a) |S®)|=S0)=S(»)=1,

(b) S(—k)=S(k)=S*(k),

(c) S(k)—1 has an absolutely integrable Fourier
transform, one can always construct a potential that
reproduces this S matrix in the s wave by using the
procedure given by Marchenko®7:

d
V(") =—2—4 (7’,7’) ’ (3'1)
dr

where 4 (x,y) is the solution of the equation®

A (9)+F (e9)+ / 0 A ()P (tH4y) =0, (3.2)

6 V. Marchenko, Dokl. Akad. Nauk. SSSR 104, 433 (1955).

7 L. Faddeyev, Uspekhi Matem. Nauk. 14, 57 (1959) [English
transl.: B. Seckler, J. Math. Phys. 4, 72 (1963)].

8 The scale is determined by choosing the reduced mass =%, so
that Schrodinger’s equation is

L V@=IV D —FW @.
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Fi1c. 2. The contour C’.

and F(r) is given by

1 pte
F()=— / dk e T1—S(#)]
21 J_w
NpB
+i > ResS(k) e omr, (3.3)
m=1 k=ibm

Here ib,,, m=1, - - -, N, are the positions of the bound-
state poles in the % plane.

The potential which produces a given s-wave ampli-
tude is unique only if there are no bound states. If there
are Vp bound states, there will exist an Vp parameter
family of “phase-equivalent” potentials, all of which
reproduce the given amplitude. However, they will
all have the same behavior at the origin.” Also, the
potential determined by (3.1)-(3.3) is still unique.

F(r) can be expressed in terms of the left-hand cut of
the amplitude

A(b=r/5) S(k)—1
== S)= .
2ik
Considering
1
— [1—S(k)Je*dk
Y3 (o4

(C’ is the contour pictured in Fig. 2) for »>0, and noting
that the last term in (3.3) cancels the bound-state pole
contributions, we derive

F(r)=— s)e—™v s, 3.4
» / £(s)e (3.4)
Here
ImA
Ji =)

™

— 0 Ss=<s5:<0

(excluding contributions from any bound-state poles
located in this region). If we now represent A4 (x,y) in
the form

A (x,y)= / a(s,x)e~vV (s, 3.5)

AND B. J.
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we can derive from (3.2) a Fredholm integral equation
for a(x,s):

F(s)eelY O+ =]
a(s,x)— | ds a(s’,
e RV vl

=f(s)e =V, (3.6)
Or, if we define the integral operator &:
RK(s,s'; x)=I—K(s,5; x)=05(s—s")
F(s)e =ty =t e
TV O
we can write (3.6) as
RK(s,s"; x)Qals x) = f(s)e—zvV &), 3.8)

We note that the kernel K is 12 for all =0, since
s12f(s) =0, s— — o and s.<0.

(b) Relation to the N/D Equations

If we write, as usual, A=ND™!, such that D is real
analytic with zeros at the bound-state poles of the
amplitude and V has only the left-hand cut, then N
and D satisfy the coupled singular integral equations

’ D S, d '
N(s)= / f%:(_s)—s (3.92)
0 S, A d !’
D(s)=1—i/ (—‘/—ij(?)—S (3.9b)

We have normalized D to approach unity as s —o.
(Such a D function always exists under the assumptions
we have made about the S matrix.)

If we substitute (3.9a) into (3.9b) we derive a
Fredholm equation for D(s):

1)
D(s)— | ds’
© / Y (=)t (=)

In terms of the operator X (s,s"; x) defined by (3.7)
this can be rewritten as

K (s, ;2=0)QD(s)=1,

D(s)=1. (3.10)

(3.11)
where
K (s,s";x)=%(s",5;%).

Also interesting is the fact that n(s)=ImN(s)/=
= f(s)D(s) satisfies the equation

K(s,s;2=0)Q@n(s")=f(s). (3.12)

Therefore if the operator & (x) is not singular at x=0
it is clear that a(s, x=0)=n(s). If the potential

d
V(x)=—2— / ds a(s,x)e =V 9
dx L
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is integrable, and s,<0 (no infinite range forces), we

can derive an amusing relation between V(x) and
N(s):

%/:, V(x)dx=—1-/;ImN(s)ds. (3.13)

™

(c) Potential near the Origin

If there exist extinct ghosts then the Fredholm
determinant of X is equal to zero when =0, and there-
fore a(s,x) and correspondingly V(x) will develop
singularities at x=0. To investigate the nature of these
singularities we will derive an expression for the poten-
tial in terms of the Fredholm determinant of X.

The resolvent of the operator X is defined by

R(s,s"; x)
K (5,83 2) =5+

A(x)

where A(x)=detX(s,s’; x). Therefore the solution of
(3.8) is

a(sw)= f(s)e=" “‘)-i-X:;)

X / R(s,s'; x) f(s)e==V ")’
L
Let us now evaluate

A(@)A4 (x,2)=A(x) / ds a(s,x)e =Y

= [ asa@s@eros [ as[ av
L L L

XR(s,5"; %) f(s)e=lV VD1 (3,14)
We shall prove that
dA(x)
Ax) A(xx)= . (3.15)

A(x) is given by the Fredholm series
A@) =143 Au(2);

n=1

Sk K (s151)- -+ K(s150)
f dsy- - dsn (;’ v :

n! Ji K (sns1)- - -K(snSn)

(=)m 10+ S
= dsye - +ds, K .
n! S1°* *Sa

In the derivative of A, (x) the # terms involving deriva-

A, (x)=
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tives of the diagonal elements have the form
(=)

n!

XK(SI. . 'S'l;—-lsi-}-l' . .sn)

S1° 'S'L'—lsi-!—l' c e Sh

1
=— /ds F(©)e VDA, 1 (x), n=1.

n
The remaining #(z—1) terms have the form (#=2)
(=)

n!

/ dsy- - -dsn[—f(s@»)e—”["(—“)W(‘*’:‘)l]
L

S1°° 'sj—lsj-i—l' c e Sp

Using the Fredholm expansion of R(s,s’; x),

R(s,s";2)=2 Ra(s,s'; %);
n=0
(=)~ S S1°* *Sa
/dsl---dsnK( ' ),
n! DATRRERN

/ dsds’ Ru_s(s,s"; x) f(s")elY )+ (=01 |

R, (s,s"; 2)=

this is

n(n—1)

The addition of all these terms yields

A, (x) =/ ds An_1(x)f(s)e—2z"(—s)

+ / f dsds’ Ru—2(s,s"; x) f(s")e=lV 3V (=]
L

Summing over #z, we recover the right-hand side of
(3.14). Therefore

Vix)= Zd ! dA = 2d21A
() =— 2;[@53; <x)]—— —Ina)

RO SOIYG
[AG)F

expresses the potential in terms of the Fredholm de-
terminant of & (s,s”; ). Although the integral equation
(3.2) may look rather intractable, we now see that if
an .S matrix model is being constructed with some guess
about the left cut as input, it is always practical to find
out what kind of nonrelativistic potential corresponds
to this left cut by calculating A (x) and applying (3.16).

(3.16)
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The procedure is particularly simple if the left cut is a
finite sum of poles, but even in the most general case,
one has only to calculate a Fredholm determinant and
two of its derivatives.

Some general properties of V(x) follow immediately
from the fact that the operator & is an entire function
of x. Fredholm theory then tells us that A(x) is an entire
function of x in any domain of the x plane where X is
square integrable. Therefore the potential V(x) is a
meromorphic function of x in the right-half x plane
(Rex>0), the only singularities being double poles at
points x, where

A(x)=c(x—x0)", X2 %0

2n

Rex>0,

V(x)=

, X=X,
(26— 20)?

Furthermore if the left-hand cut does not extend to
infinity (in particular if it consists of a finite number of
poles), then & (s,s";«) is an L? kernel for all finite #,
and thus V(x) is a meromorphic function of x for all
finite #, its only singularities being double poles when
A(x)=0.

In this case, if there is an extinct ghost, so that
A(0)=0, then A(x)=~cx", x=~0, n=Iinteger, and thus

2n
V(x)z—2, x~0;

P
extinct ghost, finite left-hand cut, (3.17a)
whereas
V (0)=const.; no extinct ghost,
finite left-hand cut. (3.17b)

If the left-hand cut extends to infinity, then A(x)
is not, in general, analytic at x=0. [For example, for a
Yukawa potential A(x),,0~x?.] However we-can still
show that an extinct ghost gives rise to a potential
that behaves like 1/x2 near the origin. An extinct ghost,
as we have seen, corresponds to the vanishing of the
Fredholm determinant of XK (ss’;x=0); i.e., to the
existence of a solution of the homogeneous integral
equation

K(s,s";2=0)®n'(s")=0.
However, the inhomogeneous equation (3.12) also has
a solution,? since if d’(s) is a solution of the adjoint
homogeneous equation

Kt (s,s’; 2=0)®d'(s")=0,

then d’(s) is orthogonal to f(s):

f () f(s)ds= f ' (5)ds— / T (5)ds=0,
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since sN’(s) — 0, s >« . We have shown that

A (xx)= f ds e =9q(s,x)
L

1
= / ds =/ =9
L A(x)

X/ adj®(s,s"; x) f(s)e=/ ="’
L

_A' ()
AW

Therefore

A’(x)=/L ds

Xe"‘/(‘*)[/ ds’ adjﬁc(s,s';x)f(s’)e“’*’(—s')],
L

where
/ adjR (s,s"; ) K (s, s ; x)ds' = A(x)8 (s—s").

L

Since there exists a function #(s)£0 such that
[ s a=omrat =109,
L

even when A(0)=0, it follows that

/ adj®r(s,s"; 2=0)f(s")ds’=A(0)n(s)=0.

L

Therefore, if
A(0)=0,

A’(O)=/ dsl:/ ds’ adec(s,s’;O)f(s’):'=0.

An extinct ghost thus is equivalent to A(0)=A’(0)=0,
and therefore to

A(x)~acf(x), x~0,

Inf(x)

Inx

then

where

—0

) x'_)or

and ¢= 1. Hence the leading singularity at the origin is®
V (x)=2¢/42, (3.18)

9 We are assuming that A(x) does not have an essential sin-
gularity at =0 which could lead to singular potentials that behave
worse than 1/72 at the origin. Such potentials give rise to un-
bounded phase shifts at infinite energy and thus to essential
singularities of the partial-wave amplitudes.

c=1.
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We have thus shown that if the S matrix has an extinct
ghost the potential (or potentials) that generates it
has a repulsive 1/4? singularity at the origin.

IV. EXAMPLES

When the left-hand cut of the S matrix consists
solely of # poles, the integral equation (3.6) reduces to
an nX# matrix equation. If » is small, the potential
(3.16) can be found without too much effort. As an
illustration, the two-pole S matrix (2.8), which has one
ghost, leads to

Patp1
Po— 1

Alx)=1—

(g"“’l"’— 6—21121)__ —2(ptpy)z |

(4.1)

The corresponding V(x) was plotted for the case
p2=2p1 and found to be a monotonic decreasing
repulsive potential with an exponential tail. Near the
origin, independently of p1,p2,

V (x)=26/x2, (4.2)

in conformity with (3.17a) and (3.17b). Note that it is
not necessary for the potential to include any attraction
in order to produce an EG. As another example, con-
sider the s wave amplitude with three left-hand cut
poles and one bound state, which according to (2.6) also

(arbitrary  units)
o IS

V(x)
N

-2 T T
[¢] I 2 3

x (arbitrary units)

F16. 3. V(%) for pr=1, p=2, p3=3,b=%.
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801

.70

60+

50

(arbitrary units)

401

V(x)

301

20

| 2 3
x (arbitrary units)

FIG. 4. V(%) for p1=1, ps=2, ps=3, b=4.

has one ghost. In the notation of (2.7),
Etips ktips b+ips k+ib
k—ipy k—ips k—ips k—ib

S (k) (4.3)

and we suppose that d<p;<p:<ps. The analytical
expression for the potential given by the Gel’fand-
Levitan equations is somewhat involved, so we present
a plot of V(x) for the case p1=1, pa=2, p3=3, b=3%
(Fig. 3). As in the previous example, V has an exponen-
tial tail and approaches 6/x? at small distances. Of
course it has an attractive well, since it generates a
bound state.

It is interesting to see what happens if one tries
b=4%, since p1<b< ps< ps corresponds to a bound state
whose residue has the “wrong” sign. In this case the
solution of (3.6) is found to lead to the potential shown
in Fig. 4, which is purely repulsive and has a double
pole at a finite x. This pathological potential is clearly
incapable of supporting any true bound states.

As Auberson and Wanders' discovered for the case
of a two-pole left cut, the N/D solution for the ampli-
tude is very unstable if the input parameters are near
the values which would produce an EG. Obviously,
instability of the amplitude near a ghost is a com-
pletely general feature arising from the near vanishing

10 G. Auberson and G. Wanders (unpublished report).
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of the Fredholm determinant of X(s,s";0). However,
this behavior can hardly be construed as a short-
coming of the /D method, since the appearance of a
ghost corresponds to a rather violent change in the
potential ; namely, the introduction of a 1/72 singularity
near the origin. Naturally the amplitude can behave
wildly in such circumstances, no matter what method
one uses to calculate it. However, if one constructs a
model based on a left cut as input and discovers that
one is near a ghost, extreme caution should be used in
drawing conclusions from the calculation.

V. PHASE SHIFTS AND EG PRODUCED
BY ~1/r2 POTENTIALS

Will a potential which has repulsive 1/72 behavior at
small distances always lead to extinct ghosts? To investi-
gate this question we first find out what phase shifts are
produced by such potentials. We suppose that V(r)
is exponentially small at large distances, nonsingular
at finite 7, and that as 7 — 0

V(n=a(z4-1)/7, (5.1)

where \ is a positive constant. To settle ambiguities of
7 in the phase shift, we imagine that V (r) is gradually
turned on, and that the displacement of the wave func-
tion from the free wave is measured.

Consider first the s wave, and suppose that the energy
s=k? is so large that except for the 1/7% peak, V (r)<s.
Then, except near the origin, the wavelength of the
wave function changes slowly as a function of 7. If
p(7) is the wave number, then

sp=p(r)—p(*)=—Q1/)V (), (5.2)

(where v is the velocity of the particles), since 8 (kinetic
energy)=1v3p=—"V (7). Then since d¢ (r)/dr=p(r), where
¢(r) is the phase of the wave function, the phase shift
produced by the part of the potential at 7>r,, 7, being
outside the 1/72 peak, is just

1 0
= ——/ V(r)dr,
VJr

which goes to zero at infinite energy.

Thus the phase shift at £ —o comes only from the
M(\+-1)/7* singularity at the origin. This would also be
true if the potential were exactly A\(\+1)/72 at all 7,
but for the latter potential §(e)=5&(any energy)
= —\r. Therefore for the actual V (r)

0(0)=—2r.

(5.3)

(54)

To find §(k=0), we note that the low-energy behavior
and the bound states cannot be affected by cutting off
the 1/72 peak at, say, 1087 BeV. The low-energy wave
functions are, after all, strongly excluded from this
peak. Now the amplitude generated by the cut-off
V(r) will have the standard analytic and asymptotic
properties which allow one to construct the N/D
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representation and prove the orthodoxLevinson theorem
1/7[86(0) —8( %) ]=Np. With our normalization of phase
shifts, §( 0 )=0 for this potential, so

8(0)==N5. (5.5)

Turning now to arbitrary angular momentum, we
recall that the amplitudes generated by V(r) can be
continued in "' Writing V(r)=\(\4+1)/7242(r), one
may group the 1/7% term with the centrifugal potential
1({4-1)/7%; the remaining potential V(r) is finite at
r— 0, and has a 1/7? tail. Thus the amplitude will be
analytic in the “effective angular momentum” L
defined by

L(L+1)=10+1)+N0+1), (5.6)

hence in the actual angular momentum /. Owing to the
square-root singularity in the map connecting / to L,
(5.6), the amplitude will have a branch cut connecting
the points /= —3%=£4[A(\+1)]'/2. This is a trivial com-
plication; we restrict attention to Re/> —1.

For ! real and non-negative the effective potential
Ver=1({+1)/r*+V (r) has a real, repulsive 1/#* sin-
gularity at the origin. By the same argument as for
s waves, we conclude that 6;(0)==N3z!. But now the
1/7* peak leads to

8i(0)=—3(L—Dr. (5.72)

It is convenient at this point to redefine the phase shift
by setting §;(0)=0, whereupon (5.7a) becomes

& (°)=—n[Ng'+3(L—-D)]. (5.7b)

When there are Ng! bound states and N¢! extinct
ghosts, the D function may be represented in the form

[8:(0)=0]
s—so [* 8:(s")
Di(s)= expl:— / ds’—————]
™ [} (S'—S) (S’—So)
Npl S—SB;Z Ngl S—SGjl
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i=1 So—Spl =1 So—Sg;l

(5.8

where s is the subtraction point, and sp/ and se/l
are the positions of the bound states and extinct ghosts.

It follows from (5.8) that for large s, apart from pos-
sible logarithmic factors,

Dy(s) o shi (@) Im+NpHNg!

Or, from (5.7b),

Dy(s) sHI-D+NG

(5.9

(5.10)

Although the partial-wave .S matrix generated by
V (r) approaches a constant as k£ — o, this constant is
not, in general, unity, because % (L—1I) is not, in general,
an integer. Correspondingly D;(s) does not approach a

constant. Now in defining an EG as a simultaneous zero

11 H. Bethe and T. Kinoshito, Phys. Rev. 128, 1418 (1962).
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of “N” and “D,” one must obviously specify the asym-
ptotic behavior of D to within one power of s, to pre-
clude the possibility of adding or deleting simultaneous
zeros at will by multiplying or dividing both N and
D by factors of the form (s—s¢). In order to fix pre-
cisely what asymptotic behavior is to be allowed, we
note that if N and D are to obey dispersion relations
containing no arbitrary subtraction constants apart
from normalization, D must not diverge as fast as 4/s.
On the other hand, if D converges more rapidly than
1/4/s, it is possible to multiply N and D by a factor
of the form (s—sg), thereby obtaining an N and D
which contain an additional simultaneous zero but
which still obey dispersion relations involving no
subtraction parameters. Consequently, from (5.10)
we have the condition

—3S—3(L—D+Ng<3. (5.11)

Thus for given real ! (in the range of interest), the
number of extinct ghosts is determined by the condition

3(L—D—3=NI<F(L—-D+3. (5.12)

Since L>1, N¢' will be non-negative, as it should be.

Taking /=0 as an illustration, it follows from (5.6)
and (5.12) that V(r) will produce no s-wave EG if
A=1. There will be one EG if 1<A=<3, two if 3NS5,
etc. In the examples of Sec. IV, the .S matrix was con-
structed to approach unity asymptotically, so that
Dy(s) — 1, s—o. In this case the existence of one
ghost corresponds to 3 (L—7)=1, so that \=2, which is
why the coefficient of the 1/72 peak always came out
to be 6.

VI. REGGE TRAJECTORIES

Do the extinct ghosts which ~1/7% (small ») poten-
tials produce lie on Regge trajectories? Disregarding our
relativistic motivation, there is no reason to expect
that they do, since an EG in some specific partial wave
is not a pole of the .S matrix. In fact, since 3(L—10) is
a continuous function of /, it is clear that if there is an
EG for one ! there will also be one for a continuous
range of / surrounding this value. Thus these EG are
not “Regge ghosts” of the type proposed by Chew where
a Regge trajectory is extinguished at only one value of
l. If they lie on Regge trajectories at all, they corre-
spond to a situation in which a virtual trajectory lies
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directly beneath a bound-state trajectory in the s
plane for a continuous range of /. Such trajectories must,
of course, remain ‘“parallel” for all I/, since they are
analytic functions of /. One may verify, however, that
d[3(L—1)]/dI<0, with (L—1)—0 [cf. (5.6)] as
l— 4 o, Thus, from (5.12), Ng' must be zero for
sufficiently large /, so that there cannot be an EG for
all /. Consequently the EG which we have found in
potential theory do not lie on Regge trajectories.’?

VII. CONCLUSION

Whereas for well-behaved potentials extinct ghosts
do not exist, it is easy to construct partial-wave ampli-
tudes, relativistic or nonrelativistic, which do exhibit
these ghosts. We have shown that such nonrelativistic
amplitudes are generated by potentials with repulsive
1/7% singularities at the origin. Conversely, a potential
with a A(\+1)/7? singularity at the origin (A\>1) will
always produce an extinct ghost in the s wave. However,
if an extinct ghost exists for some value of the angular
momentum I, then one will appear for all 1=/, al-
though for sufficiently large / there will be no extinct
ghosts. Therefore these potential-theory extinct ghosts
do not lie on Regge trajectories and thus, except perhaps
for singular potentials (worse than 1/7? at the origin),
the phenomenon conjectured by Chew cannot take
place in potential theory. Even though most of our
intuition about Regge poles arises from potential theory
this result does not necessarily make Chew’s mechanism-
unlikely—since only in a crossing symmetric relativistic
theory does the physical requirement for such a mech-
anism arise.
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