PHYSICAL REVIEW

VOLUME 152,

NUMBER 4 23 DECEMBER 1966

Chiral Algebra, Configuration Mixing, Magnetic Moments, and
Pion Photoproduction

I. S. GErSTEIN* AND B. W. LEE}
Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania
(Received 28 June 1966)

We develop a model for baryon states as a mixture of representations of the chiral SU (3)QSU (3) algebra
generated by the time components of vector and axial-vector currents. Ourmodel predicts a sum rule G4
=141 G*2, where G4 is the axial-vector coupling constant of the nucleon and G* is the nucleon-(3,3)-
resonance matrix element of the axial current. We show how to derive G* from experiment, and using this
information get G4 =1.25. Using the electric dipole operator we also obtain that the magnetic moment of
the nucleons is pure isovector, as is the photoproduction amplitude of the isospin-} pion-nucleon resonances
from nucleons. A value for the magnetic dipole transition from the nucleon to the (3,3) resonance is found

which also agrees with experiment.

I. INTRODUCTION

IN a previous paper we presented a model for baryon
states based on the chiral U(3)QU(3) algebra at
infinite momentum.! The model was based on the idea
that the expectation values of the commutators of the
time components of vector and axial vector currents
between stable octet baryons, at infinite momentum,
are saturated by single-particle states and resonances,
and therefore these states form a representation of the
chiral U(3)QU(3) algebra. The known behavior of
the moment operators of the electromagnetic current
under the chiral algebra then allows us further to
deduce the consequences of the model for the electro-
magnetic form factors and various electromagnetic
transition moments of the baryons.

It is the purpose of this paper to give a detailed
analysis of the results presented in the previous paper,
together with subsequent developments on the photo-
production of pseudoscalar mesons. In preparing this
article it was felt worthwhile to reiterate our basic
assumptions as to, in the first place, what subalgebra
of the algebra of current components we assume to be
“good,” i.e., to be saturated by a finite number of
low-lying excitations, and secondly, what sort of states
are supposed to saturate the selected current com-
mutators. We shall discuss the scheme based on the
idea of ‘“orbital helicity excitation” and the con-
comitant problem of configuration mixing of the
“quark helicity’”” and “orbital helicity.” This is done
in Sec. II. Nothing really new is developed in this
section, but some confusion on this matter in the
literature prompts us to include this material.

In Sec. III, the expectation values of the com-
mutators are decomposed according to their SU(3)
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transformation properties so as to provide us with a
convenient means of discussing the solutions to the
sum rules resulting from the chiral current com-
mutators. Here we also discuss the connection between
the Weisberger-Adler> sum rule and the sum rule
saturated by (idealized) discrete single-particle states
and resonances. This discussion relies on the Wigner-
Eisenbud theory? of nuclear reactions. As a byproduct
of this discussion, we suggest a relatively simple pre-
scription for analytic continuation of resonant ampli-
tudes in the pion mass, since, in the Weisberger-Adler
sum rule, the pion-nucleon scattering amplitude refers
to that for zero-mass (external) pions.

In comparing the predictions of our model with
experiment, we felt that the effects of SU(3) symmetry
breaking could be very important and that without a
detailed study of symmetry-breaking corrections, com-
parison of SU(3) symmetric solutions with experiment
would be of little value. Fortunately, many of the pre-
dictions of this model are true also in the chiral
U(2)QRU(2) subalgebra, as pointed out in Ref. 1, so
we test our predictions for the pion-nucleon system
where there exist some reliable experimental data. In
Sec. IV we discuss the magnetic moments of baryons
and the pion photoproduction off the proton based on
our model.

II. CHIRAL ALGEBRA AND CONFIGURATION
MIXING

The commutation relations of space-integrated cur-
rent components we wish to make use of are
[Ao', 47 ]=1finVo*,

i:j7k=07 1, )8 (1)

where V¢* is the space integral of the time component
of the conserved vector current Vo*(x,t) of SU(3)

2 W. I. Weisberger, Phys. Rev. Letters 14, 1047 (1965) ; Phys.
Rev. 143, 1302 (1965); S. Adler, Phys. Rev. Letters 14, 1051
(1965) ; Phys. Rev. 140, B736 (1965).

3 See, for example, J. M. Blatt and V. F. Weisskopf, Theoretical
Nucleag( Physics (John Wiley & Sons, Inc., New York, 1952),
Chap. X.
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type k:
Vb= / Bx V" (x,1)
while

Aoi(t)= /d“x @gi(x,t)

is the space integral of the time component of the
octet axial vector current Q¢f(x,f) of SU(3) type .
Ao?(?) is not conserved in time; for definiteness we take
Ag¢* to be A¢*(t=0). The Lie algebra generated by A*
and V* is the chiral U(3)QU(3) algebra. The rest of
the algebra states that V¢ is the generator of the U(3)
group and that 4¢*is a tensor operator (octet-}+singlet)
under SU(3).

We shall assume, in this section, that SU(3) is an
exact invariance. We consider the expectation value of
the commutation relation (1) between the stable
baryons (spin parity 3%) of SU(3) type ! and m at
infinite momentum (p,= 0, p,=p,=0) and helicity %:

(Bust(p= »23)|[Ao",A¢"]| By2™(p= 0 5)
=1fi(Buat(p=20&3)| Vo*| Bya™(p=0&;)). (2)

The reasons we choose to consider the expectation
value of the commutator (1) of the chiral algebra at
infinite momentum are the following*:

(a). As emphasized by Fubini and Furlan?® this
choice of the momentum leads immediately to a sum
rule which is relativistically invariant.

Thus, as shown by Adler and Weisberger, the expec-
tation value (2) of the commutation relation

[Ag+ide?, Ait—iAP]=2V¢ 3)
leads to the sum rule
dv4
#3
XIm[Ty2(»,0)— T32(»,0)]=1, (4)

where G4 is the weak axial vector coupling constant,
m is the nucleon mass, g,2/4r=~15, and T1(»,0) is the
forward scattering amplitude of the zero-mass pion off
the proton in the isospin-/ channel at the incident
laboratory energy ». T7(»,0) is normalized so that

mGa\2 1
(2
8r

Im7T;(»,0)=vor,

where o7 is the cross section in the isospin-/ channel.
In deriving (4), use is made of the hypothesis of

4 A similar discussion has been given also by R. F. Dashen and
M. Gell-Mann, in Proceedings of the 1966 Coral Gables Conference
on Symmetry Principles at High Energy (W. H. Freeman and
Company, San Francisco, 1966).

5 S. Fubini and G. Furlan, Physics 1, 229 (1964).
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partially conserved axial-véctor current (PCAC):
a“A“i___. —iﬂszA(l/gr) ‘P‘rri(x) ’ i= 17 2) 3 (5)
where ¢,* is the pion field and p is the pion mass.

(b). Unlike the case of static SU(6), the invariant
momentum transfer between the initial (or final) state
and the intermediate state is zero.

This circumstance leads to a considerable simplification,
since we need not concern ourselves with the depend-
ence of the scattering amplitude on the momentum
transfer between the initial (or final) state and the
intermediate states. Furthermore, this momentum
transfer is fixed at zero, so that the PCAC hypothesis
should be a good approximation.

(c). We have reasons to believe that the sum over
intermediate states is rapidly convergent.

The work of Dashen and Frautschi® may be used to
infer that when a complete set of intermediate states
is inserted on the left-hand side of Eq. (2), lower mass
states will dominate the sum and the sum will converge.
In Eq. (4), the Pomeranchuk limit of the cross section
guarantees the convergence of the integral. In fact, the
amplitude Ty/2(»,0)—T'32(»,0) is proportional to the
forward charge-exchange amplitude p+=—— n+=9 so
that it should be proportional to »2®  where a,(t) is
the p-meson Regge trajectory: a,(0)=0.5. Further, our
previous work” indicates that the contribution of at
least a certain class of higher mass intermediate states
(those that exist even in a free-field model) will vanish
in this limit.

Thus we may hope that the left-hand side of Eq. (2)
is approximately saturated by a few low-lying exci-
tations of the baryon spectrum. This means that the
contribution of a few resonances will saturate the
dispersion integral on the left-hand side of (4). These
states then form a representation of the chiral U(3)
QU(3) algebra. The representation may or may not
be reducible.

It was shown in previous papers”® that the chiral
algebra in the infinite-momentum limit is equivalent
to the collinear U(3)QU (3) algebra, in the sense that
the two algebras are isomorphic and the diagonal matrix
elements of the two algebras coincide. We shall label
irreducible representations of either algebra by (1,m),
where # and m are the dimensions of the SU(3) repre-
sentations generated by (Vo440 or 3(Vei+A44)
and 3(Vo'—A40%); N is the eigenvalue of the operator
A4 which we shall refer to as the quark helicity.

In a first approximation,® the octet of 3+ baryons

6 R. F. Dashen and S. C. Frautschi, Phys. Rev. 145, 1287 (1966).

71. S. Gerstein and B. W. Lee, Phys. Rev. 144, 1142 (1966).

8 N. Cabibbo and L. A. Radicati, Phys. Letters 19, 697 (1966);
Ref. 4; R. Oehme, Phys. Rev. 143, 1138 (1966) ; D. Amati and S.
Bergia, Nuovo Cimento 45, 15 (1966) ; C. Ryan, Phys. Rev. 147,
1139 (1966).

9 I. S. Gerstein, Phys. Rev. Letters 16, 114 (1965).
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and the $+ decimet are assigned to the representation
(6,3)1/2 and this classification leads to the well-known
SU(6) results. Since some of these predictions are not
satisfactory, we must allow the baryons to transform
reducibly under the algebra. Furthermore, as we shall
see later, in order to obtain nonzero magnetic moments
we must allow an additional degree of freedom asso-
ciated with an orbital-angular-momentum excitation.
To be more precise, we must introduce a degree of
freedom which we define as the orbital helicity
As=J;—\, where Js is the true helicity. In a pure
quark model, we have

J3=Ast+345,

r=mi [ q*(x)(x%—y:—x)q@ ,

A= / %% " (x)o109(X) .

(6)

The structure of the relevant algebra is U(1)QU(3)
®U(3), and we are lead to classify physical states as
linear combination of representations [ (7,m),A35].

We must emphasize here that we do not require the
states which comprise a representation of the chiral
U@B)XU(3) algebra to be a linear combination of a
few irreducible representations of SU(6)w. We allow
the possibility that the states which form a represen-
tation of the chiral algebra may have projections on a
very large (perhaps infinite) number of SU(6)w irre-
ducible representations. Since we do not consider
SU(6)w to be a “good” algebra in the sense of Dashen
and Gell-Mann,® there need be no constraint between
the U(3)QU (3) contents of, say, the helicity ¥ decuplet
states and of the helicity § decuplet states. On the other
hand, if we assumed the helicity 1 decuplet states, for
instance, to belong to [ (6,3)1/2,0] of the SU (6)w 56-plet
with L=0, we would have to assign the helicity
decimet states to [(10,1)3/2,0].1

The angular momentum operator for particles at
infinite momentum, §, is obtained by a Lorentz trans-
formation from J, the spin defined in the rest frame.
Noting that the components of J are components of a
4-dimensional antisymmetric tensor J,,, we obtain

81=6]1—SK2,
S<2=6J2+SK1:
Js=Ts,

W R. F. Dashen and M. Gell-Mann, Phys. Letters 17, 275
(1965). See also, S. Fubini, G. Segrg, and J. D. Walecka, Ann.
Phys. (N. Y.) 39, 381 (1966).

1 Schemes of this type have been pursued by many groups.
See, for example, R. Gatto, L. Maiani, and G. Preparata, Phys.
Rev. Letters 16, 377 (1965); H. J. Lipkin, H. Rubinstein, and
S. Meshkov, Phys. Rev. 148, 1405 (1966).
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where
c=lim m7(p*+-m?)' 2,
p—)oo

s=lim m™1p.
P00
We would like to point out that the W spin, whose
components are 343,

1 1
5 f 3% T (x) and p / & T30 (x)

in a quark model where T,,(x) has the structure
¢t (x)Bo,q(x) is in general not a wvector transforming
like §=1. This implies that F—W does not commute
with W and therefore Ly=3—W and W cannot be
added vectorially to form the total angular momentum
at infinite momentum . Dashen and Gell-Mann*
suggested a way out of this difficulty. They suggested
that it may be possible to write =A-+3= so that
[A;,Z;]=0 for all ¢ and j=1, 2, 3, and 3X is unitarily
equivalent to W. Such a scheme would enable us to
classify physical states as linear combinations of rep-
resentations of 0(3)X.SU(6). This is an alternative to
our scheme where we restrict ourselves to helicities
{3, As, and 34:° and the chiral algebra. Another de-
parture of our considerations from the configuration-
mixing schemes of other authors! is that we do not
insist that the representations we consider are neces-
sarily those predicted on the basis of a simple three-
quark model. Since we do not assume SU(6)w to be a
good algebra, there hardly seems to be any justification
to be so restrictive.

We shall consider, in addition to the expectation
values of A%, the magnetic moments of the baryons.
The operator that gives the anomalous magnetic
moment at infinite momentum is the electric dipole
operator’?:

(Bya(p= ©3)| Dy| B_yja(p= 0 &3))

=V2Fy(0)=V2us', (7)

where ug’ is the anomalous magnetic moment of the
baryon B and

Dy=Dy 413D,

’

Dyi= —i/d% V2 (xk4y) 0o (%)

Under the chiral algebra D.¢ transforms like a linear
combination of (8,1)o and (1,8),:

Dying(Voit-As)+3(Vei—A45). (8)
A direct computation shows
[S(&D:l:i]::l:D:l:i’ (9)

12 N. Cabibbo and L. A. Radicati (Ref. 8).
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which means that D.? has A;=-1. Thus the expec-
tation values of D, between two states of A3=0 must
vanish, and this is one of the prime motivations for

exploring the possibility of an orbital excitation. The
commutation relation

46 Du=if] =i [ Eei2inet®], (0
when specialized to the isospin structure of the pion-

nucleon system yields the analog of (4):

GAm 11 dv

g emJ »?

Gapv'+

8 4
X Iml:gSs/zv(V,O)+551/2V(V,0)] =0, (11)

where ¢%/4r= (137)", uy’ is the isovector anomalous
magnetic moment of the nucleon, and S;¥(»,0) is the
forward (zero-mass) pion production amplitude by
isovector photons in the isospin-/ channel. (We treat
the photon as a member of an octet. This is permissible
in processes which are first-order in e.) It is so nor-
malized that the forward pion production cross section

is given by
.
dQ o= Py

neglecting the isopsin dependence. Here W is the center-
of-mass energy, p. and p, are the pion and photon
momenta in the barycentric system, respectively, and
for zero-mass pions, p,=p,. In deriving Eq. (11), use
is made of the conservation of the vector current:

2

— —S(v 0)
4o W

80/ 0t=V - Vi,

el

(al—/dsxfﬁl(r):l:i‘vz(r)jlﬁ%

which implies

<alDilﬂ>— )v 018y,

E.#Eg

Ep——

where E, is the energy of the state |a). Equation (11)
was derived previously by Fubini, Furlan, and Rossetti'?
from a dispersion-theoretic approach and extended to
finite-momentum transfer by Riazuddin and Lee.!*

18§, Fubini, G. Furlan, and C. Rosetti, Nuovo Cimento 40,
1171 (1965) 43 161 (1966).

 Riazuddin and B. W. Lee, Phys. Rev. 146, 1202 (1966).
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III. ADLER-WEISBERGER SUM RULE

We observe that the spin £+ decimet, 3~ singlet
(1405 MeV), 3~ and §* octets make dominant contri-
butions to the Adler-Weisberger sum rule? and its
strange-particle analogs.'d We shall make the approxi-
mation that the expectation values of the commutators
(2) for the i+ stable baryon states are saturated by
these states and the 1+ baryon states. When we treat
these resonances as smgle particle states, there result
a set of nonlinear equations from (2):

—GGat3VS5IF(10,34) ]2
—Re X

JT=§", 5"

F*(84,J)F (8,77)=0,

GG [FBu I +3 2 [F(8a /M|
JT JT

(12)
+3F(Li)|2=1,
—2G2—2% |F(8,,J™)|*+1|F(10,51) 2
J’II’
+3F(1,37)[2=0,
where
G.=V30G4, (13)

=(5/3)"*(1—a)Ga,

a/(1—a) being the F/D ratio for the weak axial vector
current coupling, and

(N, J™) 2| Ao | B3 y2)p>0

= (]

Here | (V,»,J™)s) is the state of y=(I,1z,Y) belonging
to an N-plet of SU(3) and of spin parity J* and
helicity 4.

A possible (but not unique) solution to (12) is ob-
tained if we assume these states to form a reducible rep-
resentation [(6,3)1/2,0JBL(3,3)—y2,1DLE,x, —2]
(A arbitrary) of the chiral algebra. Of wvarious
possible assignments we have looked into,'® this choice
appears to be physically significant, especially with
respect to the electromagnetic moments of these states.
Note that the SU(3) content of (6,3), (3,3) and (8,1)
is exactly that of the states appearing in Eq. (12).

NE)F(N;,J”). (14)

15 C. A. Levinson and I. J. Muzinich, Phys. Rev. Letters 15
715 (1965); L. K. Pandit and ]J. Schecter, Phys. Letters 19, 56
(1965) ; D. Amatl C. Bouchiat, and J. Nuyts, Phys. Rev. Letters
19, 59 (1965) W. I Welsberger, Phys. Rev. 143, 1302 (1965).

16 One of the possibilities is discussed by H. Hararl, Phys. Rev.
Letters 16, 964 (1966); 17, 56 (1966).
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We write

| (8,5%)12)=cosB] (6,3)12,0)
+ (sin,B)[cosa [ (3;3)—1/2)1>
+Sinai @1 3—N1,
| (107%+)1/2>= l (6:3)1/2:0> )
[(1,57)y2)=13,3)-y21),
| (8,37)12)=—sing siny| (6,3)1/2,0)
+ (cosy sina+-cosB siny cosa)
X8, 5—N) (15)
+ (—cosy cosa+cosg siny sina)
X[ 3,3)-y21),
| (8,5%)1/2)=—sinB cosy| (6,3)1/2,0)
+ (—siny sina+cos@ cosy cosa)
X[ (8,15 5—N)
+ (siny cosa+-cosB cosy sina)
X|3,3)-y2,1).

We have not written down the SU(3) “magnetic”’
quantum numbers explicitly, nor the relevant SU(3)
contents of (#,m), on the right-hand sides. This should
not cause any ambiguity. The solution of Eq. (12) is
characterized by three parameters «, 8, v. A straight-
forward calculation using the Wigner-Eckart theorem
gives

G.= (5/3)"2(cos?B+sin?8 sin%) ,

16
Go=V3(% cos?B+sin?8 cos?a) , (16a)
and
F(1,3)=%V3 sing sine,
F(10,3%)=(8/3)"2 cosB,
F(8:,3)=(5/3)"2[—cosB sinf siny
~+sing sina(— cosy cose
+siny cosB sine) ],
F(84,3") =V3[—2 cosf sing siny
~+sinB cosa(cosy sina
+siny cosf cose) ], (16b)
F(8,,57)= (5/3)2[ — cosB sinf cosy
~+sing sina(siny cosa
+cosy cosf sina)],
F(84,5)=V3[—2 cosp sinB cosy
+sinB cosa[ —siny sina
~+cosy cosB cosa)].
From Egs. (13) and (16) we obtain
Ga=(5/3) cos?8+sin?3,
2 cos?B+sin?@ sinfe (17)

(44
—= (F/D)axial vector = X 5
—a cos?B-sin?B cos’a
and

Ga=1+%|F(10,3+) 2. (18)

GERSTEIN AND B. W.
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The relation (18) holds even under the chiral U(2)
QU (2) subalgebra when the SU (3) symmetry is broken
and F(10,3%) is appropriately defined as

F(103Y)=G*=(Ayst*| Ao'+i4| P1j2)pro s

so that we can test this relation for the pion-nucleon
system.

The above discussion is based on the approximation
of treating resonances as single particles. We digress
here to discuss how the predictions such as (16a) and
(18) should be compared with experiment and to
establish the connection between the Adler-Weisberger
formula (4) and the single-particle representation of
the current algebra such as Eq. (12). We first decompose
the amplitude T'7(»,0) into partial waves:

4 /W W2—m?
T:(v,o>=—(—)z T+, g= ,
g\m/ J* 2w

where ;27 is the quantity represented by e#@/™
Xsind(Z,J™) when the external pions are on the mass
shell. In some sense the single-particle representation
must correspond to the Breit-Wigner resonance approxi-
mation to fs=I. Thus, for example, the quantity G*
must be identified with'’?

mGa\? 1
HE0g)=t6m=(—) -

8r ™
dv 4 (W\?
X/_'_<—) [3/2*** Jresonance,  (19)
¥ og\m

where W=m?+2myv, and [#32**/*] resonance stands for
the Breit-Wigner formula for the [(3,3)] resonance.
The factor of 1 on the left-hand side comes from the
square of the isoscalar factor of deSwart:

(8 8 10)
11 101 4,1/

%PN‘IFO (W)
[t3/2+3/ 2 (W) ]resonance= - R
W—Wa—3il(W)

(20)

where Wx~1236 MeV, T'(W) is the (energy-dependent)
total width, and T'y»mw)® is the partial width of the
(unphysical, zero-mass) pion-nucleon channel. For
T'(W) we may use the expression suggested by Gell-
Mann and Watson

r (W) =7 (pwa)a/[]- + (Pwa)2:| ’
pa=[W?— (mA+p) JLW2— (m—p)¥]2/2W .

(W) is the imaginary part of the self-energy of the
resonance and therefore the momentum p, here refers

21)

17 See also D. Amati and S. Fubini, Ann. Rev. Nucl. Sci. 12,
32.15368962); R. Gatto and G. Veneziano, Phys. Letters 20, 439
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to the barycentric momentum of the (physical) pion-
nucleon system which gives the on the energy-shell
part of the self-energy. On the other hand, I'y.*(W)
is the decay width of the resonance into the nucleon
and (unphysical, zero-mass) pion, and therefore it
appears appropriate to continue $, to u=0:

Twa*(W)=7(ga)*/[1+ (ga)*]. (22)

Combining Egs. (19), (20), (21), and (22), and using
the values for 4 and a given by Dalitz and Sutherland,8

y=63.5 MeV,
a=1.23/u,

[which gives the width of the (3.3) resonance I'(W,)
=110 MeV] we obtain

F(10,3%)=G*=1.03. (23)

[We truncate the integral on the right-hand side of
(19) at W=3.58 BeV. The truncation error is estimated
to be at most a few percent.] Adopting the value
G*=1.0 for convenience, we get from (18)

Ga=1.25, (24)
and from, G*= (8/3)"/2 cosg,
cosB= (%)%, (25)

The choice cos’a=%£ in Eq. (17) gives, independently
of the value of cospB,

(F/D)axial vector = % . (26)

The relation (18), Ga=143(G*)? is especially sig-
nificant since it is independent of the values taken by
the mixing angles, o, 8, and v.

For the second and third resonances, we deduce, just
as (19),

| (ZoV/5)F (84, J")+3F (8a,07) |2=4[G4'(8,J7) ]
mG4\2 1 dv 47
= - - '—(] +%)D 2 (W):]resonance
S HER

8 P

Tr=4-, 5. (27a)

wljor

Since these resonances are far away from the =NV
threshold, we make the approximation that I'y, and
T' are constant.

[1or (Y ]m e
tyn T —
W—Wo— %I
1 dv 4 /W
-/ _‘(—) (D7) Jesonanee
/) v g \m
NTWO WOZ_
——~(J+2) @'=—
QO W2 ——m 2W

For the second resonance §~, we use Wo=1518 MeV,

18R. H. Dalitz and D. G. Sutherland, Phys. Rev. 146, 1180
(1966).
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I'=120 MeV, I'y,/T'=0.75. We obtain for the right-
hand side of Eq. (27) 0.090; For the third resonance
5+ Wo=1688 MeV, T'=100 MeV, T'y,/T'=0.85.1 The
right-hand side of Eq. (27a) is 0.068. These are to be
compared with the left-hand side of (27a), for which
we obtain, with cosB=$'2, cosa=3§?,

[Ga'(8,37) =1 (5/3)"2)* sin’y,

[GA'(8,37) =13 (5/3)")* cos’y.
With cosy= (3/7)/2, the left-hand side of (27a) is
0.045 for 3~ and 0.033 for §+. [The value cosy=(3/7)/?

is obtained by fitting the relative contributions of the
J7=3%" and §* states.]

(27b)

IV. MAGNETIC MOMENTS AND
PHOTOPRODUCTION OF PIONS

As pointed out in Sec. II, the expectation value of
the electric dipole operator Dy for the baryon state is
proportional to the anomalous magnetic moment of the
baryon. From the commutation relation (10), we obtain

{B1/2'|[40",D17]| B_1/2™) p0ts=0, (28)
where we have used the fact that
<Bl/2ll /d% x@o"(x) [B_1/2m>p_,°oé,=0. (29)

When a complete set of physical states is inserted
between the two operators in Eq. (28), there result
relativistic sum rules of the kind Eq. (11). Saturation
of the commutator (10) by the same set of states as
discussed in the previous section, on the other hand,
gives a set of equations for the reduced matrix elements
of the operator D7 The matrix elements of D’ how-
ever, can be determined from the transformation
properties of the operator D,7 under the chiral algebra
and under the rotation about the direction of the
momentum. These are given by Egs. (8) and (9).
We denote

8 8
(B 10,01 Bap) =2 E (0t G0)
¢ \B a
where in the SU(3) limit, we have
S= B (g hun),
M (l’-p +3u ) (31)

pi'=—(GV/15)un.

The state | B_12®) can be generated from |By;2®) by
the mirror operation? M = Pei™/2, where P is the parity
operator. The operation M is an automorphism of the
chiral algebra, such that under M, J3— —J3 Vi — Vi,
Aot— — Aot and [(n,m)r,A3]— [(m,m)_, —As]. Thus

19 A. H. Rosenfeld et al., University of California Radiation
Laboratory Report No. UCRL- 8030, 1965 (unpublished); Rev.
Mod. Phys. 37, 633 (1965).

2 This is also discussed by R. Gatto et al. (Ref. 11); H. J.
Lipkin and S. Meshkov, Phys. Rev. 143, 1269 (1966).
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from (15)

IB_1/2(5)>=M‘BU2(15)>
=cosp| (3,6)-1/2,0; 88)
+sing[cose] (3,3)1/2, —1; 88)
+Sin0£l (1;8)—>w —%-I—)‘) 86)]7

where the state |(#,m))A3;N») is the state of
v=(I,12,Y) of an SU(3) N-plet. We have therefore
(B1/2' | D1 W | B_1/2®) porty

= const X (cosf sinf cosa){A;=1|3VZ(x+iy) | As=0)

X[((6,3)12; 8|3 (VoM +A43™) [ (3,3)1/25 88)

+((3,3)-1/2; 8a|5(Vo™ —A3M) [ (3,6)-1/2; 88)]. (32)
In Eq. (32) we have retained only the nonvanishing
terms: only the products of (3,3) and (6,3), and of
(3,6) and (3,3) can couple to (8,1) and (1,8). Further-
more, the two terms in the square bracket are equal,
as one can show easily by the M operation. Therefore,
all the matrix elements of D, can be expressed in terms

of one parameter. When we reduce the expression (32)
in the form of (30) we find

ws' = (\/5)m cosB sinB cosa,
. (33)
o' =m cosB sinB cosa,

where m is an undetermined constant. Equations (31)
and (33) imply

(34)
i.e., the isoscalar anomalous magnetic moment ug’ of

the nucleon vanishes. The F/D ratio of the anomalous
magnetic moments of the stable baryons is

(F/D)w=}. (35)

in excellent agreement with

I'LP,= —HMn,

Equation (34) is
experiment.
We decompose transition moments as

((N,V,]T)1/2|D+()‘) I (8:“7%-'_)—1/2)13-’50@3

8

=7 Zs: < ]\:E)E(N ™). (36)

i3

A similar calculation as for the stable baryon octet
yields for the $+ decimet

E(10,3%)= (3)}(1/cosB)u,'. (37

The quantity (Ayzt| D4 | p1/2) at infinite momentum is
actually a linear combination of the M1 and E2 tran-
sition moments. Experiment indicates that the E2
moment is negligible. In this approximation

p*=(Ayst | NMs| pr/2)p=0=VZ(Ays* | D | p—1/2) psots,

so that
p*=V2(\/3)E(10,5%)= (V2/cosB)uy - (38)

In our previous paper, the value for u* as obtained
from (38) with cosB~(%)* was compared with the
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phenomenological value deduced by Dalitz and Suther-
land. The following method of deriving a value for
E(N,J™) directly from experiment [analogously to the
computation of F(N,J™) above] seems more appro-
priate, however. When we compare the sum rule (11)
and the equation one obtains by saturating the com-
mutator (10) by a finite number of discrete states, we
see the correspondence:

3F(10,31)E(10,5+

GAm 1 1 dV
= R / —;Im[s:;/zvjresonance, (39)

g emJ) v

where [S3/s" Jresonance 1S the resonant T'=3%, J7=3+
amplitude. We decompose the amplitude S(»,0) as

dr /W 2741)12
st-2(T) g 0"
g\m/ J 2
XALU+3)78,7+ (=), ]
-6~ (T,
where our amplitudes 8.7, 9/, 6_7 and 9M_7 are

related to those of Chew, Goldberger, Low, and Nambu
(CGLN)% by

8.7 =q[(I+1)(+2)]"Ey,,
N, =q[L(+1) 1My,

8_7=q[l(I+1)J"E 1),
M_T=q[ (+1) (0+2) J'*M 111y

In terms of these amplitudes, the total cross-section
for photoproduction of pion is

4
ag Y- = "q‘z'
Thus

4o /W
ES 3/2V (V,O) :[resonance = —'<—> [\/3 é’+3/2+ E)’n:+3/2:| )
g \m

P2 Q7D &7 [P |owy |2
J
+lg—J12+lm—J|2]-

and we use the Breit-Wigner formula for V3 §,3/2-+4911,3/2,

V3 8,324-911 3/2_%EPN”O(W)FN7(W)]”2
T wewa—tirw)

where I'y., (W) is the partial width of the Ny channel.
T'w, (W) is % times I'y of Dalitz and Sutherland.!® (We
treat the photon effective in the N* production as an
isotriplet.) Experimentally &,%?~0, and we have

( ) 447 TN S(W)Tx, (W)
- =—- .
T ) W= Way-H AT (W)

21 G, Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, Phys.
Rev. 106, 1345 (1957).
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It is reasonable to assume
Tx2(W)/Tuy(W)=Tn2(Wa)/Tny(Wa), for all W,

if we adopt the usual interpretation of the formula (21)
where the constant ¢ is the radius of the (3,3) resonance.
(Of course the pionic radius and the photonic radius
need not be equal.) Note also that the channel momenta
of the zero-mass pion-nucleon channel and of the yN
channel are equal. Therefore

r 11Ty (Wa)T2
B (039EA0 )~ -] A)]
mG 4 62 Tnz(Wa)
X3|F(10,59)[2. (40)
We combine Eqgs. (19), (38), and (40), to obtain
1 1/G* A\ Ty (W) 742
e O] - @
V3 m\Ga/\ e /LTx5(Wa)

Thus Eq. (38) represents the value given by our model
which is to be compared with the experimental value
given by Eq. (41).

With cosB=%"2, we get from Eq. (38) (with

1y 2p1p/3)
(1*)theory=§V3p,' = (8/3)'*(3V2u,)
=1.6(3V2u,), (42)
while Eq. (41) gives
(W®)expt~1.4(3V205) , (43)

with Ty, (Wa)~5X0.65 MeV [the value 2V2u,/3 is
the prediction of the static SU(6) for u*], Twr(Wa)
~110 MeV, G*/G4=¢.

For the octet J™=4%~ and §+ resonances, we obtain

E(8,,37)= (31/5)m[ (cos?8—sin?B) siny cosa
—cosf3 cosy sina],

E(84,37) =1m[ (cos?8—sin?B) siny cosa

— cosf cosy sina], (a4
E(8:,51) = (31/5)m[ (cos’8—sin?B) cosy cosa

-+ cosg siny sina ],
E(8,,5)=1m[ (cos?3—sin?B) cosy cosa

+cosB siny sina].
The constant m is the same one appearing in Eq. (33),

and is expressible in terms of u,’:
m=3%V3(1/cosp sinB cosa)u, .

Since the F/D ratios for the production of these
resonances are the same as that for the anomalous
magnetic moments of the baryons [see Eq. (33)], the
photoproduction of the N¥*(J™=3%") and N***(Jr=35+)
resonances are caused by the isovector photon.
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To test the predictions of Eq. (44), we again make
use of the correspondence:

LV S)F (84, ") +3F (8,,77) I
XLEsVSE®yI)+3E (8,77 ]

mG A 1 1
/ - Im[Sl/z (V 0):|resonance y (45)
where
4o /W
[S 1/2V (V,O) ]resonance = _"'(—‘)
g \m
(g_3/2_v33’n_3/2) . J .%—
X
l%vz[\/z §_sR—gom_br]; Jr=§+

and we use the Breit-Wigner formula for §_7 and 917_7:
F(Txaly)
W—Wo—3%

82— V3 2= , etc.

We shall discuss the case of J7=% in detail and sum-
marize the results for the J™=5* case. Making use of
Egs. (27a) and (27b), we rewrite Eq. (45) in the form

(FHoV5)E8:,37)+3E(84,5
1 /gA\1/Tyn\2 1
—Z(?)E(rm) Gs
XL(EVS)F (86,37 +3F (84,37 1.

We shall compare the prediction of (46) with experiment
in the following manner. We shall compute I'y, from
(46) using our mixing scheme (cosa=+/2, cosB=+/%,
sinB=(4/7)}. The forward pion photoproduction cross
section at the resonance energy in the I=%, J™=35§—
channel is directly related to T'y,:

do 1
|:<_) ] z__l &_3812—+/Foy_3/2 12
0Q 6=0,I=3-Iresonance q2
GO
g*\I'y,/\ T
qo= (Wo2—m2)/2Wo
Wo=1518 MeV.

(46)

We compare the value for (do/dQ)e—o thus obtained
with experiment. We obtain from (46), (44), and (27b),

PNy e 4
( )=GA2(— _)(4,,,,,,,')2,
I‘ll\f‘ir 47r gr2

and this gives (with I'y,/T'~0.75)1
[(do'/ dﬂ) 0=0,T =§:|resonanec =61 ub/sr

(47)
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at the resonance. Experimentally,?

(do/dQ)o—o(v+p — 7+ p)=1.4 ub/sr,
(do/dR)s—o(y+p — wt+n)=18 ub/sr
at W=1520 MeV.

If the above two processes proceed predominantly
through the I=4% resonance, the ratio of the forward
cross section should be 3. Therefore, we see that there
is a large background in the /=% state.? On the basis
of charge independence of strong interactions, we can

derive the inequality

G GG,
WG INE,

where the subscripts -, 0 denote the processes y+p —
n-+m+ and y-+p — p-+7° respectively. This inequality
gives (do/d2) 13 between 21 to 51 ub/sr, which includes
background from nonresonant angular momentum-

parity channels with /=13
In much the same way, we deduce from our model

[(do'/dﬂ) 0=0.I———*]resonance= 6.3 yb/sr ) W=1688 MeV.

Experimentally we find (do/dQ)s—o(v+p — 7°+5)=0.2
ub/sr,2and (do/dQ)p—o(v+p— wt+n)= (84=1) ub/sr.28
Thus from the triangular inequality, we find

(da'/dﬂ) 9=0,1=3>16 [J,b/Sr .

V. CONCLUSIONS

We have presented a method for comparing matrix
elements of the axial vector and electric dipole currents,
taken between states of infinite momentum, with
experiment and used these results to study a particular
model of the baryonic states. In this section we wish
to comment on these predictions.

22 The cross section for p++y — p-+=? is obtained from H. De
Staebler ef al., Phys. Rev. 140, B336 (1965). The cross section for
p+v— ntnT is read off the graph, Fig. 17, in P. Salin, Nuovo
Cimento 28, 1294 (1963).

2 For this reason, any phenomenological analysis which fits
either of the cross sections, p+vy — p+a° or p+y —nt=x* by a
pure I =3 resonance is open to question. For example, A. Bietti,
Phys. Rev. 142, B1258 (1966) quotes Beder’s result [D. S. Beder,
Nuovo Cimento 33, 94 (1964)7] that g_32=v39M_32 for the (1,3)
resonance excitation. This is based on the observation that the
forward cross section for p+v — p+n° is very small. However,
our argument indicates that the 7’=$% amplitude is not negligible,
so we cannot conclude that the 7=4% amplitudes §-32(T=1%) and
M _32(T =3) satisfy the above relation.

24 R. Tolman et al., Phys. Rev. Letters 9, 177 (1963).

% R. L. Walker, in Proceedings of the Tenth International Con-
ference on High-Energy Physics at Rochester, edited by E. C. G.
Sudarshan, J. H. Tincot, and A. C. Melissions (Interscience
Publishers, Inc., New York, 1961), p. 17. Actually, the value
quoted is for 6=5~10°.
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For the Gamow-Teller matrix elements, our model
yields the sum rule of Eq. (18), whose evaluation gives
G4=1.25. The remaining experimental information
serves to fix the mixing angles. At first sight it might
appear that the values of G4’ (8,3%) and G4’(8,57) are
also independent predictions, but it is clear that the
SU(2) sum rule derived from Eq. (12)

1=Ga—36*+G4"(8,1)+G4 (85"

fixes their absolute magnitude [in virtue of the sum
rule Eq. (18)] once the angle v has been fixed. In fact,
the difference

[2° Ga(8,J™) Jexpt—[2- G4"*(8,J ™) Jtheory=0.08
JT JT

represents the difference between G4=1.25 and the
evaluation of the Weisberger-Adler sum rule directly
from experiment.

Turning to photoproduction, our model has no free
parameters left. The results of Eqs. (34) and (42) are
quite good. We also predict that the J7=3—, 5t octets
are excited purely by isovector photons, which ap-
parently has some experimental confirmation.?é On the
other hand, our evaluation of the magnitude of the
electric dipole operator for these states was inconclusive.
It is apparent that more effort is needed to fully
understand these resonances and extract the relevant
parameters.

It is possible that some further chiral representations
should be mixed into our Eqgs. (15) for the J=3—, 5+
resonances. This can be done, in the framework of our
model, without changing the representation for the
stable baryons and J*=$* resonances. Thus we can
maintain our results for the low-lying states while
gaining more freedom to fit the higher data.

It is worthwhile considering which of our predictions
depend on the details of our model. In the first place,
as we have remarked, we are testing sum rules for the
pion-nucleon system. All our results except for those
involving F/D ratios (essentially the statement about
the vanishing isoscalar amplitudes) hold true in the
chiral SU(2)QSU (2) limit where our model is

[ N1/2)=cosB| (3,2)1/2,0)F-sinB cosa| (2,1)_12,1)
+Sina] (2)1))\7 %_)\>]

We have continued to use the dimension to stand for a
chiral multiplet. Now the results for the magnetic
moments are obtained by embedding (3,2) in a (6,3),
the first (2,1) in a (3,3) of SUB)XRSU(3), while the
second (2,1) may be embedded in any representation
which is not connected by the electric dipole operator
to either (6,3) or (3,3). We accomplished this by em-
bedding it in an (8,1) and using SU(3) selection rules.
However, other choices are possible, for example,
choosing the orbital helicity large enough.

(48)

26 . S. Gilman and H. J. Schnitzer, Phys. Rev. 150, 1362 (1966).
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APPENDIX

In this Appendix we summarize our definitions of the
matrix elements of 4,™ and D,™ and indicate how
we obtain the predictions of our model. The relevant
matrix elements were defined in Egs. (14) and (36):

{2, T ™) 12| Ao | (8,1,51) 1/2)p-scts
8 8 N
=3 ( )F(Ne,-’”), (A1)
E\u A v

((N7V7]W)1/21D+()\) l (Syu)%+)—1/2>P-’°°e3

=% (8 A:s)E(Ng,J”). (A2)

L

As special cases, we have

G.=F (8,31, (A3a)
G:=F(8.35"), (A3b)
' = E(84,34) (A3¢)
u' =E(8s,3"), (A34d)
G*=F(10,3+), (A3e)
w*=3V3E(10,3Y), (A3f)
and
Ga=5V3G.+ (3)iG., (Ada)
wv'=py —un=5V3ud + (§)lus. (Adb)

We have purposely included a factor of V2 in the
definition Eq. (A2) since, for a spin # — 1 transition.

pw={Js=—4%|Ms|Js=+3)
=3V2(J3=+5| M, [ J5=—3).

Definitions (A3e), (A3f), (Ada), and (A4b) are relevant
when we restrict our attention to the chiral U (2)QU (2)
symmetry and the pion nucleon system.

Chiral symmetry predicts relations between the E’s
and F’s for different SU(3) representations and fixes
the F/D ratio for octets since, in general, more than one
SU (3) multiplet is contained in a chiral multiplet. One
method for deriving these relations is the familiar one
of tensor algebra. We give, in the following, the tensors
which represent the various representations of chiral
UB)XU (3) we have considered. The notation is that
greek indices refer to the SU(3) generated by
3(Vo™4-4,™) while latin indices refer to that gen-
erated by 3 (Vo™ —A4,™)

(6:3): BePe= Dot (3/6)[e* B+ e8], (ASa)
(3,3): Bate=§V2etABoyt (§1/6)exeS, (ASb)
(3,6): Bebe=Datet (31/6) > Bor+ee2B%], (ASc)
(3,3): Bafe=1V2exBA Byt (34/6) €8S, (A5d)
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where S is the singlet, D*#7 is the totally symmetric
decuplet, and B% is the usual baryon matrix.

It is now easy to compute matrix elements of the
axial vector current

AW =1 (VoM 4A4,M)=1(V M —4,M). (A6)
It is important to recognize that Eq. (A6) is much
stronger than merely prescribing the tensor transfor-
mation properties of 4,™. Because 4,™ is expressed
as the difference of two generators its matrix elements
between arbitrary chiral multiplets are fixed in mag-
nitude (i.e., there is no unknown reduced matrix
element for each different chiral multiplet). The relative
magnitudes of the matrix elements of

L(VoNad4,™)
is fixed by requiring that

VoM =1(VoM4AM)FL(V M —4,M) (A7)
generate simultaneous SU(3) rotations and then the
over-all magnitude of the matrix elements of the
generators is fixed by the magnitude of V™. These
somewhat obvious remarks are important to keep in
mind for the electric dipole operator where they are
no longer true. We summarize our results for the
Gamow-Teller matrix element in Table I.

The electric dipole operator D;™ transforms as a
tensor operator under the chiral algebra, so we write

DO~V N4+A4D7)+5(“VoPV—4,M7). (A8)
The terms on the right of Eq. (A8) are to be understood
as representing the transformation properties of D;™,
and are tensor operators rather than the generators
themselves. This has the consequence that the chiral
algebra only predicts relations between members of
the same chiral multiplet since there is an independent
reduced matrix element for each multiplet. Further-
more, even for a given pair of chiral representations the
operators in the right-hand side of Eq. (A8) have, in
general, no relations between their matrix elements
since the reduced matrix elements for each of them are
independent quantities, that is, D;™ only transforms
like Vo™ ; it is not equal to V™. There is a relation,

TasLE I. Matrix elements of the axial vector current for various
chiral multiplets. The normalization is such that the vector current
is normalized to Gy=1.

Bz 63 @G B3 36 18 (3
F(8a,J™) V3 V3 —2v3 -3
F8.,J™)  +/(5/3) VvV (5/3) —+/(5/3) —4/(5/3)
F(10,J7) —+/(8/3) ‘- v/ (8/3)
FALI7 - 3 43
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TaBLE II. Matrix elements (Biz|3(“Voz=Ao”) |B-1/2) needed
to obtain the electric dipole matrix elements. Each column is
independently multiplied by an unknown reduced matrix element;
only the relative values within a column are relevant. We have,
however, used the same normalization as in Table I.

B_i2 (3,3) (3,3) (3,3)
B2 (6,3) 3,3) (3 3)
X +
V2EX(8,8;a) -3 V3 V3
V2EX(8,8; 5) —35/5 W (5/3) %\/(5/3)
VZEX(10.8) 2% e
VZEX(1,8) S 23 13
VZEX(8,1) 1 % 3

however, implied by the mirror operation M

((m |5 (VoD +Ao™7) | (m "))
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This relation ensures that the matrix element of the
axial dipole operator between spin-3 baryons satisfies

(B2t l D5 | B_1/2™)p—t,=0.

We have discussed the above point in detail since there
is apparently some confusion about it in the literature.
We summarize our results in Table II, where we use
the definitions

(V)25 (VP EAD”) (V) -ys2)
4

N N¢
iy ( , )Ei(NN's).
H

V2D N

It is easy to obtain the E(NVgJ™) from these using Eq.

=" ;) [3(“Vo® = AoD7) [ (n,m)r).

(A9) (A8).
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Possible Existence of an I=0, D-Wave == Resonance in the
Vicinity of the ¢ Meson*

BrriN R. DEsar
Department of Physics, University of California, Riverside, California
(Received 21 April 1966)

A second peak in the vicinity of the p? peak has been seen in several recent experiments involving 7=+ —
wt+7"+n and K—+p — 7t4+7"+A. We suggest that this peak may be due to an I=0, D-wave 7= reso-
nance. On the basis of the experimental mass and angular distribution of the 27 system, the resonance is pre-
dicted to be at an energy of about 780 MeV with a width of 5 MeV. A strong S wave at lower energies is
also needed. Our D resonance is the most logical candidate for the 2+ SU(3) singlet which is, as pointed out
recently by Desai and Freund, needed to explain the high-energy behavior of the meson-baryon and baryon-
baryon total cross sections. It is suggested that, it is this particle, not f, which should lie on the Pomeranchuk
trajectory. It is argued that the strong attraction which the Pomeranchuk particle is known to receive and
a strong centrifugal barrier typical of an /=2 state may well conspire to produce a narrow resonance at a low
mass of the kind proposed here. A narrow-resolution #~+4p — 7%+n%+#»n and K—+p — n9+79+A are
perhaps the best experiments to isolate the D wave and to determine whether it is this resonance or some

other mechanism, such as w — 2, which is responsible for the second peak.

Y now a number of different independent groups
have seen an excess of events in 774p — 747~

+n at M., around 780 MeV.}~% A secondary peak in
the vicinity of the p peak at the same M .. is also seen
in K—+p— wt+7+A.4 In view of the fact that such

* Work supported in part by Atomic Energy Commission Con-
tract No. AEC AT(11-1)34 P107A.

LE. Pickup, D. K. Robinson, and E. O. Salant, Phys. Rev.
Letters 9, 170 (1962) W. D. Walker, E. West, A. R. Erwin, and
R. H. March in Proceedmgs of the 1 962 Annual International Con-
ference on High Energy Nuclear Physics at CERN, edited by ]J.
Prentki (CERN, Geneva, 1962), p. 42; L. Bondar ef al., Nuovo
Cimento 31, 729 (1964); Saclay-Orsay-Bari-Bologna Collabora-
tion, ¢bid. 29, 515 (1963).

2V. Hagopian, W. Selove, J. Alitti, J. P. Baton, and M. Neveu-
René, Phys. Rev. 145, 1128 (1966).

3L. D. Jacobs, University of California Radiation Laboratory
Report No. UCRL16877 (unpublished).

4S. M. Flatté, D. O. Huwe, J. J. Murray, J. Button-Shafer, F.
T. Solmitz, M. L. Stevenson, and C. Wohl, Phys. Rev. Letters
14, 1095 (1965). It is pointed out by these authors that incoherent

an enhancement has been seen repeatedly leads us to
believe that it may be a real effect and not a statistical
fluctuation. Since no such excess has been seen in
rt+p— at4at4n or in 7+ p— 7 +7°+ p, the sys-
tem that gives rise to the secondary peak must be in
an I'=0 state. We would like to suggest that the peak is
due to a narrow I =0, D-wave 7 resonance.?

Our work is motivated by the following considera-
tions. Recently it was pointed out that the SU(3) nonet
of 2+ mesons is not sufficient to describe the high-energy
behavior of the sum 2 of the particle and antiparticle
total cross sections for meson-baryon and baryon-

p and w production is a more reasonable possibility because the
data come from all incident momenta, from all momentum trans-
fers, and from all decay angles.

5 This should not be confused with € (or so) which is an S-wave
effect and presumably exists at a lower energy.



