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The aim of this paper is to compare the predictions of a model with the recent conjecture of Weinstein
stating that in particular circumstances the mass and width of a resonance could be altered by the
final-state interactions following the production process. This eGect, which he calls predecay resonance
mixing, should be observed in a reaction in which there is the possibility of producing either one of two
resonances of comparable mass as, for example, p and co. Our model refers explicitly to the p-co case but the
conclusions we draw are entirely general and can be applied to any other similar case. Our results can be
formulated as follows. Xo finite-range final-state interaction can displace a resonance or change its width.
However, the production amplitude acquires a modulating factor which can, in principle, considerably modify
the production cross section. Additional peaks may appear simulating spurious resonances. These could be
discriminated from true resonances by studying their energy dependence.

I. INTRODUCTION

ECENTLY, Weinstein' has suggested an inter-
esting phenomenon which might, inprinciple, occur

in any nuclear reaction in which there is the possibility
of producing either one of two resonances of com-
parable mass. The effect, called predecay resonance
mixing, can be described in the following terms: Let
us for definiteness call the two resonances in question

p and co and suppose that we are studying the two-pion
decay of the p meson in an experiment designed for the
production of this resonance. Since the p meson is
produced in an intense nuclear Geld, , it is legitimate to
study the influence of this Geld on the behavior of the
decay products we are observing. More precisely; do
we have to expect a dependence of the p width and mass
or of the two-pion angular distributions on the char-
acteristics of the nuclear Geld in which the production
process takes placebo Now it is clear that, in the case we
are considering, the external 6eld can very well induce
(for example, by exchanging a pion) a p-zo transition,
which, in view of the very close values of the masses of
these particles, could happen with quite high proba-
bility. In other word, s, it is reasonable to expect a
mixing of the two states due to the external 6eld.
Although formulated in a slightly diferent context
(instead of the co, he considers another hypothetical
resonance), the conjecture of Weinstein is that the
width and mass of the p meson would be altered by
the mixing, and, in particular, a depend, ence of these
quantities on the p energy should be observed. The
latter conclusion, of course, is based on the fact that
the sects due to the interaction in the Gnal state
depend on the time spent by the particle within the
range of the interaction.
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R. Weinstein (private communication). This effect is discussed,
together with certain others, in D. O. Caldwell and R. Weinstein,
Nuovo Cimento 39, 991 (1965}.

In this paper we make an attempt to compare the
above conjecture with the predictions of a simpli6ed
model in order to reach a more detailed understanding
of the effect and eventually give an estimate of its
strength. Our model will be oversimplified in many
respects. First of all, we shall deal with scalar particles
only and we shall consider the co stable as compared to
the p. All our considerations will be based on the use of
Schwinger variational principle for the T matrix. ' The
answer of the variational principle, however, looks very
sensible, and in a liniiting case is even exact. Finally,
in order to avoid a proliferation of the number of
channels, we shall consider the co, the two-pion system,
and its resonant state p as the only coupled systems.
This means that the p is produced only by incident
co s and vice versa. However, this restriction is essentially
irrelevant for the Gnal result which can easily be
generalized to a realistic case.

The conclusions based on our model can be sum-
marized as follows. For any finite-range nuclear po-
tential the mixing does not produce a displacement of
the p mass nor does it alter the p width. However, the
production amplitude acquires a modulating factor
which can, in principle, modify considerably the shape
of the p peak in a way which is energy dependent. The
structure of the modulating factor is interesting because,
as we shall see, it can possibly produce two additional
peaks in the cross section. These peaks would represent
a sort of memory of an "unsuccessful attempt" to
displace the p and ~ masses. The fact that a finite-range
potential cannot displace the masses can presumably
be understood with the help of the uncertainty principle
which requires an infinite time to build up a state of
definite energy.

In Sec. II we shall outline the nonrelativistic theory
and derive the basic formula of the paper. We shall
then describe a generalization of the model with rela-
tivistic kinematics, and we shall finally discuss numerical
estimates to investigate the relevance of the eBect in

' M. L. Goldberger and K. M. Watson, Cottisiorz Theory (John
Wiley R Sons, Inc., New York, 1964), p. 320.
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the real world. A discussion of the results is given in the
last section.

II. ÃONRELATIVISTIC THEORY

A. The Variational Princiyle

In our model we have originally three kinds of stable
particles that will be assumed to be all scalar. We have
a heavy particle of infinite mass that will be called the
nucleon, then a light particle of mass p, that we shall
call the m meson, and an intermediate particle, the co,

of mass m„. The interactions among these particles that
we shall consider are the following:

(1) a 2r-2r attractive force V22,
(2) a nuclear potential V12 that induces transitions

~&~2m. The pion-pion force will be assumed to be
strong enough to give a resonance but not a bound
state. In these conditions the scattering matrix T p
will be 2&&2 as n and P can take only the values ar or
2x and the problem is a typical two-potential scattering.
We proceed first in a purely formal way. I.et 0' + be
the wave functions for the scattering states, satisfying

depends actually only on C„(")+ and 02 (2 ) and is
stationary with respect to variations of these quantities.
Let us specialize the first of Eqs. (2.1) to the case of
g(n))+ ~

+„(~)+—@(~) ~i2+2.(")+
Bpg—E—z6

—C) () p'&2+ (~)+
Cy

( )+—— LV22+2 ( )++ V'1 t+ ( )+j
Hp2 —E—$6

(2.5)

1
=——9'22+2 '"'++ U12'+ (")+).

82

The second of these equations can be solved formally
for e .(")+:

1
(~)+— 1+ V'22 U12hg (~)+ ~ (2 {j)

C2 — C2
then we have

rvhere

1
M=C —~U

Hp —E—ie

1
=C —4-U—,

A

1 1
0+=C — U%'+= C ——U%'+,

Hp —E—ie
(2.1)

+(")+= — 1 —' 1 (2 7)—1+—V22 —U12'+. (")+
C2 — C2

where 0'„(")+satis6es

P 0 V(6
V=I

5 V12 V22)

1 — 1 '1
(&0)+—&I& (&0)+ V12 1+ U22 V'1 t+ ((o)+ (2 8)(2.2) l21 (22 82

H„O ~ (p„2/2m„
Hp

0 HP2I E 0

0
(2 3)

(p 1'+p 2')/2)1)

There is an extra label to attach to the wave functions
+( )+ which again can take the two values co and 2x
according to whether we have in (1) a C (~) or a C (' ).

Having established our notation, we can write down
the variational expression for T2,„which is the matrix
element of T relevant for our problem:

——1

(4"',V@& &+)=(I«'&«1+—l&„
Q2

)(—V12')+„(~)+
~

a2(I/I(2«) U@(~)+)(@(2~)—Vial(~))

(4'(2 )—,$U+ V(1/2) Vj+(")+)
(2.4)

(+(2«)- UC&(~)) —(@ (23)—V tc&(cu))

Having eliminated 42 (")+, we now verify that the three
matrix elements appearing in (2.4) do not depend on

The statement is obvious for the matrix
elements appearing in the numerator. They can be
written more explicitly

This expression is stationary with respect to variations
of either%(")+ or% " ' .We will now show that because
of the structure of the interaction operator (2), (4)

For the matrix element appearing in the denominator
of (2.4) the calculation is lengthier. The operator con-
necting +(' )—and 0'")+ can be written

1
V+ V—V=

A

U12 U12
C2

1
U12+ V12 V22

Q2

1 1
V12 +V22 V12 V22+ V12 V12+ V22 V22

G2 Cy G2

(2.10)
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Then

v+ v—v +'"" =
I
e-"' v»—v»'e. &"&+ lpl e.&"&- v„+v„—v„e,.&-&+

I

1 y ) - 1 1
+] P2s' ) V12 +V22 V12 Pro [+] Pmw y V22+ V12 V12+ V22 V22 P2r [

~

l a, ) Gg 82

It is now immediately seen, using (2.6), that the two first terms of this sum cancel and that the other two can be
simplified to give

V+V—v +'"'+ ~= e2 " ' vl2t —v»t—v» 1+—VM —v»t e "&+ ~. (2.11)

We have, Gnally,

I
c"',o2 1+—V22 —vi2'+. '"&+ ~(+2 "',v»'C'"&)

r 1 — 1 '1
P2w p V12 V» V» 1+ V22 V» Pca

Gg 82 — 82

(2.12)

The variational properties of this equation with respect to %'„&"&+ follow now from (2.8). Those with respect to
follow from the specialization of (2.1) to the case of +&'~&—.The verification is left to the reader. Equation

(2.12) will be the basic equation for the subsequent discussion.

B. The Plane-Wave Approx~~ation

The approximation we shall consider consists in replacing 0 „&")+and 0'2 &' ) with plane waves. The only real
justification for doing this is given by the fact that when the nuclear potential becomes of infinite range (in a way
that will be explained in a moment), Eq. (2.12) gives the exact solution of the problem.

We indicate with p„ the initial momentum of the co, with p the momentum of the center of mass of the two-

pion system, and with q the relative momenttnn of the two pions in the Anal state. We have the equations

E=p„'/2m„,

Em p'/4&I+q'/y, . ——
On the energy shell we have also E=E2 .
With the understanding that primed variables are integrated over, we can write (2.12) more explicitly:

L+2(PgE)G(pqp '0 E)V12 (p Q p )jv12 (pgp )

v»'(P, tLP-')9(P-' —P-)—(1/~1(p.',E))v»(P. ',P",~")G(P",~",P',~',E)v»'(P', o',P-)3

(2.13)

where G(p', q', p, tI,E) is the two-pion kernel obtained
from

1 -'1
1+—

vmm

82 — 82

The case of interest to us is when the two-pion potential
is strong enough to give a resonance. In such a case we
can ignore the internal structure of the system and
replace the two-pion kernel G with a Sreit-Wigner-type
expression

G(p', O', p,e,E) ~(a—q')~(p —p'), (2»)
p' —p,"

where p,~ has a negative imaginary part. The variable
in which the effect is expected is the two-pion energy

in their center-of-mass system. More precisely, we want
to study the behavior of the production amplitude as a
function of the c.m. energy of the two pions for 6xed
initial energy. This is the nonrelativistic counterpart
of studying the behavior of the production amplitude
as a function of the total mass of the two pions in the
final state. On the energy shell, when E=E2, we have,
from (2.13),

p'/4p+E=E, . ..— (2.16)

We then see that the dependence of (2.14) on E, is
given both by the explicit q dependence and the p
dependence. It is sensible to assume that the p de-
pendence is the relevant one as it is not connected with
the detailed structure of the two-pion state.

As we mentioned, there is at least one case where
(2.14) gives the exact answer. This is obtained by
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exhibiting the relevant momentum dependence we
write now

FIG. 1. Diagrams for the numerator of Eq. (2.14).

G(P', q', P,tl,~)=&(tI—a')~(P —P')
1 P(P,E)—

where we have defined

X (2.18)
(v'/I )+ (P'/41 )

(2.19)

The two-pion resonance is described by the propagator
t:I-~?'

Inserting (2.17) and (2.18) in (2.14), we obtain

considering the following separable potentials:

I'»(tI', tI) =—f(tI')f(tl),
I' '(p, a,p-)= I' (p-,p, tI)= I' 'f(e)~(p--p) (2»)

An easy calculation gives

1
f~' ~(p—p-) —U(p —p-')

1—iP (p) ar (p„')

0(p')
&& ~(p-' —p'), U(p' —p-) (2 22)

1—0(p')

By comparing (2.22) with (2.20), we immediately
realize that in this case the factor L1—i' ' in front of
(2.22) cannot be cancelled by the similar expression
appearing in the brackets. In other words, as soon as
the potential is of finite range, no level displacement is
possible, and if the cross section was peaked because of
a two-pion resonance, this peak will stay there. How-
ever, the real part of the expression in brackets could
still vanish and, in general, we may expect additional
peaks which represent a sort of memory of the mass
displacement which is no longer exactly possible. The
displacement can be recovered also if we let the two
U factors on the right of (2.22) become 8 functions.

In the next section we shall discuss a simple generali-
zation of (2.22) with relativistic kinematics. The new
expression will also be evaluated numerically to get an
idea of the strength of the effect in realistic cases.

ar 1 ip—P' Of (P' O)2 -ip ——i

To.,„——8(p—p„) 1—
1 ip— . (2.20) DI. A GENERALIZATION WITH RELATIVISTIC

KINEMATICS

The nuclear potential given by (2.17) corresponds to
a constant interaction in configuration space. In this
limiting case, the ~ and the 2x states are completely
mixed, and the physical states contributing to T are
given by the zeros of the real part of the bracketed
expression in (2.20). It can easily be seen that the o~

and the 2m states t;end to repel each other.
I.et us consider now the more realistic case in which

the nuclear potential is of finite range. In order to deal
with simple formulas we simply replace V&2 given by
(2.17) with the expression

I'»'(p, ti,p-) = ~»(p. ,p, tI) =f(tI)~(p.—p), (2 21)

where U could be for example a Yukawa potential. By

Ql

7F lV+)2

P
I

t l +
)V)a 1V)Z
I

Pro. 2. Diagrams for the denominator of Eq. (2.14).

That this is the exact expression can be verified by
first solving Kq. (2.8) and then calculating

( 1 '1
=I C'"' G& 1+ I'n I'»'+ '"'+

I
~

If we examine the structure of (2.14) or (2.22), we
recognize that the variational approximation to T2,„
is obtained in the following way. Let us call the two-

pion resonant state p. Then the numerator is obtained
by taking the product of the amplitudes corresponding
to the diagrams shown in Fig. 1, while the denominator
corresponds to the diagrams in Fig. 2. The generaliza-
tion we have in mind consists in evaluating the ampli-
tudes represented above as if they were Feynman
diagrams and in combining them with the same rule
as in the nonrelativistic case to get the T matrix. The
nucleon will now be assumed to have a finite mass m~,
and we shall take the potential V» to be given by the
exchange of one pion. In this way four types of vertices
appear: the pion-nucleon coupling, the co-p-m coupling,
the p-2m coupling, and the co-3m coupling. To obtain a
usable formula we shall make the further approximation
of neglecting retardation effects in the exchange of the
pions, and the dashed lines of the diagrams will be
approximated by Yukawa potentials. We first brieRy
describe the kinematics. We call p, and ps the nucleon
four-momenta in the initial and the final state, respec-
tively. q& is the momentum of the incoming co and g2 is
the total momentum of the two pions in the final state.
s is the total energy squared in the center-of-mass
sysfeJD of the incoming particles. We have the rela-
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tionships

qP= (1/4s)[s' —2s(m '+m~')+ (m '—mg)']
qP= (1/4s) [s' 2—s(M'+m~')+ (M' m—~')'], (3.1)

where we have indicated with M the total mass of the

two pions in the Gnal state. We are interested in the
dependence of the transition probability on M for fixed.
s. |A'e denote by M&, 312, and M3 the expressions of the
three Feynman diagrams to be evaluated. We have,
with an obvious meaning of the symbols,

~1 g n. ,Ngau, 3+

/ +(qn —qi)
(3.2)

~2= g~, Ng(u, peg p, 2x
/i'+ (q2—qg)' M' —(m, —iI'/2)'

(3.3)

d4k1 d4k2

g&,N g(o, pm. gee, 3n.

(2ir)' (2ir)' [(q&—k,)'+/i'][(k, —k,)'+/i ][(q~—ki)2+p&]

X
[(qz+P).—ki)'+me'][(qi+Pi —ki)'+mN'][kP+ (m, iF/—2)'][kP+m„']

g~, N geo, pn geo, 3~
3 2

d01
2'm'

k12dk1 dQ
k, (s,)

d$2
)~ sil/2(sR s jg)(k12+m~2))/2

(k '+mN')"'+ [k '+ (m, —il'/2)']'/'
X

[kP+ (m iF/2—) 5'/'{ [(kP+m~')'/ +(kP+ (m —il'/2) )'/']' —s)

X[(ki-qi)'+&'][(4-k))'+&'][(q2-4)'+&']
where

kP(si) = (1/4sp) [sP—2sp(m '+mN')+ (m~' —m ')']

(3.4)

(3.5)

The asymmetry in the integration variables comes from our desire to write the simplest possible formula while
keeping the integration variables real.

Further considerable simplification is now obtained if we consider one partial wave at a time. The amplitudes
for the lth partial wave are

/'qp+ q p+/i')
M1 g~, Ngco, 8n Q/I

qlq2 5 2qlq2

~q '+q"+~'~
Ma("=g .xg, p gp, ~ Q/I

q,q2 M' —(m, —iF/2)' k 2q)qi

(3.6)

(3 &)

gm, N geo, px geo, 3n
3 2

8 (2m)'qiqg
dk1

09 (k 2+m+)1/2+ [kP+ (m jF/2)2]1/2
d$2

( ~ )2 (kP+m//s))/i[kP+ (mp iF/2)i]—'/2k&(sz)si'/ (s2 s it)—— '

1 /kl +ql +/i /kl +k2 +p ) (k2 +q2 +P )
X --Q

I Q I

((kp+mN')'/'+ [kp+ (m, iF/2)']'—/' s)' 4 —2q)ki E 2k)ki ) k 2kiqi

From these expressions we can calculate

~21I'
y co

M &'& —3l &'&
(3.9)

In the following section we shall proceed to numerical
estimates based on this formula.

IV. NUMERICAL CALCULATIONS

The main problem we have to solve is how to obtain
a reasonable estimate of the coupling constants. Since
all our particles are scalar, the values that the various
couplings have in real life are not irrunediately apparent.

If we look at (3.9) we see that T&,„a t clluyadepends
on three of the four couplings we have introduced.
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For go p, we have the estimate

io4 g~ N ~327l 2/sr/ll ~ (4.3)

F(M)

(O2 .7
t

.75 M(BeV)
1

.8

F(M)

Io&—

IO& .7 ~75 M(BeV)
l.8

FIG. 3. Qualitative behavior of

P (fl/I) =
1ilP (m, sr/2)—I'—ID "I'

for the following choice of the masses (in BeV):/4=0.14, m, =0.75,
I'=0.12, m„=0.7'8, m~=0.94.

g„,3 cancels between the numerator and the denomi-
vator, and this is perfectly natural because g„3,g„, ,
and g, ,2 are clearly related and in principle it must be
possible to express any one of them in terms of the
other two. We can also disregard. the g, ,2 coupling
because the eGect we are interested in is given only by
the denominator where this coupling is absent. We are
then left with g,~ and g„, We shall estimate these
quantities in the following way. We shall obtain an

upper limit for g,& by assuming that the S-wave
amplitude for the scattering of scalar nucleons in Born
approximation saturates unitarity. On the other hand,

g„,p will be estimated by assuming that the co width
is small in terms of the characteristic masses appearing
in the problem.

The total cross section for scattering of scalar
nucleons in the Born approximation can be written in
terms of partial wave contributions,

g
2

(/24
2 4ps)l/2

FpM27I

16m 5$p
2

(4.4)

2 2
gran, p~ gp, 2~

F„3 =
2'+3m„'

(m„—sip (ss 4~2)1/2

K 7Ã —/P

g L(442 2+/42 /42)2 4/422/2 2j]/2 (4 3)

By eliminating g, , 2 we obtain

2=
g tlat ~ P 7P

2 244rs (2/z
'—4/42)'/2

35$fsf )

Fp2 I SSp
2

(4.6)

where I represents the value of the integral. We next
need an estimate of I. It is easily seen that I&1. A
rough calculation taking 2/2„/ 2N, //4 5 gives I
Finally, by considering a ratio I'„2 /I', 2, 10 ', we

have the ord. er of magnitude

g~, p7r ~3K Pbo22~ 2 2 (4.'/)

If instead of the S-E system we had considered pion-
nucleon scattering, a calculation similar to the above
would have given a value for g,~2 larger by a factor of
four. The reason why (4.3) is perhaps a better estimate
is seen in the following way. Our calculation can have
some sense only in a case where the scattering is not
dominated by a particular intermediate state but the
cross section has still large enough values. For the
value of qo we have consid. ered, real nucleons seem to
meet this situation. In the following, we shall use for
g, /v the value given by (4.3), and we hope that this will

correctly express the fact that the pion-nucleon inter-
action is strong.

We now consider g„, The information we have
about this coupling comes from the 3x decay of the co.

One usually assumes that the co decays first into p and
m, this process being followed by the much more rapid
decay of the p. We have to evaluate F„3 and F, 2 .
A straightforward. calculation gives

g~,x ~2 )
os = —p (21+1)Qp 1+ i, (4.1)

42r 16W2 q' ' 2q')
' We now have all the necessary numbers. If we look at

(3.9) we see that the cross section for p production due
to the conversion of an co in the nuclear field contains
the "modulating" factorwhere H/' is the total energy in the center-of-mass

system and q is the ro.omentum of the individual
nucleons. If we now require the 5 wave to saturate the
unitarity limit for some momentum jo we obtain (4.8)

~

~l"'—~S"' )'
1 g, //' 1 1 1 /' 4gps)——lnI 1+

gp 4lr 4lFp gps 2 l f42 /

(4.2)
Using (3.6), (3.8), (4.3), and (4.7), this can be written
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explicitly

=QP(qi, g2) Q~(qi, q2)
—N

iD(E) [2
dory d$2

0 (~„y~N) ~ kS($2)$2 ($2—$—ZC)

(kP+mN')'"+ [~kP+ (m —ir/2)'y"
X

(kP+m~')'"PkP+ (m, —ir/ 2)q'~'(t (kg+ mN2)' 12/(kP+( m, i—r/2)')'12/ $—)
——1 2

&&Q (~,k)Q (k,k.)Q (k a.), (4.9)

where
G= (3/4n-)m„'m~p, . (4.10)

$ is a parameter which has been introduced to take into
account the uncertainties in the calculation of the
couplings. In Fig. 3 a plot of

)M' —(m, ir/—2)'[' )D&'&]'

is given for various values of the parameters involved.

V. DISCUSSION

In this section we want to add a few comments on
the result we have obtained. The numerical results
shown in Fig. 3 give a qualitative picture of the e8ect
for particular choices of the various quantities involved.
Their value is purely indicative, especially because of
the simplicity of our model and of the uncertainties
which, as we have seen, affect our estimates. Kith our
values of g,~ and g„, , we seem to be just on the border
line of the region where the eGect becomes important.
Furthermore, the numerical evaluation of D&'& is rather
complicated and requires long runs on a computer.
Because of the simpliled character of our model, we
did not carry out an extensive numerical exploration

of our formula and it is possible that more favorable
conditions for the effect be discovered in a more detailed
analysis. It is our hope to present, in the near future, a
more realistic and detailed calculation and more reliable
predictions for the experimentalist.

There are, however, a certain number of conclusions
which can be established at this stage. The eGect is
strongly energy dependent and it decreases when the
energy increases. This is perfectly natural because the
time spent by the anal-state particles in the nuclear
field is reduced when the energy is increased.

We have also investigated in some detail the 1 de-
pendence. The l dependence of D&') seems to be less
dramatic than the energy dependence. However, since
the production amplitude will go down with increasing
l (because of the extra Q&), the effect will be due mainly
to the low partial waves.

Another critical quantity besides the coupling is the
p-cv mass difference. In our numerical examples all the
masses and widths have been taken at realistic values.
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