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the process of integrating over 0& exactly. If there is
no information available about the direction of k in
the t matrices appearing in Eq. (22), then the phase of
T'» is completely unknown.

It is stressed that the double-scattering eBect will be
smaller at values of 8~ away from 180'.

IV. CONCLUSION

We have suggested that integrals over two energy
denominators be carried out by combining the denomi-
nators as in Eq. (5) and (6), using the trick common
in quantum electrodynamics. This technique has the
advantage of simplifying the calculation considerably
and allowing greater insight into the approximate
evaluation of transition matrices which must be replaced

by average values. If the integration variable is an
intermediate state momentum, one may be able to
carry out angular integrations which are of greatest
importance in determining the sign, or phase, of double-
scattering contributions.
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Some results on the mass spectra of the 56&+& and the proposed 70& & and 20&+& SU(6) baryon multiplets
are presented as calculated from a simple S-wave SU(6)-invariant dynamical model involving f&rst-order
mass deviations. We take the meson masses from experiment and obtain reasonable agreement with the
experimentally known baryon masses. The masses of the missing members of the multiplets are estimated.
The mass spectrum of the 70 is discussed in detail. A two-parameter calculation using the experimental 56
and BS mass spectra yields a mass spectrum in qualitative agreement with a recent nondynamical calculation
of Gyuk and Tuan, in which 6 parameters have been used. The three mixing angles occurring in the 70 are
estimated from the model and found to be small. On this basis some new approximate mass rules are given.
We derive explicit representations for the reduced matrix elements of the strong interaction mass operator
for the SU(6) 35, 56, 70, and 20 representations.

I. INTRODUCTION
'

~ OR several reasons it is advantageous to combine
particle symmetries with dynamical calculations.

For example, the breaking of the symmetry can be
studied systematically with the help of simple models.
The symmetry group SU(6) makes such a program
dBBcult because of the well-known troubles resulting
from the inclusion of dynamical variables into the
symmetry. These intrinsic diKculties are avoided if
SU(6) invariance is conjectured only for S-wave inter-
actions in the physical region. In this paper such an
assumption is used to derive the mass spectra of some
SU(6) baryon representations which may correspond
to physical multiplets. The dynamical model assumes
the dominance of direct channels for the pole positions
of the baryon states under consideration. More speci6-
cally, the probability matrix approach is used for quanti-
tative computations. ' In the probability matrix model

*Supported by the National Science Foundation.
t Present address: Columbia University, New York, New York.' R. H. Capps, Phys. Rev. 134, 3460 (1964);134, 31396 (1964).

the sums over the weighted masses of the two (direct
channel) constituent multiplets determine the masses
corresponding to the resultant particle poles. The
weights are determined from Clebsch-Gordan coeK-
cients and the assumed relative importance of the two
constituent multiplets. A large part of the results is
derived from the approximation of direct channel
dominance alone. Such an approximation has the
specific feature that a common mass operator structure
can be used for the diBerent representations considered,
a feature well known from SU(3) theory, but not true
in general for SU(6)-type theories.

Specifically we consider the two S-wave processes
56Qx35 and ?OQx35, and the static model process
56Qx35sw. The notation 35sw refers to a reidentificatton
of the mesons in the 35 representation. The 1.=1
angular momentum in this interaction can be coupled
to the spin quantum numbers of the meson 35 multiplet
in such a way that it is possible to construct an SU'(6)
invariant interaction for the static approximation. This
is the model of Capps, Belinfante, and Cutkosky and
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Tmx.z I. Reduced matrix elements of the mass and mass-squared
operators for the baryon S and 10 representations in SU(3).

+18
88

&8a'
J327'

jg 10

g 10

27"
6410

(Mass)' P(BeV)'g

1.344
0.065
0.302
0.008
1.933
0.418
0.020
0.001

Mass LBeVj

1.151
0.033
0.134—0.003
1.382
0.147
0.000
0.000

will be de6ned more precisely in Sec. III.' ' Capps has
shown that attractive forces can be expected in the
representations 70 for 56Qx35, 20 for 70Qx35 and 56 for
the 56Qx35sto interactions by considering the effects of
crossed channels. 4 There is no definite evidence for the
existence of a 20i+& multiplet. However, there exists
some evidence for the 70i & multiplet; such a multiplet
has been postulated by many authors. ' ' Although the
three spin —,

' particles conjectured to be members of the
70 decay into 56 and 35 mostly by D wave, this does not
exclude the possibility that S-wave might be important
in the production of the 70. D-wave decay might be
favored by the larger phase space available to these
decay modes. ' Nevertheless, there might be some doubt
in attempting to calculate the 70 mass spectrum from a
pure S-wave model. No certain prescription for the
inclusion of various channels in dispersion calculations
exists yet. However, we note that in the case of S-wave
SU(6) symmetry a certain class of channels has to be
included in total, whereas for D waves, no such. rules
exist. The effect of added D-wave channels is quite
difBcult to estimate, so we leave them out. This is not
in contradiction with any current dispersion approach;
we effectively have to rely on an a posterion justification
by comparing the calculation with experiment. From
this discussion it is apparent that the experimental
existence of a complete 70 plays a parallel but not as
important a role for SU(6) as the existence of a com-
pleted 10 had played for SU(3). A partially filled 70
would indicate only that the S-wave SU(6)-invariant
approach is not complete and, in fact, is broken by some
other mechanism.

In Sec. II, we list the expansion of SU(6) and SU(3)
reduced matrix elements of the mass operators into
particle masses of the multiplets under consideration.
The method of using reduced matrix elements to
classify mass spectra has come to be favored recently,
since it offers the advantage that with a common

' R. H. Capps, Phys. Rev. Letters 14, 31 (1964).' J. G. Belinfante and R. E. Cutkosky, Phys. Rev. Letters 14,
33 (1965).

4 R. H. Capps, Phys. Rev. Letters 14, 842 (1965).' A. Pais, Phys. Rev. Letters 13, 175 (1964).' M. A. Beg and V. Singh, Phys. Rev. Letters 13, 418 (1964).' T. K. Kuo and T. Yao, Phys. Rev. Letters 13, 415 (1964).
8 The experimental data are taken from A. H. Rosenfeld et al. ,

Rev. Mod. Phys. 37, 633 (1965).We have used average isomulti-
plet masses.

normalization of the reduced matrix elements, com-
parison of diGerent reduced matrix elements is possible
in a well-dined way. ' "Although we will need mass-
squared values for both mesons and baryons in the
dynamical calculations, we also list the baryon reduced
matrix elements for linear masses. In Sec. III, the
probability matrix method is explained and applied to
the SU(6) baryon bootstrap model. The same method
is used in Secs. IV and V to derive the mass spectra of the
70 and 20 representations. The results of the calculation
involving the 70 multiplet are compared with those
obtainable from three-quark models.

(n P n)m;=E Q ~ iDp,
p ti I=P'=0 ij

where m; is the mass (mass squared) of a member of n,
Dp is the reduced matrix element of the irreducible
tensor operator P (I= F'=0) occurring in nQxu, and tV

is a common normalization factor. Using the inversion
properties of the Clebsch-Gordan coefBcients me can
write

(2I;+1)'t'
t n n

De =Z 8(—~)"+'*"
I,. ki i

t3

~m;,I= Ir=Op
(2)

where the normalization now has been chosen such that
the average multiplet mass corresponds to the reduced
matrix element transforming like a singlet. This
complies with the usual convention. The SU(3) dimen-
sion of the multiplet a is written as ri3 . We prefer to
choose a phase P that will not coincide with convention,
but will be adjusted such that positive reduced matrix
elements result for masses squared. Equation (2) can

9 For SU(3) see, for example, J.J.deSwart, Rev, Mod. Phys. 35,
916 (1963)."For SU(6) see H. Harari and M. A. Rashid, Phys. Rev. 143,
1354 (1966).

IL THE REDUCED MATRIX ELEMENTS

We use n to denote an irreducible representation of
SU(3) or SU(6). We wish to classify the strong mass
breaking operators, which are those members of the
irreclucible tensors appearing in nQxu with eigenvalues
of I=7=J=O. The Wigner-Eckart theorem then gives
the masses (masses squared) of members of n in terms
of reduced matrix elements of these particular tensor
operators. Inversely, the reduced matrix elements can
be expressed as a linear sum over the particle masses
(masses squared). Likewise, this sum can be viewed as
an orthogonal transformation of a direct product basis
to a basis transforming irreducibly under nso. .Then the
members of the direct product basis have to be normal-
ized to (r) ', where r is the dimension of the degenerate
subspace (in the strong interaction limit) which they
span.

For SU(3), one can write
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TABLE II. Reduced matrix elements of the mass-squared
operator for the mesons in SU(3).

P8
P8'
Pmv

18
P'88

887
'V 1
'I/r 1~8

(Mass)' LBeV)'

0.168
0.166
0.006
0.727
0.117
0.009
0.755
0.284

easily be generalized to cases involving oB-diagonal
mass tensor elements.

Equations (3a) and (3b) give the expressions for the
reduced matrix elements of the baryon multiplets 8 and
10. The particle labels stand for the quantum numbers.
The general representation symbol D will always be
replaced by a symbol appropriate to the case discussed.
Here we use 8 for the low-lying baryons. The values for
the known baryon 8 and 10 multiplets are given in
Table I. We have

8&xs

2 (10)'"Bs,'

2(2)'"B '

8 (5/3)'/sBs7s

10'~10

5g 10

3 1 2 ~E

3 —1 —1 Z

0 0
, (3a)

1 h.

2 —1 —3

3 2

0 1 1 I'*

10(7/3)'"B " 4 —5 —2
, (3b)

3

5 (7/2)1/2B 10 —3 3 —1 0

2(10)i/sB, s io) (3 2) (Z+-+ V

E2(5/3)'/sBsr' "j k1 —1$ &" ~ 'l (3c)

"See, for example, G. Zweig in Symmetries irI Elementary
Particle Physics, edited by A. Zichichi (Academic Press Inc. , New
York, 1965).

The two terms 8s and 8a are the symmetric and anti-
symmetric octet representations occurring in the
reduction of SQxS. In Eq. (3c) it is not implied that there
exists a mixing between the known physical octet and
decuplet states. The expression for 8+-+ 10 mixing will
be used later on in the discussion of the 70 representa-
tion, where such mixing occurs. Off-diagonal elements
are always combined to (a;;+a;,) (2) '"; such terms are
denoted by i ~ j.Equations (4a) and (4b) contain the
expressions for the pseudoscalar meson 8 and the vector
meson 8 (PS comprising sr, E, and r/, and VS+Vl
comprising /s, Ee, q, and os). For the vector meson
singlet-octet mixing we use the results of a mixing
calculated from an SU(6)-type quark model. " This
point will be discussed later in this section. The nu-

merical results are given in Table II. We have

SPj 2 2 3 1 E
2(10)i/sP s

2(2)'/sP, s

8 (5/3)'/'Psrs

SVg'

2(10)i/sV s

2 (2)i /2 V' s

1 1 —3

1 0 0

2 2 —1 —3.
2 2 3 1 E*'

—3 1 X*

0 0 p

(4a)

(4b)

8(5/3)'" Vs7s —2 —2 3

V' '= —(~v+v~)(2) '" (4c)

The particle states have the norm (2I+1) ', since we
are considering isotopic subspaces of SU(3). The
reduced matrix elements are normalized to 1/ns, where
sss is the dimension of the SU(3) representation con-
sidered. In the case of 8+-+10 mixing, Ns ——8; for 1~8
mixing, n3= 1.

For SU(6), the reduced matrix elements are defined
in a similar way. For the 56 and 35 one could use the
Clebsch-Gordan coeScients of the direct products
56Qx56 and 35Qx35 compiled by Cook and Murtaza. "
The tables are not suflicient, since some additional
information about phases has to be obtained. Hence we
have used a method which employs the fact that the
probability matrix (defined in Sec. III) acts as a
(rectangular) singlet operator in the sense that it
produces from an irreducible tensor in the space pQxp
or yQxy an irreducible tensor of the same transformation
property in the space nQxn, where n, p, and p are
irreducible representations and n is contained in the
reduction of p(xXy. is The SU(6) Clebsch-Gordan coefli-
cients of (5635[56), (5635[70),and (70, 35(20) are thus
needed to construct the irreducible mass tensors of the
representations 35, 56, 70, and 20."'4 These representa-
tions are identified by M, 8, R, and Z, respectively, and
the reduced matrix elements belonging to these repre-
sentations are normalized to (35) ', (56) ', (70) ', and
(20) ', respectively. We note that the particle states
obtain an additional normalization factor of (25+1) '
due to the enlargement of the degenerate subspaces, so
that a particle state now is normalized to t (2I+1)
X (21+1)j '.Again the over-all phases for the 56 and 35
have been chosen such that positive values result for the
mass squared reduced matrix elements, except for two
cases in which further applications make such a choice
inconvenient. The phases of the 70 and. 20 were chosen
arbitrarily. The notation of our SU(6) reduced matrix
elements is D;,;, where D is the SU(6) representation

"C.L. Cook and G. Murtaza, Nuovo Cimento 34, 331 (1965).
"This method was proposed by R. H. Capps, Phys. Rev. 134,

B649 (1964)."J.C. Carter, J. J. Coyne, and S. Mesbkov (to be published).
I am grateful to the authors for sending me their (35 70(20)
Clebsch-Gordan table prior to publication.
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under consideration (i.e., 8, E, Z, or 3II), and 2 denotes
the SU(6) transformation property and j the SU(3)
transformation property of the decomposed space
DQxD. Where no confusion can arise we omit the symbol
D and de6ne the same reduced matrix element by i'.

The reduced matrix elements of the 56 and 35 have
been discussed extensively by Harari and Rashid. "

They express their mass tensors along components of
SU(2)QXSU(2)QXU(1) eigenstates, whereas we prefer
to expand our mass tensors along SU(2)QxSU(3)
eigenstates. These two procedures do not differ, since
our mass tensors are block-diagonalized expressions of
mass tensors expanded along the particle states. Thus,
we have for the baryon 56 representation

( 5681;1 40 16~ 81'
~

~7(10) / 8466;1 1 —1) 81 )
(42)'"(5) '8»:6 (2)1/2(5)—1 t 8 10

(5a)

(14)1/28466 6
— 1 2(2/5)1/2 (2)1/2

(21)'/'826gg. s 1 3(2/5)'" —(2)'"

I
(3/2)'/ 8466, 27 ) //1 (1/35)'" ) /'827

(21)'/'826». 27) (1 —14(1/35)'/2] t 8276 //

82696; 64 (5/7) 864 ~

Sa
8

(5b)

(5C)

(5d)

For the meson 35 representation the results are

35~i;a 24 3 P'8

5(7/2)1/2Jf 162.1
—— 1 —3 2 p 6

7(5/2)'"35466;1 5 —3 —2 V1'

2(35)'/235 . 3(5)'" (5)'" (9/2)'" V '

(6a)

(70) M 16g;6

2(35)1/2&466;6 .
3 —(5/2)'" I' '

(5/2)1/2 V 4-&6

(6b)

/(35/2)'"Mtsg;27) ( 3 1) (V27

k(35/6)'"35466. 27i E—1 1) &F27'j
(6c)

In Tables III and Ip we exhibit the numerical values for the 56 and 35 reduced matrix elements. For further

appllcat ons we list ln Table Iv, second column, the numerical values of the meson "sm" assignment as explained

1n Sec. I and applied in Sec. III. 80th mass and mass squared values have been calculated in the bacon 56 case

is noteworthy that the relative magnitude of the different mass-breaking terms does not change drastically if

masses squared are used instead of linear masses. A similar observation has been made for SU(3), where mass

squared values for the baryons still give a good 6t to the Gell-Mann —Okubo rules.

In the case of the 35 we have used the same identification of &0 and &p as Harari and Rashid, so that 67 is a pure

SU(4)r singlet. ' This identification leads to a negative off-diagonal mass element 46 gg, a result similarly derivable

from a quark model. "This is to be expected, since the basic quark splitting can only manifest itself in the M35.,8,

whereas a positive cop gives all three %35;8 &189;8 and M«5,.8 appreciable strength. The argument in Ref. 10 to
determine the sign of 4667 by the absence of gg ~ p7r decay is not complete, since the particles are coupled by p-wave

and simple SU(6) arguments cannot be applied. On the other hand, the multiplicative mass rule derived by Beg
and Singh from the absence of MI89.,8 holds well experimentally. Ke consider this sufficient evidence that the sign

of coy has to be chosen negative.
The SU(6) representation 70 reduces under SU(3)QxSU(2) into (10;2)+ (8; 4)+ (8;2)+ (1;2). The irreducible

'SU(4)r is referring to the SU(4) group appearing in LSU(4) XSU(2)gr. This group is a subgroup of SU(6) and was 61st
discussed by F. Giirsey, A. Pais, and L. A. Radicati, Phys. Rev. Letters 12, 299 (1964).We follow the notation of Ref. 26.
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parts of the mass tensor belonging to the 70 representation will be denoted as follows:

1' 189' 405' 3675' 35H' 35NH' 189' (280+280)' (280—280)'
405 3675' 3675 ' 3675 " 189' 405' 3675 ' 36?5" 3675" and 367584.

R 10

These 19 irreducible components can be written as an orthogonal transformation on the 13 particle and 2)(3
mixing states contained in the multiplet. The Inass matrix is symmetric and therefore pairs of oG-diagonal elements
are equal. We incorporate this information by splitting off three components along differences of equal o6-diagonal
elements. These three must be chosen from (280—280)', 3675' and 3675".A 16X16 matrix results which can be
b1ock-diagonalized to 4X4 for the singlet terms, 7X7 for the octet terms, 4X4 for the 27 and 1X1 for the 64
terms. Several ambiguities occur. The tensor 35 appears twice in 70Qx?0. We have fixed one direction to represent
hypercharge splitting (i.e., R33Iv;8) and chosen the other one (i.e., R33++;8) orthogonal to it. This is in analogy to
the D and F separation of the two 8 occurring in SQxS. The SU(6) representation 3675 contains three SU(3) octet
and three SU(3) 27 terms. Since no meaningful diagonalizing operator could be found, we chose digerevst con-
venient orthogonal sets in each case, denoted by b, c, and d and by 8, C, and D, respectively. We denote the spin-~
octet in the 70 by 8„the other SU(3) multiplets are designated by their SU(3) representation symbol. The com-
plete set of reduced matrix elements is

70R1., 1 20 32 16

10(14)'/'R189;1

14(5) / R403;1

1S —16 2 1 R18

8 —10 —3 R1'
(7a)

2 (14)' 'Rspvs;1

(385) / R33Ir 8

8 (770)'/'Rssb/vr;8

40(14)' 'R180;8

R 10

R 8y

R8,8v

0 —2 1 R1'

2(210)'"R1280+280);8 =M R88 (7b)

where

40 (14)1/2R403;8

20(14)'/ Rssvs;8b

40(42) Rspvp;sa

5(2)'" 0

R 8&-+10

R 1~8

8 0 0 0

10(2)'" 44(5)'" —28 0 8 —22 (10)'/2 11

—30(2)'/2 20(5)'/2 60 8(5)'/2 0 6(10)'/2 5

4(5)'" —4 —4(5)'" 4 2(10)'/' —1

—10(2)'" 4(5)'" —20 16(5)'" 40 —2(10)'" —15

10(2)'" 4(5)'" —20 8(5)'" 0 6(10)'" 5

30(2)'" 28(5)'" 20

2(70)'"R1 9.2v (35)'"
8(5)'" —80

0 2

2(10)»2 -25
4 (2)1/2 R 10

2 (105)'/'R4pp. , 2v

14(5)'/ Rspvp;svts

2 (210) Rspvb; sve

(35)'" 8

(35)l/2

(35)1/2

R3675;64=

2 —4(2)'" Rsvsv

0 —14

+2 4(2)1/2 R 8~10

(2/7)1/2R 10

(7c)

(?d)

The situation for the 20 is simpler. The reduction
under SU(3)QxSU(2) is 20 = (8; 2)+ (1;4). The mass
tensors must be contained in 20Qx20= 1Q+35Q+175Q+189

and the components are 1', 189', 35', 189', and 189'.
Even without the help of Clebsch-Gordan tables, one
can immediately write down the mass tensors by using
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TABLE III. Reduced matrix elements of the mass and mass-
squared operators for the baryon 56 representation in SU(6).

~405; 1

~35;8
~405'8
~2695;8
~405 27

~2695;27
~2695;64

(Mass)' (BeVg'

1.765
0.266
0.388
0.024
0.025
0.017
0.000
0.001

Mass LBeVg

1.316
0.104
0.142
0.022
0.004
0.000
0.001
0.000

( 20Zi,. i ) 16 4) (Zi'
i 5/2Z„. ..) 1 —11 (Z,

((5)'g'(2) 'Zss.,s ) (0 1 (Z '

((5)'"(2) 'r „.s) (1 0 (z,.')

(Sa)

(Sb)

the fact that Z1-1 must be the average multiplet mass
and Z35;8 must only contain the hypercharge splitting
Zs, s, since 35 is contained only once in 20Qx20. The
remaining components can be constructed by ortho-
gonalization:

estimates based on dispersion relations have often been
unreliable due to the fact that only few channels could
be included because of calculational difhculties.

A simple feature of this bootstrap scheme is the
prediction that the 2695 mass-breaking term is absent
in the mass spectrum of the 56 representation. We note
that, fortunately for our model, the one SU(3) singlet
term that lifts the degeneracy of the mean octet and
decuplet masses does not appear in the 2695, but in the
405. The absence of the 2695' term leads to the equality
of Gell-Mann —Okubo type splitting of the two SU(3)
octet and decuplet multiplets. This can be seen by
writing out the Gell-Mann —Okubo mass operator in
SU(3):

(9)m=a +b~Y+c~PI(I+1) t Ys7—

where a, b, and c only depend on the SU(3) repre-
sentation n chosen. Inserting B2695.,8=0 we obtain the
equation bg()+ sc»= bs+ scs. Furthermore we notice that
only the quantity bg()+sc» is physically defined, since
the mass spectrum for the 10 is overparametrized. This
allows us to choose b10=b8, and c1o=c8 follows. This
result is not new, since the general mass operator of
Beg and Singh simplifies in the 56 representation to'

Ztss;»=2(5) '"Z»'. (Sc) M"=a+bJ(J+1)+cY+df(I'(I+1) 4Y'7, (10)—

TABS,z IV. Reduced matrix elements of the mass-squared
operator for the meson 35 representation in SU(6).

M1,-1
&189;1
~405;1

~85;S
~189;8
~405;8
~189;27

~405;2?

(Mass)' (BeV)'

0.602
0.185
0.146
0.139
0.002—0.001
0.008—0.001

(Mass)' PBeV)'
"sm"-Assignment

0.360
~ ~ ~

—0.288
0.088

~ ~ ~

—0.039
~ ~ ~

0.001

' R. H. Capps, Phys. Rev. Letters 14, 456 (1964). Section III
of our paper is essentially an elaboration of Ref. 1$,

III. THE 56 REPRESENTATION

The possibility of an SU(6) invariant static bootstrap
model of the 56 representation has been demonstrated
by Capps and by Belinfante and Cutkosky. '' The
I.= 1 angular momentum in the interaction 56(+)
Qx35( ' —& 56(+) is absorbed in the meson 35 and effec-
tively behaves like an internal quantity of the mesons.
Through this formal identification SU(6) invariance
can be applied. %e follow the approach of Ref. 16 and
assume that in this interaction E, ~, and p effectively
behave like the (8;3) multiplet, E*, p, and (gs L(gs
= (2/3)'"q+(1/3)'g'o)7 like the (8; 1) multiplet and
X() (959 MeV) like the (1;3). This model holds strictly
for the static limit only. However, it has the advantage
that the calculation includes many simultaneously
coupled channels. We emphasize this point because mass

which has the same consequence. The two methods used
have to be consistent of course, since the same number
of terms in the mass-breaking operator are excluded.
The method of reduced matrix elements has the advan-
tage that small deviations from zero in supposedly
absent terms can be traced more easily. The absence of
the 2695'r mass-splitting term gives a relation between
the B27' and B27".With a more restrictive assumption in
the bootstrap model, the B405., 27 term can be related to
the small M405. 27 term; this results in smallness of both
Bsr and B»'. Finally the absence of the 2695" term
directly leads to the absence of the 64 component in the
decuplet. As can be seen from Table III these results
hold well for both mass squared and linear masses,
except for the case of the 2695' mass squared. Qualita-
tively speaking, a model which predicts the absence of
terms other than 1 and 8 in the SU(3) mass operator
can be termed successful.

In order to arrive at quantitative results for the
remaining mass-breaking terms, we use the probability
matrix approach of Capps, explained in Ref. 16. For the
sake of completeness we reproduce the basic formula in
our notation:

R;;/(R) =u gs, g, ,„C;s„C;g„b .Bsg/(B)
+(1 a)gg, g, ,„c—;s C gJisgM „/(M), (11)

where the C;I, are the Clebsch-Gordan coefficients
connecting a representation R with representations B
and M. The expressions R;;, B~~, and 3f „are the
matrix elements of the mass squared operator in the
spaces of the R, B, and M representations. The (Igl),

(B), and (M) denote average mass squared SU(6)
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multiplet masses. The parameter n may have values
between 0 and 1 and fixes the relative contributions of
the masses in B and M to the masses in R. For our
bootstrap model, R=B.It is advantageous to work with
mass tensors having definite SU(6) transformation
properties in the spaces BQxB and MQxM T.he equation
then becomes

(1—n)C. (M) (B)
B„= 3f„.

[1—C„(B)n7 (M)
(12)

Since Eq. (12) is independent of the SU(3) subclassi-
fication, these'indices are omitted. C„(B)and C,(M) are
the remnants'". of the multiplied Clebsch-Gordan co-
efBcients after the diagonalization has been carried out.
They too are independent of the SU(3) indices and are
given by

C2(B)=1,
Css(B) = 11/15,

C4ps (B)= 17/45 ~

C2696 (B)= —1/15,

C2(M) = 1,
Cps(M) =2(1/15)'"

(13)
C4ps (M) = —2/9,
C2695 (M)

45 (1 n)—
B405 (—1.09)M4ps.

(45—17n)
(15)

The ratio of the two factors 15(1—n)/(15 —11n) and
45(1—n)/(45 —17n) remains fairly constant over the
range of n, so that the ratio of the various baryon terms
does not depend on the choice of n in a crucial manner.
We 6nd that for two of the three v=405 terms the
experimental baryon mass spectrum is quite well
reproduced when n is adjusted to approximately 0.4,
whereas the 35 term comes out consistently too small.
For n=0.4 we obtain

B66.6=0.189 [BeV7',
B4ps., 2——0.222 [Bev7',
B496;s=0 030 [BeV7'.

(16)

The smallness of B35,8 manifests itself in an insuAicient
predicted spread in hypercharge. For instance we can
calculate the (Z —A) and ( —1V) mass differences by

Now the convenience of operations in the linear space
of the reduced matrix elements becomes apparent.
After the reduced matrix elements are calculated from
Eq. (12), the individual baryon masses can be computed
by simple inversion. For v=2695 we obtain the afore-
mentioned result of Bgsgg ——0, since C2696(M) =0 and the
denominator is larger than zero. The term v=1 is
redundant, since it is used to normalize the relative
meson and baryon contributions. The remaining two
terms v=35 and 405 yield

15(1—n)
B35 2.53&35,

(15—11n)

inversion:

Z —4= —(14) i B4ps;6,
—/=2(7/6)'~2B36 s+ (14)'"B496,6,

leaving out 405" and the 2695 terms. We see that both
(Z—A) and ( —E) are predicted with the right sign,
but are too small, whereas their ratio is close to the
experimental value over most of the range of n. '7

Although this may be accidental, the model still is able
to generate a substantial (Z—A) mass difference of the
right sign. The term B405., 2y is calculated to be small.
Together with the condition B2695;Q7 0 this leads to a
small 27 type mass splitting in the SU(3) baryon
multiplets.

We conclude that this bootstrap model is able to
account for all the qualitative features of the baryon 56
mass spectrum. The lack of quantitative accuracy is not
disturbing, since crude approximations have been made
throughout the calculations. From Eqs. (12) and (13)
it can be seen that an SU(6) bootstrap model which
accounts for the L= 1 angular momentum by some other
mechanism and does not use the prescribed relabeling
of quantum-number assignments for the mesons will

immediately run into trouble, since the B405.y reduced
matrix element will be predicted to be negative. This of
course is not feasible since experimentally the mean 10
mass is higher than the mean 8 mass. In this context, it
seems even more striking that the relabeling argument
does lead to a qualitatively correct bootstrapped mass
spectrum of the 56.

IV. THE VO REPRESENTATION

The SU(6) 70 representation reduces into the four
multiplets (10;2), (8; 4), (8; 2), and (1;2) under
SU(3)QxSU(2). We use the notation of Beg and Singh
for the particle states, i.e., ge, I'*, *,and 0 are used for
(10;2),X„Z~,A~, and „for (8; 4), 5; Z, A., and for
(8;2) and A.

' for (1;2).' Where mixing occurs the
suKx E. denotes the diagonalized particle states.

The assumptions leading to the consideration of an
invariant S-wave production of the 70 have been dis-
cussed in detail in Sec. I. In this section we consider the
consequences of these assumptions. Mass-breaking
terms transforming like 3675', 3675' 3675" 3675'
3675' o, 36?5",and (280+280) should be absent, since
none of these appear in 56Qx56 or in 35Qx35. Unfortu-
nately we have mixing among three pairs of particles.
In order to obtain relations between the diagonalized
particle states we have to eliminate the mixing terms by
substitution. This leads to 4 cumbersome multiplicative
mass rules. Alternatively one can assume that in
addition all the 27 and 64 type mass-breaking terms are
absent. The results of this assumption have to be
treated cautiously, especially for small mass differences.

'7 This is not in contradiction with the statement that 8406,8 is
quite well reproduced, since experimentally B26».,& is large enough
to be effective in the Z —h. mass determination.

29 M. A. B.Beg and V. Singh, 'Phys. Rev. Letters 13, 509 (1964).
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For instance, in the y octet the (Z„—A~) mass difference
is likely to be of the same order of magnitude as the
violations of the Gell-Mann —Okubo mass formula. %e
list only the resulting linear rules. "Using (280+280)'
=367585=3675"=0 we obtain

f-/R & 8 —3-/B ~B y

and the equivalent relation

—3,(Q—Ee)= /5
—ZE.

From 3675'=0 we derive

(17)

(18)

2(&&+=".)=3~&+&. (20)

since no mixing is involved.
There is good evidence that the 189' term is absent in

the meson mass spectruxn, as pointed out in Sec. II. So
we may drop the 189' contribution to the 70 mass
spectrum. An additional rule results in

(21)

and the 8+-+ 10 mixing simplifies to

g*~g= P'*~ g= —(2) '/'(g —/1 ). (22)

The A.'h. mixing may not be easily expressed in terms of
diagonalized particles. Instead of listing a long un-

instructive formula we give the mixing in terms of
undiagonalized particles;

A' L= (2) '/'(Z —h —2(Z —h)). (23)

To be more specific we use the probability matrix
model as described in Sec. III )Eq. (11)j. The appro-
priate Clebsch-Gordan coeKcients are given in Ref. 12.
The matrix equation is then diagonalized and we obtain

R,/(R) =nC, (B)B,/(B)+(1 n)C, (M)M,—/(M), (24)

with

Ci(B)=1, Ci(M) =1,
C35rr(B) = (27/55)'", C35r1(M) = 3(44)

C35/vtr(B) = —(6/55)'" C /v (M) =7(352)—'/'

Cigg(B)=0, Cisg(M) = 3, (25)
C«5(B)=(2)'"(3) ' C505(M)= —(2)'"(24) '

C3875 (B)=0, C3015(M) =0,
C(280+»W (B)=0

~ C (280+280) (M)

10 Equations (17) to (21) have been derived by Gyuit and Tuan.
Their derivation is complementary to ours in that they start from
the positive assertion of the mass operator. Since in both calcu-
lations the same mass-breaking terms are left out, the end result
must be the same. Two of their corollary statements are incorrect.
First, they argue that all o6-diagonal elements are equal. Second,
they claim that Eqs. (17) and (18}have to be united, if the 189'
mass breaking is included. These mistakes have not entered their
numerical calculations. I. P. Gyuk and S. F. Tuan, Phys. Rev.
140, B164 (1965).

3~E+3~E'—I'/5* —&/5 —4=E—4="E*
—47+48*+4Q=0. (19)

For the y octet we have the usual Gell-Mann —Okubo
formula

TABLE V. Probability matrix calculation of the SU(6) 70 multi-
plet. Choice of parameters: o.=0.631, (8}=2.797 BeV'.

S~
Zq
h.~
MN

gglc

0
A'+-+ A(2) '/'

g ~ f'0(2)—1/2

8 (2)
—1/2

0.709
0.909
0.888
1.087

0.867
0.951
1.119
1.307

0.867
1.035
1.213
1.401

-0.105
0.084
0.094

R;/(M)

0.976

0.888
1.038
1.033
1.191

0.768
1.026
0.813
0.959

0.953
1.095
1.248
1.409

0.106
—0.102
—O.i i i

Mass LBeVj

1.526 (1.532)

1.471
1.633 (1.635)
1.628 (1.622)
1.770 (1.772)

1.523
1.653
1.676
1.815

1.585
1.720 (1.718)
1.853 (1.851)
1.980

Equation (24) a,nd the eigenvalues (25) are independent
of the SU(3) indices. The eigenvalues corresponding to
3675 and (280+280) are zero; these terms will not
contribute to the 70 mass spectrum. The SU(3) 27-type
mass-breaking terms are present in general. In Table V,
column 1, we have listed the various +3,1 „C,g C;1„
&&5~„BA,/(8) Lreferred to as If;, (B)] and in column 2

thevarious +5,1, , C;5 C, /„4/M „/(M) Lreferredto as

E;,(M)i. It is apparent that the calculated spectrum of
the 70 is quite sensitive to the specification of n.
Particularly the mixing parameters depend strongly on
the choice of n. The only significant result obtainable
for general n (0(n(1) relates the mean SU(3) multi-

plet masses. We find RJ")Ri'&R1' and R1"pR1'&. It
is evident that n must be fixed before any hierarchy can
be found in the spectrum. Vile take o. to be

(B)1/2

(26)
(B)1/2+ (M)1/2

as suggested in Ref. 20. Since it is desirable to 6t the
experimentally known members of the 7 octet, i.e.,
1'(1512),Z„(1660),and, (1817), into the 70 multiplet,
we adjust the average calculated (8;4) mass to the
average experimental y-octet mass.

In Table V, column 3, these values have been used
for the two parameters n and (8) to calculate the
masses of the individual members of the 70. The
numbers appearing are the square roots of the numbers
calculated in the model in order that a comparison with
the experimental data is faciliated. The brackets after
the mass values of particles involved in the mixing
contain the mass values for the corresponding un-
diagonalized mass levels. From Table V it is apparent
that the experimentally known members of the p octet
fit into our calculation quite well. The I'0*(1405) is

gg R. H. Capps, Phys. Rev. 137, B125 (1965).
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generally taken to be the (1;2) member of the 70. Our
calculation puts the mass of the (1;2) member at 1526
MeV. Evidently the probability matrix model fails to
produce sufhcient spread in the diBerent mean masses
of the SU(3) multiplets contained in the?0. This is not
too disturbing, since relativistic spin-dependent e6ects
might play a role in determining the correct SU(3)
mean mass levels. This deficiency can be separated in

the probability matrix model. Apart from the complete
diagonalization of the probability matrix achieved in
Eq. (24) by considering irreducible tensors in SU(6),
we can block-diagonalize the probability matrix with
regard to irreducible tensors of the subgroup SU(3)
QXSU(2). In this fashion the probability matrix can be
separated into 4 parts relating SU(3) tensors transform-
ing like 1, 8, 27, and 64. For the singlet part we obtain

g 10 40 8 34 6 8
P' 8

n(R) 40 8 B1") (1—n) (8) 31 15 2
I+

48(B) 20 28 B,s ) 48(3II) 35 9 4
P 8 (27)

g Sy

Rs 8&

Rs, '

Rsg

—8(10)'"

40(2)'"
n(B) —4(10)'"
96(B)

20(2)'/'

Rg

For the octet part we have
'R 10 64

0 48

—2(5)'"

8(5)'"

10

8(5)'"

32

—8(10)'"(5)-' 8(2)'"

2 —2(5)'/'

g 10

8

~8a

P' 1

36 12 0,

R 8~10

R le+8 0 —24(5)'"

16(5)'/' —2 (2)'" 2(1P)1/2

—72

10(10)'/' 6(10)'"(5) '

22 12 (1P)1/2

6 (5)1/2

19(2)1/2 3 (2)1/2

12 (5)1/2 12 (5)»2

8(5)'/'
(1—n)(R)

5 3
96(M)

13(5)'" 3(5)'" 5(2)'"

5 (5)1/2

6(2)'"

P' 1~8
E

(2)'"
—(10)'/' Pss . (28)

0.167,
—0.013,

0.124,
0.004,
0.124,
0.019,

—0.038.

Rs"/(8) =
Rs,"/(&) =
Rs,s&/(8) =
Rs.s/(&) =
Rs.s/(B) =

R 8++10/(R)

8/(R) =

(29)

The expressions for the mass tensors transforming like
27 and 64 will not be considered here. If the 4 experi-
mental particles E„Z~, ~, and F0* are regarded as
evidence for the 70 multiplet, we are compelled to
consider Eq. (27) covering the singlet terms as only
qualitatively correct, whereas we can hope that Eq.
(28) for the octet parts holds well quantitatively. Using
n from Eq. (26) we calculate

Apart from the members of the y octet, which were
shown to fit the probability matrix prediction quite
well, no further reliable experimental evidence is
available to test the remaining figures. For the afore-
mentioned reasons we consider these numbers to be
more reliable than those derivable from Eq. (27).

It is gratifying that the masses calculated in Table V
agree qualitatively with the masses calculated in Gyuk
and Tuan's paper. "They obtain their results by neglect-
ing a number of mass breaking terms in the 70 mass
spectrum and using 6 input masses. Neither of these
assumptions is made in our calculation. The approxi-
mations in our model are dynamical in nature. Our
results can be taken as supporting evidence that Gyuk
and Tuan have essentially used the right input masses.
An extensive discussion of the experimental situation
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concerning the candidates of the 70 representation has
been given in Ref. 19. The (1;2) and (8; 4) multiplets
have been considered above. Because of the predicted
closeness of the Z~ and A7 levels it is possible that A.~ is
hidden under the peak of Z~. A direct test of this
possibility would be the existence of a Z'm' decay mode
of the 1660 resonance. The experimental verification of
this decay mode would be quite dificult. A further
possible consequence of the predicted smallness of the
(Z7—A7) mass difference is a possible appreciable
electromagnetic mixing of the neutral members of the
two isomultiplets. The Eg and the Ag enhancements
near their respective threshoMs may be due to reso-
nances. They are candidates for the (8; 2) multiplet. "
Their positions are not well known but the different
estimates of their positions found in Ref. 19 (i.e.,
g 1480 MeV and A 1660 MeV) are consistent with
our predictions. Cline and Olsson recently reported
some evidence for an 5-wave enhancement near the
Zp threshold. "This enhancement may be due to the Z
resonance. There is no estimate on the position of the
Z. It will be interesting to see whether the predicted
proximity of the Z and A. levels is borne out experi-
mentally. Bareyre et a/. have found two suitable
candidates for the 70 in their phase shift analysis of 771V

scattering. " Both S11 and 83~ partial waves show

resonance behavior around 1690 Mev. The Se~ reso-

nance at 1690 MeV was confirmed by Donnachie et al.
in their phase-shift analysis. '4 Recently Cence has cast
some doubt on these results by obtaining a phase-shift
fit to the existing data without the S» and 531 resonant
behavior. "Apparently more data have to be analyzed
before any definite conclusions can be reached. The
conjectured S» (1690) of Bareyre et al. fits into our
calculated mass spectrum, whereas the conjectured
Sii (1690) is too heavy to be the iV member of the (8; 2)
multiplet calculated in our model. As a candidate for
the E, the resonance believed to be responsible for the

Eg threshold effect has to be favored from our calcu-
lation. We conclude that there is no essential disagree-
ment of our predictions with experimental evidence.
However, the existing experimental information does
not sufBce to test the model effectively.

We return to Eqs. (24) and (25) and calculate the
reduced matrix elements of the 70 representation from
our model. Again n is taken as in Eq. (26). We

"In the limit of exact SU(6) symmetry the coupling of 8 to the
S+q mode has to vanish. In Ref. 19 it is shown that symmetry
breaking eÃects may serve to restore this coupling.

2~ D. B. Cline and M. G. Olsson, Bull. Am. Phys. Soc. 11, 76
(1966).
"P.Bareyre, C. Bricman, A. V. Stirling, and G. Villet, Phys.

Letters 18, 342 (1965).
' A. Donnachie, A. T. Lea, and C. Lovelace, Phys. Letters 19,

146 (1965)."J.Cence, Phys. Letters 20, 306 (1966).

obtain

Rt/(R) =
~85II;8/(&) =

~8519&,s/(~) =-
%89;1/(&) =
+189;8/ (+)
8405;1/(8) =
~405;8/(Iil) =

+(280+280);8/ (+)=
~8675;1/(+) =
~8675;8/(+) =

1,
0.136,
0.014,
0.028,
0.000,
0.040,
0.004,
0,
0,
0.

(30)

~ F. J. Dyson, Symmetry Groups in nuclear and Particle
Physics (W. A. Benjamin, Inc. , New York, 1966).

~7 It is interesting that the 8 baryon representation in SU(3)
which corresponds to the same Young diagram (i.e., 6rst row: 2
boxes; second row: 1 box) as the 70 in SU(6) has a similar mass
structure. The reduced matrix element corresponding to the Sa
mass term (i.e., hypercharge term) is appreciably larger than the
reduced matrix element corresponding to the Ss term.

The reduced matrix elements transforming like SU(3)
singlets are likely to be too small for the reasons given
above. The leading mass-breaking components of the
mass tensor are R35~.,8, on the one hand, and R189,~ and
R405. 1, on the other hand. There is a similar pattern for
the 56 and the 35 representations. The leading mass-
breaking components of the S6 are 885,8 and 8405,.1 (see
Table III). For the 35 representation the lea, ding terms
are M85;8 M189 1 and M4pp 1 (Table IV). All the leading
terms within one SU(6) multiplet are of the same order.
Dyson remarked that SU(6) is broken along SU(3)
QxSU(2) as much as along t SU(4)QxSU(2) jz.."If 35'
measures the breaking along LSU(4)QxSU(2)jy and
the 189' and 405' measure the breaking along SU(3)
QXSU(2) all our 35' 189' and 405' reduced matrix
elements comply with this statement. It is interesting
to note that only one of the two 35 components appear-
ing in?OQx70 has a sizeable reduced matrix element,
namely, the 35H8 component, which produces the
hypercharge splitting. The SU(6) symmetry of our
model does not exclude either R3511.,8 or R35~~,.8. Both
R35~.,8 and R35NII;8 are coupled to the 8».8 and 3f», 8

mass terms. The smallness of R35~II.,8 in our calculated
mass spectrum is a dynamical effect."A sizable R35+~;8
would generate both appreciable mixing and non-

hypercharge splitting. In a simple quark model the only
SU(3) mass breaking term in the 70 would be the
R351I 8 leading to pure hypercharge splitting with no
mixing. The existence of a large R3~~~,8 term then
would be in contradiction with the quark model, but
not with SU(6). Our model shows how the contributions
of 835-8 and 3f35.8 to R35~~-8 cancel each other to a large
degree, so that (as in the 56 baryon representation)
hypercharge becomes the leading SU(3) breaking oper-
ator. Any further comparisons of quark model versus

SU(6) models for SU(3) breaking effects have to be
made in the realm of second-order effects. An example
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is the mass diRerence between the isoscalar and the
isovector members of an octet.

We now turn to the calculation of the mixing angles.
The y octet provided us with some evidence that the
SU(3) octet-type splitting is reproduced well in our
model. Since the main contribution to the oR-diagonal
elements of the 70 mass matrix are octet type, the
calculated oR-diagonal mass values are likely to be
reliable. We can compute the mixing angles from the
calculated mass spectrum:

A,
'A™ mixing n —14 )

Z I'* mixing P 9',
* mixing y 10'.

(31a)

(31b)

(31c)

We know from perturbation theory that the mixing
angle is inversely dependent on the difference of the
diagonal unperturbed levels. Since in our model these
differences are apparently calculated too small, the
mixing angles in (31a), (31b), and (31c) provide a
reasonable upper limit to the actual mixing angles.

The smallness of the mixing angles can be used to
derive some more approximative mass formulas. It is
not desirable to set the oR-diagonal elements to zero
for such an approximation. Under this assumption the
only surviving SU(3) octet mass-breaking term would

be 35H' if all 189' (280+280)' 3675'3, and 3675" are
set equal to zero. This corresponds to pure hypercharge
breaking. Since we are interested in Z —A.—breaking
eRects, such an approximation is not very useful.
Instead we consider the small mixing angles by approxi-
mating the diagonalized mass values by the unper-
turbed diagonal masses. With this approximation the
Gell-Mann —Okubo mass rule can be applied to the
different SU(3) multiplets occurring in the 70. We
present the intermultiplet mass formulas resulting from
this approximation. For the octet part we obtain

R33NH;3 8(154)—1/2(5) —1( Rs 3+8R 37) (36)

R4o3 3=8(70) '"«3 '). (37)

These three equations are to be understood numerically
and do not reQect any tensorial properties. If we neglect
mass level shifts due to mixing, R35N~,.S gives mainly the
mass diRerence Z~ —A~, whereas R405., 8 is proportional to
the mass difference Z —A. It is clear that the Z —A signs
in the (8; 2) and (8; 4) are opposite, if the values from
Eq. (30) are used for Rss/777. ,3 and R493., 3. In a similar
fashion we may substitute R3675. ] —0 into the remain-
ing SU(3) singlet type mass tensors (Eq. (7a)j. We
obtain

R139;1=8(14)—I/2(5) —1(R 10 R137)

R4o3 1=4(5) 1/ (7) 1(R134'—R1') ~

Equation 30 gives us R]sg 1&R405 1. This is quite reason-
able since R1s9;1 gets a contribution only from the 35
mass spectrum, whereas R405. 1 has contributions from
both the 35 and the 56 spectra. Thus we have R1'9—R13&

)R137'—R1', and since 2R1 =R1M+R1' $Eq. (34)7, we
obtain

Rg"&R1'&&R1'&R1'. (38)

We have shown that the mixing eRects are most likely
quite small. Equation (38) then can be assumed to hold
for the physical particles as well.

V. THE 20 REPRESENTATION

In Sec. III we have seen that the 84o5,.8 term is
responsible for the (Z —A.) mass difference. A similar
result can be obtained for the 70. We substitute
189'= (280+28Q)'=367533=3675"=0 into the remain-
ing three octet-type SU(6) mass tensors and obtain

R3377;3= (385) 1/2L5(2)1/2Rsio+8R 37+4R sj (35)

MH+ PQ MH ~f (32)

setting (280+280)'= 3675»= 3675"=0 and

PPg P'$
/ ) (33)

from R3375 1 0. The (8; 2) multiplet is predicted to lie
halfway between the (1;2) and the (10;2) multiplets.

if additionally R139;3=0 is used. Equations (32) and (33)
are identical with Eqs. (17) and (21). This can be seen

by using R27' "——0, i.e., ~+-+™~=Z~I'*) and the
secular equations used in diagonalizing the two 2)&2
matrices occuring in the 8~ 1Q mixing. Unless SU(3)
27-type contributions to the mass breaking are taken
into account no new intermultiplet formulas can be ob-
tained for the octet parts by using this approximation.
For the singlet part we obtain the illustrative mass rule

2R1' R1"+R1'——

There have been several speculations on the possible
existence of a SU(6) 20&+& baryon multiplet. Capps has
shown that there exists attraction in the 20 of the
70Qx35 S-wave SU(6) invariant interaction. ' If the
so-called (1480) Roper resonance has the quantum
numbers 12(12+) for I(J ), it could be a member of the
20&+7. We denote the 20&+7 representation by Z. It
reduces into (8;2)+(1;4) under SU(3)QxSU(2). The
members of the octet Z' are denoted by N', Z') A.*,and

' and the Z singlet is denoted by I'0'. %'e note that the
20 is not contained in the reduction of 56Qx35. Since the
mass spectrum of the 70 is still quite uncertain, we can
only give a very quahtative picture of the mass spec-
tr1nn of the 20'+& as it arises in such a model.

As before, we use the approximation of the prob-
ability model. With the appropriate entries Eq. (11) is
diagonalized and we obtain a relation of the 20 reduced
matrix elements in terms of the reduced matrix elements
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of the 70 and 35 representations:

Z$ 0

Z„= (Z)/(g) 0 S(77) »-(8/77)»

Z189 0

+(1—)(~)/(Jlf) o (7) '"
0

M3g . (39)

(126) i Myse

It can be seen from Eqs. (24) and (25) in Sec. IV that
irrespective of the n chosen in deriving the 70 mass
spectrum and irrespective of the e chosen in the above
equation we obtain the qualitative results Zy89;y)0,
Z35.,8)0, and Z~89,.8 0. The erst, i.e., Z1.89., 1.)0, leads to
Z~ )Z~', the mean octet mass is predicted higher than
the singlet mass. The second result, i.e., Z35,8)0, gives
')S'. This is the usual hypercharge ordering and

shouM be expected. Z189., 8 0 together with the Gell-
Mann —Okubo rule implies A.* Z'. The closeness of the
two levels A.* and Z' suggests a possible appreciable
electromagnetic mixing effect between the neutral
members of the two isomultiplets.

A possible supermixing between the two positive-
parity 20 and 56 representations has to be excluded if
one believes that a common SU(6) mass operator can
be used for all representations. This follows from the
decomposition of 20Qx56=840+280. Neither of these
mass-breaking terms appears in the 56 and 35 mass

spectrum, nor in the 70 as calculated in our model.

VI. SUMMARY AND CONCLUSION

We have used SU(6) invariance in a dynamical model
to relate the mass differences in the 35-fold meson
multiplet to the mass differences in the 56 baryon
multiplet and the conjectured 70& & and 20&+& baryon
resonance multiplets. Ke consider the calculation on
the mass spectrum of the 70& & multiplet the main
result of this paper. The computed mass values should
be of use in the identification of experimentally found
resonances which have the right quantum numbers to

fit into the 70 multiplet. In a phenomenological analysis
similar to that of Gyuk and Tuan there can be some am-
biguity in such a choice. For example, two I~~L1/2'» &

—
&j

resonances have been reported recently, suitable to be
members of the (8; 2) multiplet. In our calculation the
Eg resonance has to be favored over the S~~ Xx reso-
nance found in the Ex phase-shift analysis. " The
calculated numbers are in quite good agreement with
the experimentally established members of the 7 octet.
We used the method of reduced matrix elements to
compare different mass breaking terms. For the baryon
multiplets, hypercharge splitting was found to be the
most important SU(3) breaking effect. It was shown
that a mass operator containing the 35~ 189' 405' and
405 mass-breaking terms is consistent with the experi-
mental data and with the mass spectra computed from
our model. The success of our calculation rn, ay be an
indication that an approximation including only the
lowest angular momenta may be sufhcient to determine
the position of the low-lying baryon poles (our models
for the 70~ & and 20&+& rnultiplets are nonrelativistic in
this sense only). Furthermore, the detailed dynamical
structure of the exchange processes may not be as
important in this determination as the contributions
from the mass differences in the various direct channels.
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