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The usual derivations of the Boltzmann transport equation suffer from a number of weaknesses. Using
a simple model, this paper attempts to treat on as rigorous a basis as possible the influence of a magnetic
6eld on the transport equation. The approach presented here establishes the relationship between the
classical Boltzmann equation and the corresponding quantum-mechanical formalism. It is shown how the
exact gauge-dependent Liouville equation, determining the density matrix, can be transformed into a
completely gauge-independent equation satisfied by a new density matrix. This equation is solved for a
model consisting of noninteracting free electrons being elastically scattered by randomly placed scattering
centers. The new density matrix is developed in ascending powers of the strength of the scattering potential.
In carrying out this development, the product of the cyclotron frequency and the collision relaxation time
is assumed to be of order unity. In this case the familiar Boltzmann transport equation in the presence of a
magnetic field represents an approximation valid in the limiting cases of very weak or very dilute scatterers.
The corresponding velocity operator is shown to be the usual gauge-independent expression, just the ordinary
free-particle momentum operator divided by the mass. Higher order corrections to the transport equation are
found, some of which involve the magnetic Geld.

I. INTRODUCTION

HE various effects of a magnetic field on the trans-
port properties of a metal or plasma provide us

with some of our most useful information about these
substances. For this reason, the dependence of the trans-
port equation on the magnetic Geld should be established
as firmly as possible. In this paper we shall be concerned
with treating on as rigorous a basis as possible the
influence of a magnetic field on the transport equation
using a somewhat simplified model. The approach pre-
sented here establishes the relationship between the
classical Boltzmann equation and the corresponding
gauge-dependent quantum-mechanical formalism. It
also provides a consistent method of obtaining the mag-
netic corrections to the ordinary Boltzmann transport
equation to all orders.

A system containing a large number of interacting
particles is ordinarily treated by means of a transport
equation. ' This is an equation for a distribution func-
tion which describes the probability of a particle being
in any given state of motion specified by a suitable
set of variables. This equation is usually determined

by requiring that in the steady state the total time rate
of change of the distribution function vanish. Two
essentially distinct processes contribute to changes of
distribution function with time, namely, acceleration
of charged particles by electric and magnetic fields
and collisions between the various particles. The trans-
port equation can, therefore, be written as the sum of
two partial derivatives,

(ref/@)Fields+ (rif/ l~)Colrlisions= 0
~ (1.1)

where the first term is the so-called "drift" term and the
second is the collision term.

Classical arguments have been used to obtain explicit
expressions for the two terms contained in Eq. (1.1).

'S. Chapman and T. Cowling, The 3fathematical Theory of
Non Urlforrl Gases, '3r-d ed. (Cambridge University Press, Cam-
bridge, England, 1958), Chap. 3.
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where k is related to the velocity and momentum by
k=mv=y. (Units are chosen such that k=1.) In ob-
taining the result (1.2) Jones and Zener started with the
appropriate Schrodinger equation for electrons in the
presence of uniform electric and magnetic fields. The
vector potential then appears explicitly in the Hamil-
tonian and both the distribution function and the cor-
responding velocity operator can be expected to depend
on the choice of gauge. This is actually the case; it was
recognized that a degree of arbitrariness exists in the
definition of the velocity operator for a system subjected
to an externally applied magnetic Geld. The choice of
gauge, however, cannot aGect in any way the physical
properties of the system although the equations deter-
mining the motion of the charged particles are clearly
different for different choices of gauge. It should, there-
fore, be possible to carry out the formulation with an
arbitrary choice of gauge and arrive finally at a set of
equations in which all arbitrariness has disappeared.
There appeared at the time to be no simple way of
accomplishing this and it was easier to specify an abso-
1ute gauge system by simply requiring the mean value
of the vector potential to be zero. This was suQicient to

' H. Jones and C. Zener, Proc. Roy. Soc. (London} A144, 101
(1934).

i38

The resulting equation is the well-known Boltzmann
transport equation in which the electric and magnetic
fields enter in the form of the Lorentz force. ' The ex-
tension of Eq. (1.1) to include quantum-mechanical
processes was first considered by Jones and Zener. '
They examined the action of uniform electric and mag-
netic Gelds on the Inotion of an electron using quantum
mechanics and showed that for times small compared
to the cyclotron period, the field term in Eq. (1.1)
could be written
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arrive at the expression (1.2) for the field term and. at
the same time regain the usual expression p/ttt for the
velocity even in the presence of a magnetic field.

Even so Eq. (1.1) itself cannot properly be taken as a
basis for developing a quantum theory of transport for
it is well known that a quantum-mechanical calculation
of the average of a physical quantity requires in general
not only the probabilities of the diferent states being
occupied (the diagonal elements of the density matrix)
but the entire density matrix. Here the procedures of
Kohn and Luttinger' will be followed to obtain in a
consistent way the magnetic corrections to the transport
equation, which are at the same time independent of
the gauge. Since the interaction with the magnetic field
is our principal concern, a very simple model will be
considered; it will consist of noninteracting free elec-
trons elastically scattered by randomly distributed
scattering centers in the presence of externally applied
electric and magnetic fields. This is a reasonable descrip-
tion of either a plasma or a metal under certain condi-
tions. It is at once apparent, however, that the diagonal
elements of the density matrix for the system in the
presence of a magnetic field cannot correspond directly
to the classical distribution function satisfying the
ordinary Boltzmann transport equation since the equa-
tion determining the density operator must depend
explicitly on the gauge. Moreover the matrix equations
obtained by applying the Kohn-Luttinger procedure
directly contain matrix elements of the vector potential
itself and this leads directly to difhculty in attempting
to solve them. In order to avoid this difIiculty and to
ensure a description that is finally gauge-independent,
the vector potential is eliminated from the operator
equations initially. In Sec. II the equation for the exact
density operator is shown to be equivalent to a new
gauge-independent operator equation, whose solution
does in fact correspond to the ordinary classical distri-
bution function. The velocity operator corresponding
to the new, or transformed, density operator turns out
to be just the ordinary velocity operator one finds in

the absence of a magnetic field. The methods of Kohn
and Luttinger can be applied at once to the transformed
operator equation. This is done in Sec. III to obtain the
lowest order equation satisfied by the diagonal elements
of the transformed density matrix. This equation turns
out to be the ordinary Boltzmann transport equation
in the presence of a magnetic field. In Sec. IV the first
correction to the transport equation involving the mag-
netic field is found by extending the work of Sec. III.
The new term in the transport equation depends on the
magnetic field and the scattering potential. Its contribu-
tion to the current density will be treated in a later
publication. In the Appendix a proof of an operator
theorem used in Sec. II is presented.

e W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957),
hereafter referred to as K-L.

where H(p —(e/c)A) is the Hamiltonian of a free elec-
tron in the presence of a magnetic field B, H'(r) is the
scattering potential interaction, assumed to depend
only on the coordinates, and Hz(r) is the interaction
with the externally applied electric Geld. The various
terms in Eq. (2.1) are given by

) 2

e(p —(e/c)A) = (1/2m)(p —s(r) ~,
c ) ' (2 2)

H'(r) =P (t)(r—r;) =XV, (2.3)

He(r)= —eE r. (2.4)

In (2.2), A(r) is the vector potential and e is the charge
of the electron. In (2.3), X is some dimensionless meas-
ure of the strength of the interaction of the scattering
center with the electron, (t (r) is the interaction energy
with a single scatterer, and ri are the locations of the E
scatterers. In (2.4) E is the externally applied electric
field.

Consider a collection of u electrons moving under the
action of the same Hamiltonian Hz and introduce the
exact density operator p~ for this collection. 4 Denote
the time-dependent wave functions of the electrons by
+'(r, t) and expand them in a complete set of time-
independent functions ft (r);

+'(r, t) =Z«t'(t)A(r)

Then the Hermitian operator pr(p, r, t) with the matrix
elements

1
Ppr7)t. P(tt'(t)(tt. '*(t)———

in the ()I t (r) representation is the exact density operator.
The expectation value of any observable quantity

'R. C. Tolman, Principles of Statistical 3Eechanics (Oxford
University Press, New York, 1930), p. 327.

II. GAUGE-INDEPENDENT FORMULATION
OF TRANSPORT THEORY

Consider a collection of electrons so dilute that their
interaction with each other and the eGect of Fermi-
Dirac statistics on their behavior can be neglected. Then
every electron may be treated as completely independ-
ent of all others and one has essentially to deal with a
single-electron problem. The electrons are treated as
completely free except for their interaction with a set
of randomly distributed scattering centers and the ex-
ternally applied electric and magnetic fields. The scat-
tering centers might be thought of as either more slowly
moving ions in a plasma or impurities in a metal. The
total Hamiltonian for each electron moving in such a
system may be written

Hr H(p —(—e/c)A)—+H'(r)+He(r), (2.1)
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represented by the operator M(t) is then given by

M(t) =Tr{pr(t)M(t)}, (2.5)

where Tr means the trace or diagonal sum of the cor-
responding matrix. The time development of pr(t) is
determined by the one-electron Liouville equation,

z&pr/at= [Hr, pr] (2 6)

for the Hamiltonian (2.1).The diagonal elements [pr]zt
give the probability of 6nding an electron in the state
ft(r). The sum of these probabilities is unity for a wave
function normalized to unity. Once pp is known the
observed value of any operator representing a physical
quantity can be found from Eq. (2.5).

In the absence of an electric 6eld the system can
exist in a state of equilibrium. The exact equilibrium
density operator p must then satisfy the equation

zap/at=[H(y —(e/c)A)+H'(r), p]. (2.7)

While any function H(y —(e/c)A)+H'(r) will satisfy
this equation, it is known from the theory of statistical
mechanics that the exact form of the function must be
the usual Maxwell-Boltzmann distribution,

p= Eexp{—p[H'(y —(%)A)+H'(r)]), (2.8)

where p=1/kT. The normalization constant E must
be determined from the relation

E '= Tr{exp{—P[H(y —(e/c)A)+H'(r)]}} (2.9)

and will in general depend on both the magnetic field
and the scattering potential.

Now assume that p& satisfying Eq. (2.6) can be
written in the form

pr = pz (y—(%)A, r, B, t). (2.10)

This implies that p& depends not only on the vector
potential A through the operator y—(%)A, but on
the gauge-invariant magnetic field 8 as well. For the
purpose of obtaining a gauge-independent theory of
transport we make use of (2.10) to write pr as a Fourier
integral

pz (y —(e/c)A, r, B, t) = e'P &R((,r,B,t)dg, '(2.11)

where P=—(y—(e/c)A). This in turn defines the function
R(Ir, r,B,t), which is assumed to depend in no way on the
magnetic field gauge. The assumption (2.10) or (2.11)
will be justified by showing that the results finally ob-
tained are consistent with it. Now replace p& in Kq.
(2.6) by the integral expression (2.11).This gives

BR
i e' '& d(= H'(r)+ Ht(tr), e' '&Rdg

8$

We now wish to rewrite the two commutators on the
right-hand side so that the vector potential appears
only in an exponential-operator factor to the extreme
left in the equivalent expressions. The term on the left-
hand side is already in this form since R(tr, r,B,t) has
been assumed to be independent of the gauge. This
procedure will allow us to find a gauge-independent
equation satis6ed by R.

Since the two potential functions depend only on the
coordinates, one can easily show that

H'+Her, e'P'&Rdg = e'P &

X {e '& &(H'+H'e)e's & (H'+'—He))Rd( (2.13)

by using the operator expansion

(i)"
e'"Be '"=P [Al"' B]

M Sl
(2.14)

in which [A l"l,B]is defined to be the 0-fold commutator
of operator A with operator B, i.e., [A,[A ],B]
with zz factors of A, and [Al'lB]—=B. Equation (2.13)
allows the first commutator on the right-hand side of
(2.12) to be written in the required form.

The second commutator in (2.12) requires more work
in order to reduce it to the proper form. First expand it
in the following way:

P', e'~'& Rgd= e'~ &[P',R]dg

+ [P',e*' n&]R dg. (2.15)

The first integral on the right can in turn be expanded
and written

e'P &[P',R]d(

8 E.
e'n'& 2P [P,R]+ dg (2.16)

CX 8$~

by successive application of the commutator relations.
With no loss of generality the magnetic held is chosen
in the z direction. The commutators [P,Pe] are always
constants and equal in this case to

LP*,P.]= (e/ )B*,
[P„P,]=[P„,P,]=0, (2.17)

for any gauge. Further notice that if A and 8 are any
two operators which both commute with their commu-
tator [A,B] then'

gA+B gAgBg —1/2 fA,Bj (2.18)

P' e'~ &Rd( . (2.12) 'E. Merzbscher, Qgoltztm Meehezzees Uoh'n Wiley tlz.Sons,
Inc., New York, 1961),p. 162.
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enp
(J), = Tr P e'~'&R(g, rzB, t)d( . (2.32)

m

The current density cannot depend in any way on the
g ticfildg g. H eiti p i ibl to hoo

any gauge that might be convenient for the purpose of
calculating the trace. The operation of taking the trace
in Eq. (2.32) must be sufficient to render the result
totally gauge independent. This will now be shown
explicitly by writing Eq. (2.32) in terms of the trans-
formed gauge-independent density operator. The form
of the corresponding velocity operator and the fact that
it too is gauge-independent will then be apparent.

With the help of formulas (2.17) and (2.18) the x
component of the average current density can be
written

enp
Tr eipz'tz ~eiipzfz+Fzpz)

XeO/p) izz&obbRdg

zenp
eiPgbei (Pygy+P z$ z) e(& I2) s~OM y

BR
~pimM pg&R+ d( (2.33)

c)$,

after performing a partial integration with respect to
$,. To calculate the trace we choose a Landau gauge,
A(r) = (—yB, 0, 0), and a plane-wave representation.
(See Sec. III.) In this case the pp component of the aver-

age current density becomes

zenp

ZZZ
yg, tb 10' )7z"

of the spatial coordinate. For the Hamiltonian (2.1)
the exact velocity operator must be'

v =iTII(p (e/—c)A)+H'(r)+P)p(r), rj
1=—(p—(e/c)A(r)) = (1/m)P (2.31)
m

and is seen to depend explicitly on the magnetic field
through the vector potential. Inserting this in Eq. (2.30)
along with the integral expression (2.11) for the exact
density operator gives for the current density

where the matrix of E is given by

1
Rpp =— e '&" "')'R((,r,B,t)dr. (2.35)

The subscript )=0 in the anal expression means that
the bracket is to be evaluated at the origin. Then ac-
cording to (2.35) (J'), no longer depends on the wave
vector.

The expression (2.34) for the current density can be
put in a more revealing form by making use of the
definition of the delta function expressed as a sum:

Pp e'"'=Qb(r). (2.36)

zenp gggg,-z
m

enp
k.e'~'&R p)d g,

1S

= (eep/m) Tr(p, pr(p, r,B,t)), (2.37)

by performing one partial integration and using the
definition of the transformed gauge-independent density
operator given by Eq. (2.26). The remaining com-
ponents of the average current density can be brought
into exactly the same form as (2.37). The resulting
expression for the current density is completely equiva-
lent to (2.30) but is expressed in manifestly gauge-
independent operators. If pr satisfying Eq. (2.28) is
looked upon as the correct density operator, then it is
clear from our last results that the free-particle mo-
mentum operator divided by the mass is the corre-
sponding velocity operator.

In order to use Eq. (2.28) as the basis of a gauge-
independent transport theory, the trace of the trans-
formed density operator t)r(p, r,B,t) must be known. This
is readily determined by the same methods already
used in finding the gauge-independent velocity operator.
The trace of the exact density operator has been set
equal to unity according to Eq. (2.9). Making use of
Eq. (2.26) the trace of p& can be rewritten

~+I ~1
'

X4 )e)" "o~'r" p&mo)o)pR) "p+ dg
8 g

zenpQ BEg,p-

m 8$, (p
(2.34)

eikz'htt, etizzzrapfzt&t)

It." k"

X4.o. "e""' '+" b8)&.&" R,", gd

6 See, for example, L. I. SchiB, QNantum M'echanics (McQravp-
3ook Company, Inc., Net York, l955), p, 1/3, (2.38)



where the matrix of R, given by (2.35), is to be evalu-
ated at the origin. This expression for the trace can
also be written

1=9 5(g)APIECE(

satisfy Eq. (2.28) with HJ, set. equal to zero:

Bp
i —=[Ho+H'(r), pg-

Bt 2SlC

&& Z{(y~».[* p~+[ .-i(yX».). (32)

e'"%1i tiki d4

=TrPr(y, r,S,t) (2.39)

The calculation of the new density matrix will be
limited to terms no higher than first order in the elec-
tric 6eld. Therefore let

by using Eq. (2.36) and the deanition of pr given by
(2.26). Thus the trace of the gauge-independent density
operator is the same as that of the exact density operator
pr. Equation (2.39) can then be used to determine the
normalization of pg.

E Kpgtt t (3.1)

III. BOLTZMANN TRANSPORT EQUATION

The problem of handling the gauge-dependent oper-
ator Eq. (2.6) has been reduced to the equivalent prob-
lem of treating the gauge-independent Eq. (2.28). It
wiB now be shown that it is py and not p~ that actually
corresponds to the ordinary classical distribution func-
tion. This is accomplished by developing the new den-

sity matrix in ascending powers of the strength of the
scattering potential according to a technique used by
Kohn and Luttinger. ' In order to obtain the familiar
Boltzmann transport equation, which represents the
lowest order approximation, it is necessary to assume
that 07pv' 1 where orp is the cyclotron frequency and
v„ is of the order of the collision relaxation time.
Higher order corrections to the Boltzmann equation
exist, some of which involve the magnetic held explicitly.
These mill be dealt with in the last section; here we
consider only the lowest order contribution.

Consider Eq. (2.28) in the following way. Initially
the system is in contact with a heat reservoir and the
system is assumed to have reached thermodynamic
equilibrium in the presence of a magnetic Geld. There is
no electric held present. Contact is then broken with
the heat reservoir and the electric Geld is very slowly
turned on. It is convenient to turn the electric field on
according to the formula

where p~ is taken to be linear in the electric 6eld. Then
the total density operator becomes equal to the equi-
librium density operator when the electric 6eM is zero.
Inserting pr given by Eq. (3.3) into Eq. (2.28) and
using Eq. (3.2},it is found that ps satisfies the equation

pg = [Ho+H'(r), pz j+[HE,p3
8f

P{(yX&).[*.,pz)+[*.,p~j(yX». & (3.4)
28$C ~

if terms of second order in the electric 6eld are neglected.
The quantity p~ must satisfy the initial condition

pe(t= —~)=0.
Now since B~ may be written

H~(r) = eE„'x e", —

Eqs. (3.4) and (3.5) can be satisfied by taking

pe= fe",

(3.5)

(3.6)

where f is linear in the electric field and independent of
the time. The quantity f is the correction to the equi-
librium density operator at time zero, which is what is
required. Inserting Eqs. (3.6) and (3.7) into Eq. (3.4)
gives the equation for f,

isf=[HO+H'(r), fj C-
20lC

&& Z{(y&&».[*-,f3+[~.,fj(yX»-), (38)

so that the electric 6eld is zero at t= —~ and reaches
its full value K' at time zero. It will be shown that the
results do not depend on the frequency parameter s as
long as it is chosen reasonably. The collection of elec-
trons is now described by the new single-particle density
operator pT, whose time development is given by Eq.
(2.28). The solution of interest is that for t=0 when
the electric field has reached its full value. Hence a
solution of Eq. (2.28) must be found with the electric
6eld given by Eq. (3.1) which reduces at t= ~ to the-
llew equlllbriugl density opeI'atoi say p. Tllis Illust

where C is dehned as the commutator

C= —eE '[p,x j. (3.9)

6= (I/V'II)e*"' (3.10)

where A=I' is the volume of the container. The allowed

To solve Eq. (3.8), which is valid in any representa-
tion, it is convenient to choose the representation for
which Hp is diagonal, that is, plane waves with periodic
boundary conditions. The normalized eigenfunctions of
Hp are



R. B. THOMAS, JR.

wave vectors are given by

k = (2n./1.)e., (3.11)

where e are all real positive and negative integers. Then
go satisfies the equation

where
Ho)jr'= oo g'o &

ohio= (1/2m)ko (3.12)

+ (k+k')XB (V&+V, )f» (3.13)
2mc

with &o» o=
ohio

—oi'. The matrix elements of H'(r) are
equal to

H»'= —Q e '&" "')"' e """')'y(r)dr (3.14)
0 ~=J 0

after making an appropriate change of variable. For
simplicity the potential P(r) will be taken to have a finite
range so that the coordinate integration can be ex-
tended over all space. Then Eq. (3.14) becomes

where

Q» -s(a-R') r;~kk'—
0 '=~

e
—d'or —)r') ry(r)r)rr

(3.15)

(3.16)

Following Kohn and Luttinger we separate Eq.
(3.13) into diagonal and nondiagonal parts. The Eq.
(3.13) becomes

isfo=P' {—foI, H»' H»'fa r}—
ie

+Co+ (kXB) Vofo (3.17)
mc

for k=k' with fo= f», C),=—C—» and

(~» —is)f» = (fo fo )H» '+—C»

+Q' {fa)"Ho o' H» 'fa"o }—
ie

+ (k+k')XB (Vo+Vo.)f» (3.18)
2mc

for krak'. Here terms in the sum having factors with
pairs of equal indices have been separated out and
advantage has been taken of the fact that Il~g,

' is a
constant to de6ne a new energy

are the energy eigenvalues. In this representation Eq.
(3.8) becomes

( )rQ' is)fo)r' P {f»"H)." o' H»" fo s)ri}+C»

By resetting the zero of energy this constant can be
removed. This is equivalent to taking BI,I,'=0 and for
simplicity it will be imagined that this has been done.

So far everything is quite general. It will now be
shown that the technique of Kohn and Luttinger can
be used to find a solution of Eq. (3.18) in a power series
in X. In developing such a solution it will be assumed that
copv' is of order unity. This turns out to be a necessary
condition for obtaining the ordinary Boltzmann trans-
port equation when Eq. (3.17) is treated to lowest order
in X while retaining the magnetic field term. Since the
collision relaxation time is inversely proportional to the
square of the potential interaction of the electrons with
the scattering centers, v„ is of order 'A ' according to
(2.3). For this reason factors of the magnetic field can
conveniently be considered of order )' in determining
the respective orders of the various terms contained in
Eq. (3.18).

To carry out the proposed development of the density
matrix in powers of X, the various terms in Eq. (3.18)
must first be examined to learn how they depend on )
for small X. First consider the commutator

C» = iE.'5p, *.—j»
tr8 8)

+ (po'
(ak. ak„'I

(3.19)

p depends on the scattering potential and the magnetic
field; C~~. can therefore be expanded in a power series
in X,

C». =C». "+C». '+ (3.20)

where

' p(p) —
p (p) —g (p)e pIIO

7

Z(o)] '= Tre ~~'.

(3.22)

(3.23)

in which C~I,.&") is of order X". Here the evaluation of
the series will be limited to the 6rst term, CI,~ &'), since
this turns out to be all that is required to obtain the
lowest order result from Eq. (3.18).

In order to obtain the expansion indicated by Eq.
(3.20) in powers of X the corresponding expansion of p
is needed. p satisfies the operator equation (3.2) from
which the equation satis6ed by p( ', the lowest order
part of the new equilibrium density operator, can be
obtained by setting H'(r) and B equal to zero since
they are of order X and X', respectively. Then

i8p /Bt=LHo p&')j. (3.21)

This is just the equation satis6ed by the exact density
operator p in the absence of both a magnetic field and
scattering. In fact p™and p become identical in the ab-
sence of a magnetic field. Hence the solution of Eq.
(3.21) at equilibrium is the usual Maxwell-Boltzmann
function,

with
oo = oo'+H»'

II =~I —~1' ~

The matrix of (3.22) is just

pxI = pe ~uj (324)
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1 2vrP '"
p

0 e—P~rc

possible to replace ~Haa. '~' in a sum such as occurs in
Eq. (3.28) by its ensemble average given by3.25

The first term in Eq. (3.20) is obtained by inserting
(3.24) into (3.19). This gives

Ã
(/Haa'f')= —f4aa t'.

0
(3.30)

~pj
CI,A,

.( ) =ieE~ 8I,(, .
Bk

(3.26)

8pg ze
isfa( '&=—ieE,' + (kXB) Vaja( '&

Bk mc

+Z'~Haa '('(fa' " fa' ")—

Thus the diagonal terms of the commutator C begin
with the zeroth order in X while the nondiagonal ones
are at least of first order in X.

Now assume that fa begins with order X ' as Kohn
and Luttinger found when no magnetic field was present.
This will lead to a consistent solution in the presence of
a magnetic 6eld as well. Then it follows from Eq. (3.18)
and (3.26), on examination of the various terms, that
faa. (k/k') must begin with order X '. Thus Eq. (3.18)
can be solved by an iterative process. To lowest order
Eq. (3.18) gives just

faa ( '& = [(fa( '& —fa ( 2&)/(~aa —is) jHaa. ', (3.27)

in which appropriate superscripts have been added to
indicate the respective orders in )(. insert (3.27) along
with (3.26) into Eq. (3.17) and again retain only lowest
order in X. This gives

The solution of Eq. (3.28) still depends on the value
of the frequency parameter s. There is, however, a large
and useful range of s for which the solution is practically
independent of s. This range is specified by the following
conditions. First, s ' must be much greater than the
collision relaxation time, the cyclotron period, and the
characteristic atomic time. When these conditions are
satisfied the left-hand side of Eq. (3.28) may be dropped.
Further if s))AE/h, where AE is of the order of the
spacing of the translational electronic levels, the sum
in Eq. (3.28) can be replaced by an integral according to

P =(0/(2s)'j dk. (3.31)

lim (x—is) '= P(1/x)+i~l&(x), (3.32)

where P(1/x) is the principle value of 1/x and h(x) is
the Dirac delta function. Equation (3.31) can then be
written

Then the condition that s be much less than character-
istic atomic frequencies enables one to use the well-
known result

(Oaai —zs Maa'+zs

From Eq. (3.15) it is found

(3.28) 0=eE.' + (kyB) Vaf (-')
Bk use

+ (~a a"'fa' " ~aa "'fa' ")dk', (3.33)
(2s)'

This quantity depends in general on the positions of
all the scatterers. Kohn and Luttinger showed, however,
that the summation over k' electively eliminates this
dependence. If there is no correlation between the
positions of the scatterers Eq. (3.28) becomes a well-
defined equation independent of these positions.
Kohn and Luttinger define the ensemble average of
M(ri, r2, r„), say (M), as the average of M over all
diGerent arrangements of the scatterers without any
correlation between them. Then the ensemble average
is given by the integral

(M) =— dri dr„M(ri r„) .
a a

It can be shown without any loss of rigor that it is

where

reaa "'= (2~/fl') j Paa
~

'& (~aa ) (3.34)

is the transition probability per unit time from a plane-
wave state k to k' due to a single scattering event and
Waa (') =Er(&aa ( ). Equation (3.33) is just the ordinary
Boltzmann transport equation in the presence of a
magnetic field. Notice that it is of over-all order X'.
Once it has been solved for the diagonal part of the
density matrix the nondiagonal elements can be ob-
tained at once from Eq. (3.27). To calculate the average
velocity the free-particle velocity operator 1&/m must
be used. Here to lowest order the nondiagonal elements
of the density matrix play no part since the velocity
operator has only diagonal elements in a plane-wave
representation.
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IV. HIGHER APPROXIMATIONS

The problem of Gnding the higher order corrections to
the Boltzmann transport equation (3.33) is considered
in this section. To obtain such corrections it is only
necessary to continue the iterative process begun in the
last section. The process is carried only two orders
further in 'A since this is sufficient to bring in the first
magnetic correction terms. With the exception of these
terms the corrections are formally the same as those ob-
tained by Kohn and I uttinger to this order. While there
is in the present development an added implicit depend-
ence of the density matrix on the magnetic field, the
formal reduction of the corresponding terms, those not
explicitly dependent on the magnetic held, remains the
same and will not be repeated. Nonetheless some of the
results of Kohn and Luttinger are necessary in order to
properly understand the present work. . In such cases the
needed results will be quoted and referred to as K-L'
with the corresponding equation number.

The diagonal elements of the density matrix f2 were
found to begin with order X ' and will be needed to order
l('. The nondiagonal elements f22 begin with order li '
and will be needed to order X. To the corresponding order
Eqs. (3.17) and (3.18) become for very small s,

ie
O= C"2+)C"a)+ (lrx&) &2f2

mc

+Q'(fu H2 2' H22' fa 2)—, (4 1)

(~„k. i—S)f22 =C22 ")+(fk f—2)H22'

+2'(f22"H2 2' H—u-'f2"2)

M
+ (ir+k')XS (V„+V,,)f„,, (4.2)

28pc

after inserting the commutator expansion (3.20) to the
proper order. C2(" does not appear in Eq. (4.1) since it
vanishes with the choice Bzz' ——0.C( ) has no o6-diagonal
matrix elements according to Eq. (3.26) so that C22 ")
has not been included in Eq. (4.2).

It was shown in Sec. III that the lowest order solu-
tion of Eq. (4.2) is given by Eq. (3.27). If this is in-
serted in the last two terms of Eq. (4.2) and the result-
ing equation solved for f22., the erst correction is ob-
tained. This process can be continued to obtain
f22 (k/k') as a power series in li to any order. To the
order already specified, the diagonal and nondiagonal
matrix elements of the corrections to the equilibrium
density matrix can be written

and
f2= f2( "+f2( "+f2")

f22 = faa' "+f22 "'+f22 "',
(4 3)

(4.4)

respectively. Here again the superscripts indicate the
respective orders in X. Placing Eqs. (4.3) and (4.4) in
Eq. (4.2) it is readily found that f22 ( ') is given by
Eq. (3.27) and

fkk "'=
Cd I„-I~I

—ZS

f (—2) f „(—2) f „(—2) f, (—2)

(fk' "—f2 ' ")Hkk '+Z'(kk"k')
k

aI
(4.5)

f22 "'= (f (—1) f, , (—1) f „(—1) f, (—1)

Ckk ")+(fk"' fk "')H22 '+—Q'(kk"k')
~

(&)fk)k& & 2$ &I r
—&s

k I I k II I

k"Qk, k'
k"'Qk, k"

(kk'"k"k') f ' " f, ' '& f,—& '& f, ' '&)—
ZS pyI « —ZS Q)yIII yII —$S

where

(kk"kf"k') fk„(—2) f „,(—2) f „,(—2) f, (—2)

k",k"' (d yf I I,I
—ZS (d Ir» P» I —ZS GDIcI » IcI

—ZS
k"Qk, k'

krak",

k'
ie f ( 2) f, ( 2)

(k+1') XB.(V,+V, ) H„„,' ~, (4.6)
2/Ãc I a —&s

(kk"k') —=H22"'H2-2 '

(kk k k )=—Hfkfk»& Hfk&&&fk«H)k&&fk&
(4.7)

The last term in Eq. (4.6) is the most interesting; it is the first correction to the density matrix depending ex-
plicitly on the magnetic field. Except for the implicit dependence on the magnetic field, the remaining terms in
Eqs. (4.5) and (4.6) are essentially the same as those obtained by Kohn and Luttinger.

Before finding the corresponding transport equation, it is convenient to rearrange the terms contained in
f22. (k& k') so that those of similar form can be combined. Add Eqs. (3.27), (4.5), and (4.6) and make use of Eq.
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(4.3) to recombine the diagonal elements. Then fkk (k&k') can be written

fkk =Fkk "'+Fkk "'+Fkk "',
where the F's are given by

(fk fk—)
Fkk "'= &kk ',

(4 8)

(4.9)

1 ( fk fk"—fk fk-
Fkk~(') =— P (kk"k')~„—is " (, —is —is)

(4.10)

kk —&S

(kk'"k"k')
&if„f "— .fk» fk: )—

Ckk &"+
k",k'" Q&kk" 1$ Vdkk~" Z$ (dk«~k 1'$)
k"gk, k'
k'"Pk, k"

(kk"k"'k')

k",k"' Mkl ~ k~ —ZS
k"Qk, k'

k"'+k",k'

P fkrl fkkkk fkkkk —fki Ze

xi — + (1+1')xs (v,+v, .)i- a„,
i

.
E(i)k k

—$$ &i)k k
—1$21Ã&: (Mkk. —Z$

f»

(krak'),

as expressed by the sum in Eq. (4.8) with

fk given by Eq. (4.3), differs from that of Eq. (4.4) only
in terms of order X' or higher, which are not being con-
sidered. It is apparent that F», defined by Eqs. (4 9)
through (4.11), are actually mixtures of various orders
in X and correspond to Eqs. (K-L.34), (K-L.65), and
(K-L.66).

To obtain the corrected transport equation insert
Eq. (4.8) into Eq. (4.1); this gives

Tk"'+Tk"'+Tk"'=0 (4.12)

those containing the commutator, say Tk&" (C), and
those containing the magnetic Geld explicitly, say
Tk(')(8). Then Eq. (4.14) becomes

Tk( ) —Tk( ) (f)+Tk( ) (C)+Tk( ) (Il) (4 16)

Tk(')(f) is given by Eqs. (K-L.82), (K-L.83) and
(K-L.84) and can therefore be written in the form

Tk"'(f) =~& Z'((uk k'"+Nk k"'+& k k'") fk

where Tk(0) is just the right-hand side of Eq. (3.28) with

fk( '& replaced by fk The two r. emaining terms in Kq.
(4.12) are given by

—(~» "'+Nkk "'+&kk "')fk ) (4.17)

T."'=Z'(Fkk ")Ifk k' —&kk 'Fk k"'),
k'

with m» (4~, I» (4&, and v» &4), de6ned in terms of Eqs.
(4.13) (K-L.95), (K-L.96), and (K-L.98), respectively. The

second term in Eq. (4.16) is equal to

Tk&'& =Q'(Fkk (')Hk. k' —Hkk. 'Fk. k('))+Ck(') . (4.14)

Tk"'=~& E'(~k k"'fk ~kk "'fk ) (4.15)

If Eqs. (4.4) instead of Eq. (4.8) had been inserted in

Eq. (4.1) the result would still have been Eq. (4.12) to
terms of order X'. The introduction of the F's simply
makes it possible to combine similar terms requiring
complicated reductions. Et should be clearly understood
that the superscripts on TI,("~ and F». ("& do not indicate
their respective orders in X as they do on all other
symbols contained in this paper. ~

Consider f(rst Eq. (4.13) and replace Fkk
&'& using Eq.

(4.10). This part of the transport equation is formally
the same as Kq. (K-L.69) and can immediately be
written

C».0)a, ,' II, ,'C, ,(»
Tk"'(C) =Ck&"+P' — +

kk~ —ZS COkk~+Z$
(4.18)

kk' ZS

k k'
(ir+lr')XS (vk+vk )

kk —&S

which is formally the same as (K-L.81) except that Ck
may depend explicitly on the magnetic field. The last
term in the transport equation (4.16) takes the following
form

ie
Tk"'(Il) = P'~&kk '~'

2mC k'

1 k' f
with wkk &'& given by Eq. (K-L.78). (k+k')XB (v, , +v„) . (4.19)

We turn now to the consideration of Eq. (4.14).
Three terms result: those linear in fk, say Tk&'&(f),

f This term is new and depends explicitly on the magnetic7 The superscripts on the symbols contained in the paper of
Kohn and Luttinger, Ref. 3, do not specify their true order in X.
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In order to calculate Tq&'&(C) the transformed equi-
librium density matrix, p™py, must first be found to
second order in P. The density operator p™itself can be
found in a quite straightforward way by placing the
exact, known, equilibrium density operator (2.8) in
Eq. (2.11):

E exp( —pLII(y —(e/c)A)+B'(r)])

ies
Tpi'& (B)=

c(2z)'
I@i I'(v~fs —v~ f~)

dk'+ I&- I'(f —f )

ensemble average, it can be rewritten

e'P '&E(g,r,B)d(. (4.20)
XB.(v~X v, ) — dl ', (4.22)

Once E. is found from this relationship it can be inserted
in Eq. (2.26) to obtain p directly. However, since the
zero-order solution is now known (see Sec. III), it is
much easier to obtain pyq by a process of iteration from
the matrix equation satisGed by it:

&ae pea = t,pa —p~ )~ x~

{pie~~'i" ii ~'ii" pi" i )k" (QIc, k')

(k+ k') XB (v,+v, .)p„.. (4.21)
2fPlC

after some rearrangement of the derivative operators.
Here the density of scattering centers has been set
equal to n. The integrals contained in Eq. (4.22) are
meaningless as they stand since derivative operators
still act on the reciprocal of ~1,~ giving divergent inte-
grals. If fI, and its first derivatives vanish at in6nity,
then partial integrations can be performed which allow
Eq. (4.22) to be rewritten as a set of principal value
integrals

MS
2'g&'&(B) = — vi, fp BXvt, P dk'

c(2z)' I I

(v~Ieii I')
+BXv~. (fa f~ )dk'—

This equation follows directly from Eq. (3.2) since at
equilibrium the time derivative of p must vanish. The
normalization of p, which can be found from Eq. (2.39),
depends in general on the scattering potential and the
magnetic Geld so that care must be taken to correctly
include both types of terms. Notice, however, that the
differential operator in Eq. (4.21) gives nothing when
it acts on the zero-order solution Eq. (3.24). Therefore,
to terms of order X', no corrections to p~p. exist which are
linear in the magnetic Geld. Terms containing the
magnetic GeM can be completely disregarded in deter-
mining pqg at least to order X2. Sy carrying out the
iterative process using Eq. (3.24) as the zero-order
solution it can readily be shown that the result is identi-
cal with that obtained by Kohn and Luttinger using a
quite de'erent procedure, namely, that implied by Eqs.
(K-L.C6) and (K-L.C7). Hence to order li~, Cq is still
given by (K-L.C6) even in the presence of a magnetic
field. This implies at once that Ti,&"(C) remains un-
changed in the presence of a magnetic Geld and is still
given by Eq. (K-L.87).

Thus the corrections to the Boltzmann equation
depending implicitly on the magnetic Geld are formally
the same as those found by Kohn and Luttinger in the
absence of a magnetic Geld and it is possible to take over
thc11 1csults pl actically 1ntact. Howcvcl thc term
Ti,'(B) given by Eq. (4.19) is completely new and de-
pends explicitly on the magnetic Geld. If the sums con-
tained in Eq. (4.19) are replaced by integrals using the
transformation (3.31) and IZiq 'Im is replaced by its

(vt f~ vi f~)—
P BXviIypp. I'dk' . (4.23)

T~&'& (B) is a new set of terms in the transport equation
arising from the interference between the change in the
distribution function caused by the presence of the
magnetic Geld md the change brought about by colli-
sions of electrons with scattering centers. The contribu-
tion of these terms to the current density will be con-
sidered in a later publication.
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APPENDIX

Let P= (y—(e/c)A(r)), where y is the ordinary mo-
mentum operator and A(r) is the vector potential. Then
the Fourier integral

e'~'&Il (g,r)d(= 0
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implies that P((,r) must vanish. In order to show becomes

this choose for simplicity a Landau gauge, A(r)
= ( yB—, 0, 0). Then (A1) can be written

s's'&Psg, .'((,r)d g =0, (A3)

&ip $&imrapbs& )im—rapabp(g r)if) —0 (A2)

by using Eq. (2.18). Form the matrix of (A2) using a
plane-wave representation (see Sec. III). Then (A2)

where P'(g, r) is defined by

p&(g r) —sinawpi~se ', An—rap-rzbp(( r) (A4)

Equation (A3) is now an ordinary Fourier in, tegral and
implies that P'((,r) must be zero. According to (A4),
this in turn requires that F((,r) must vanish.
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Nonlinear Susceptibility Constants and Self-Focusing of
Optical Beams in Liquids*
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This paper reports measurements of intensity-induced rotation of the polarization ellipse, and measure-
ments of the self-focusing threshold and its polarization dependence, using an unfocused laser beam in several
Raman-active liquids. An attempt was made to determine the nonlinear susceptibility constants in these
liquids by correlating these measurements. It is found that the self-focusing formulas for linearly polarized
beams are in good agreement with the experiments, but the polarization dependence of the self-focusing
threshold disagrees with the corresponding polarization dependence of the nonlinear index changes. A
possible explanation for this discrepancy is discussed.

L INTRODUCTION
' 'T is ussgmed in linear optics that a light beam of
~ ~ 6nite cross section can be represented by a super-
position of unbounded plane-wave components prop-
agating in slightly diferent directions. ' The presence of
optical nonlinearities produced by intense laser beams
in a dielectric medium invalidates the principle of
superposition. The plane-wave components are no
longer independent, but are coupled to each other
through the nonlinear polarization terms which bring
about transfer of energy among the components. ' The
nonlinear optical effects of an intense laser beam on the
propagation of the beam itself have been considered by
several authors ' they include the intensity-induced
rotation of the polarization ellipse, ' ' and the intensity-

*A preliminary report of this work was presented orally at the
'

1966 International Quantum Electronics Conference in Phoenix,
Arizona, April, 1966.

~ See, for example, F.A. Jenkins and H. E.White, FNndamentals
of Optics (McGraw-Hill Book Company, Inc., New York, 1957),
Chap. 12.' J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S.
Pershan, Phys. Rev. 127, 1918 (1962).

'R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev.
Letters 13, 479 (1964).

i V. I.Talanov, JETP Pis'ma Redaktsiyu 2, 218 (1965) LEnglish
transl. : Soviet Phys. —JETP Letters 2, 138 (1965)j.' P. D. Maker, R. W. Terhune, and C. M. Savage, Phys. Rev.
Letters 12, 507 (1964).

'P. D. Maker and R W. Terhune, Phys. Rev. 137, A801
(196S).

induced slowing of the plane-wave components, which
leads to self-focusing of the laser beam. ~

This paper discusses some of the nonlinear optical
eBects which are related to the intensity-dependent
changes in the real part of the index of refraction. In
Sec. II, a phenomenological description is first given of
the self-induced sects of an unbounded plane wave in
a medium which is lossless and isotropic in the linear
approximation. To describe these e6ects, a fourth-rank
nonlinear susceptibility tensor with three nonzero
independent components is introduced. Additional
nonlinear eGects associated with laser beams of finite
cross section are then discussed in Sec. III. Possible
ways to determine the susceptibility constants are
discussed in Sec. IV and the relations that exist between
these susceptibility constants are derived in Sec. V in
terms of a simplified physical model.

Section VII reports measurements of intensity-
induced rotation of the polarization ellipse associated
with an unfocused laser beam in several Raman-active
liquids. These measurements were correlated with
measurements of self-focusing threshold' to determine
the nonlinear susceptibility constants in these liquids.

' M. Hercher, J. Opt Soc. Am. 56, .563 (1964).
8 N. F. Pilipetskii and A. R. Rustamov, JETP Pis'ma Redakt-

siyu 2, 88 (1965) LEnglish transl. : Soviet Phys. —JETP Letters
2, 55 (1965)g.' P. L. Kelley, Phys. Rev. Letters 15, 1005 (1965).


