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Data on the scattering of charged hadrons reQect both the strong and electromagnetic interactions. %'e

examine the problem of unraveling the "strong" part of the scattering amplitude from the electromagnetic
part. Specific prescriptions, involving only the use of observed scattering data, are derived for obtaining the
connection between the idealized "strong" scattering amplitude and the observed full scattering amplitude.
The importance of the "off-the-mass-shell" or model-dependent corrections, which cannot be obtained di-

rectly from observation, are also discussed briefly. These results are equally applicable in the domains of low-

energy nuclear physics and high-energy particle physics.

INTRODUCTION

S CATTERING experiments ordinarily do not yield
information about the phase of the scattering

amplitude but only yield the magnitude. An exception
to this is the Coulomb interference region where the
known phase of the Coulomb scattering gives informa-
tion about both the phase and the amplitude of the
"nuclear" scattering. Two problems arise immediately.
First, we Inust know the purely electromagnetic scat-
tering amplitude. Secondly, we must be able to relate
the residual "nuclear" scattering amplitude to the pure
"nuclear" scattering. By pure "nuclear" scattering we

mean the scattering which would result were there no
electromagnetic forces between projectile and target.

The problem of finding the phase of the purely
"nuclear" scattering amplitude has lately assumed
special importance at high energies where we wish to
obtain the ratio of the real to the imaginary part of the
purely "nuclear" scattering amplitude in the forward
direction.

Our purpose here is to outline how the residual
"nuclear" amplitude may be obtained directly from
elastic-scattering data, and further to show how the
residual "nuclear" scattering can be related to the
purely "nuclear" scattering. This problem is not com-

pletely trivial because the residual scattering amplitude
does contain electromagnetic effects which are not
necessarily small. Bethe' discussed the connection be-
tween the residual and pure "nuclear" scattering ampli-
tude in a semiclassical calculation using a speci6c
model of the nuclear interaction. We here discuss a
general technique for relating these scattering ampli-
tudes and present an approximation which depends only
on observable data and therefore is independent of any
detailed assumptions about the nuclear forces.

In Sec. I we study central potential scattering where
the model-independent connection between the residual
and pure nuclear amplitudes is found by assuming that
the phase shifts are additive, i.e., 8„«t——o ,„+o8„t«. A
generalization of Bethe s phase is derived which in-

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' H. A. Bethe, Ann. Phys. (N. Y.) 3, 190 (1938).

volves an integral over the experimentally observable
residual amplitude.

The model-dependent effects are estimated for central
potential scattering in Sec. II. These effects are found
to be much smaller than the model independent effects
at high energies.

The modi6cations of the potential scattering results
due to relativity and the connection between the tech-
nique of Sec. I and the Feynman graph formalism is
discussed in Sec. III. The modi6cations are found to be
straightforward.

In Sec. IV the effect of spin on our formulas is brieQy
outlined. We observe that for small angle scattering the
complications of spin can be ignored.

Finally, in Sec. V, we outline the procedure by which
the residual amplitude is obtained from the scattering
data and exhibit model-independent formulas con-
necting the parameters of the residual and nuclear
amplitudes for high-energy scattering.

pesist

f(t)) = Z(»+1)I & 8l).
k 2iu

(1.2)

The total phase shift 8~ can be decomposed as

3)=o i+ SAN, (1 3)

where o.t
—= (1/2i) 1nI I'(1+1+iri)/I'(1+1 is))j is —the

pure Coulomb phase shift' and Si the "nuclear" phase
shift as defined by Eq. (1.3). Then Eq. (1.2) becomes

' For nonrelativistic scattering g=ZIZ2mn/k, where A=c=1
and a—1/137. The relativistic form for n appears in Eq. (3.4).

I. RELATION BETWEEN RESIDUAL AND
"NUCLEAR" AMPLITUDES

Suppose that a Coulomb potential and a short-range
central nuclear potential are acting together to pro-
duce an observed scattering cross section.

do—= lf(0)I'.
dQ

The scattering amplitude is given by its phase-shift
representation, as
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where f„ the pure Coulomb amplitude, is

(cs"t —1)f.(0)—=Z(2l+1)I . I&[(0)
2ik )

(1+i') c io—in[sino(o/s)]

(8%0)
I'(1—ir/) 2k sin'(8/2)

and the residgal amplitude R(8) is f~(0 .„)=R(0„.„)—2ik
dQ~

f,*(0~,)R(Q,„). (1.13)
4m.

The last sum on the right-hand side of Eq. (1.12) is
easily recognized to be f,*(0„.,). In the notation we are
using, Q,q represents the polar angles between vectors
a and b and 0~., is the angle between y' and q. As might
be expected, Eq. (1.12) is a "unitarity" integral of the
form

with

R(0) =—Q (2l+1)e"o~f+Pi(0),
l~0

f[ = (8""" 1)/2—ik.

(1.6)

(1.7)

fs/(0) = lim R(8)—= Q (2l+1)fg~P[(8) . (1.9)
~1(~)~o L=O

In the next section we will discuss the circumstances
under which f&(8) as given by Eq. (1.9) represents a
good approximation to the nuclear amplitude of interest.

Equation (1.6) can be inverted by using the com-
pleteness and orthonormality of the spherical-harmonic
functions. Since Ri=fP exp(2io, ) —and

we can write
fi'*=L1—exp (—2io,)7/2ik,

fP'= (1—2ikf;*)R„ (1.10)

from which it follows directly that

dQ, Lf~(0„)—R(0„)7I,-*(0,„)

= —2ikf, oe dQ R(0 )V,m*(0 ) (1 11)

From the completeness of the spherical harmonics we
obtain

f (0 .„)—R(0 .„)

= —2ik dQ,R(0,~)Q fi'* Q V[ (Q~ „)V["*(0,„)
m

In a charged particle scattering experiment, we can
observe the differential scattering cross section do/dQ:

d~/dQ= IRI'+2 «(f.*R)+If.l' (i.g)

At scattering angles small enough so that f, and R are
comparable in magnitude (Coulomb interference region)
these data allow us to determine both ReR(8) and
ImR(8) since f,(8) is known and R(8) is relatively
slowly varying.

One problem of great interest in nuclear physics is to
determine what the nuclear scattering would be in the
absence of electromagnetic interactions between pro-
jectile and target. A knowledge of R(8) does not su%ce
to give us that information. However, from R(8) we

may obtain the scattering amplitude

We note, however, that Eq. (1.13) is not unambiguously
defined since the treatment of the singularity of f,(8)
at 0=0 has not been described. On the other hand, both
R and f~ are perfectly well behaved since their partial-
wave series both cut oG at some Gnite angular mo-
mentum as a consequence of the Rnite range of the
nuclear force. Furthermore when R(8) = const (S-wave
scattering), fr/ is simply f&(8)=exp( 2io—o)R, .which
indicates that we must take

e "'0=1—2ik
dO~

f.*(4 o)
4x

In order to illustrate the difference between fs/(0)
and R(0) predicted by Eq. (1.15), let us suppose that
an experiment determines that R(8) has the forms

as the delning treatment of an integral over f,. That is,
all the problems of the non-uniformity of convergence
associated with the Coulomb amplitude are contained
in the 5 wave. ' The rearrangement of Eq. (1.13) which
gives the correct, unambiguous result is

f~(0~ u)=R(Qn n)e ""
dQ~—2'k f,*( „0,)L R( 0,„)—R(0„.„)7. (1.14)
4m

At very low energies where only a few / states con-
tribute, we can work directly with Eq. (1.6). De-
pending on the problem, however, there may be an
energy region where g is large and a moderate number of
angular-momentum states enter into Eq. (1.6), in
which case it would be necessary to use Eq. (1.13) in
order to obtain f~ from R.

For very high energies where a very large number of
angular-momentum states contributes to Eq. (1.6) we
must use Eq. (1.14). However, in this case, certain
simplifications enter. First, g is small at high energies
(o[ —+ ZtZscr; Sec. III). Secondly, R and f& will be very
sharply peaked in the forward direction in which case it
is quite reasonable to focus our attention on f//(8=0)
for which Eq. (1.14) simplifies to

f~(0) =R(0)c '~o+io[c»&o

' d cos0 1—cos8 '+'o

X
I I I R(0)—R(0)7. (1.13)

2 k 2 )

= —22k
dQ~

R(Qo„)g(2l+1)f['*E[(0„.,) .
4x

(1.12)
' J. T. Holdeman and R. M. Thaler, Phys. Rev. 139, 81186

(196S).
4 This choice for R(S) is typical of high-energy scattering results.
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(1.22)

where P(k, e) is given in general by

R(8)=R(0) exp(+debt), where k is real (bk'))1) and would be for us to write the nuclear amplitude as
the square of the four-momentum transfer is t—=—2k'

~ (gi=g(ei~'y(~, ~i
X(1—cos8). Integration by parts in Eq. (1.15) gives
the result that

f~(0) —R(0)e—2irb 1 (1 e—bbb ) y(k, e)

+2 'tbk' dg(1 —u)+*& e bb'i' "& . (1.16)

1—)R(8)/R(e) j
d cose —2 in' +0(g') .

i
cose—cose

i

(1.23)

By introducing a new integration variable x= bk'(1 —I)
and neglecting all terms of order exp( —2bk2)«1, we
then find that Eq. (1.16) is approximated by

f (0)~R(P)e tirp —it In—(2bbb) dx x+iye

R(P)e—ip ln(2bbt)+lnr(1 it) =—R(0)eib(b) (1 17)

Equation (1.23) is readily derived from Eq. (1.14)
through an expansion in powers of g and exponentiation
as in Eq. (1.22). The 0(&') terms of Eq. (1.23), as we
have seen, are nugatory at high energies. Finally, we
note that the phase of Eq. (1.23) is in general complex
since R(8) is complex.

II. ADDITIVITY OF THE PHASE SHIFTS
since ob ——(1/2i) 1n(1'(1+i')/I'(1 —ig)j. The phase p
of Eq. (1.17) can be expanded in powers of g, using the
logarithmic derivatives of I'(s), to give

In the scattering of a charged particle by a complex
target, we would like to find out vhat the scattering
amplitude would be if the electromagnetic part of the
interaction between the target and projectile were
switched off. Even assuming that the only electro-
magnetic interaction of consequence is the Coulombic,
this scattering amplitude is not the amplitude deGned

by Eq. (1.22). The scattering amplitude, Eq. , (1.22),
would only be the true nuclear scattering amplitude if
the phase shifts were additive. However, it is clear that

y(k) = q in(2bk'—/y)+ t'q'tr'/12+ ~ ~ (1.18)

where lny—=0.5772 is the Euler-Mascheroni con-
stant. Since bk'))1 and q is small, it is clear that the
lowest order term of Eq. (1.18) dominates. Furthermore,
since the dominant term of the phase is purely
real, the effect of the long-range Coulomb force is to
rotate the real and imaginary parts of the forward
nuclear-scattering amplitude to produce the experi-
mentally observed quantities ReR(0) and ImR(0).

8 (tot) o —8 x~8 N(~ 0) (2 1)

if bP(q =0) is taken to be the phase shift that would ob-
tain the absence of the Coulombic interaction between
projectile and target. However, at high energies addi-
tivity of the phase shifts becomes an excellent approxi-
mation and the scattering amplitude given by Eq.
(1.22) becomes very close to the true nuclear scattering
amplitude.

Let us consider a charged partic1e moving in the Geld
of another charged particle. The two particles interact
via a short-range central nuclear potential VN(r) in
addition to their Coulombic interaction. At high
energies, we may use the J.W.K.B. approximation for
the phase shift

Im fit (0)= ImR(0) cosg(k)+ReR(0) sinit (k);
Refit (0)=ReR(0) cosg(k) —ImR(0) sing(k),

(1.19)

where g(k)~ —
tL 1n(2bk'/y) can be appreciable at high

energies. If we are interested in the ratio of real to
imaginary part of f&(0) we may write

Ref~(0) ReR(0))=tan tan '
I

—y(k) . (1.20)
Im f~(0) ImR(0))

At ultrahigh energies, if we expect that Ref~(0)/
Imf~(0) ~ 0, then we would expect to observe expert'-

mentally the converse of Eq. (1.20), viz. , 2k' l(l+1)~ '~' I

8P
~

k' —U(r) — —
~

dr
r r' i

2k' l(l+1)
dr, (2.2)

r r2

ReR(0)
tang(k) —tan2g(lnE+ const) . (1.21)

ImR(0) b--

co
l l(l+1)

8P(g= 0)
~

k' —U(r) dr-
„y

-( l(l+1)
(

k' —
(

dr,
'

(2.3)
r2

(Ref~/Im fit )b - tang(k) .

The observations of the preceding paragraph indi-
cate that a useful approach to Eq. (1.14) at high energies

Therefore to ignore the Coulomb effect described here,
i.e., to assume in Eq. (1.21) that R= fbi, would lead us and
to the spurious conclusion that
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~
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t
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Ki 'X F2
(TOTAL)

K) Kp

( (strong) ( (strong)

~(b)~ ~(.) ~

short-range effect, and the dominant behavior of P is
determined by the long-range point Coulomb force.
For example, if we multiply Eq. (3.1) by the factor

t (strong) 4 (stronggf(strong)

~{d) (s) ~ t (f)

tr Mrs ( Ms'
~(t)=

I

Err' t E—3r ' t)— (3.5)

~}» ~ ~ ~

FIG. 1. Graphical decomposition of the scattering amplitude.
A virtual photon is represented by a wiggly hne. Graph (a) cor-
responds to f, (s,t), while (b) corresponds to f~ and (b), (c), etc.,
to the residual amplitude R.

with

so as to account for the form factors and assume that
R(t)=—R(0) exp(stbt) as in the example of Sec. I, we
find that p(s, t=0) of Eq. (3.3) is now given by

t))form factor(Sr0) = /point charge(Sr0)

—r)(s) et)' Ei(—Qi) — eg' Ei(—Qs)
Qs-Qi Qs —Qi

4(s,t)

and

rt(s)

0 1—LR(t)/R(t) j
dt —2 in' +O(r)s)

(3.3)

where g)point charge is given by Eq. (3 3)r

Ei(—g) =——

(3.6)

t)(s) =ZtZscrLs —(mts+ms')]/
Ls—(mt+ms)')"'Ls —(mi —ms)'$'" (3.4)

t(s-) = Ls—(m, +ms)')Ls —(mi —ms)'$/s.

Equations (3.2), (3.3), and (3.4) can be used in any
Lorentz frame and differ from the nonrelativistic re-
sult only by a new form for r). We notes that t)(s) —&

Z~Z~o. as s~~. Taking into account the extended
charge distribution in Eq. (3.1) causes us no difficulty
beyond complicating the integral of Eq. (3.3). On the
other hand, form factors will not affect the value of
@(s, t=0) very markedly because they represent a

and Q,—=(bM, s/2) 1. Once again, in Eq. (3.6), terms
of order expI —-', bt(tr) j&(1 have been neglected.

At this point, let us digress momentarily to show the
connection between Eqs. (3.2) and (3.3) and the
Feynman-graph formalism. For simplicity we will con-
sider spinless, equal-mass scattering. The Feynman
graphs of interest are indicated in Fig. 1, The graphs of
first order in 0. not explicitly indicated in Fig. 1 all con-
tain a photon buried in the strong-interaction blobs and
therefore represent model depeldertt -corrections, since
their calculation requires knowledge of the strong-
interaction amplitude off the mass shell. First, let us
consider the contribution to the residual amplitude from
graphs (b), (c), and (d) of Fig. 1.

R(s,t)= fn(s, t) Srri ZiZscr—
d'k 4(ktks) f~(ki k) ks+k; ki—', ks )

(2tr) 4 k'I (kt —k)' —m'+iejI (ks+k) s—m'+ie)
(3.7)

where (d) has been included by counting (c) twice. The order cr contribution to R in Eq. (3.7) is infrared divergent.
This divergence is treated by using the prescription of Yennie, Frautschi, and Suura in which a common divergent
factor is removed from f, f„and Rin order to obtain. the infrared finite quantities f, f„and R. That is, we write

f f
& f, =I(s, t) f, — (3.S)

E.
where'

d4k 4(ktks)
I(s,t) = 1—StriaZ, Zs +ir)(s) 2 in'+

(2tr)4 O'P(kt —k)' —ms+is)Dks+k)' —ms+iej
(3.9)

For an alternative derivation of ri(s) for relativistic scattering, see W. Rolnick, Phys. Rev. 148, 1539 (1966).
"Once again we have removed from the photon numerator those terms which contribute a t-independent part to Eq. (3.1).
a D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys. (N.Y.) 13, 379 (1961).

The infrared factor I(s,t) is not unique. We have chosen it so as to give the usual Coulomb amplitude from graphs (a) of Fig. 1 in
the nonrelativistic limit.
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in which case 8 is given by

R(s,t) =f~(s, t) [1—2iiI(s) in']

—SmiZgZ2e
(2~)4

d'k 4(k&k2){f&(k&—k, k2+k; k&', ks') —f&(k&,k2) ki pk2 )}+ . (3.10)
k2[(ki —k)' —m2+ie][(k2+k) '—m'+is]

The order n term of P in Eq. (3.10) involves knowledge of f~ off the mass shell and would appear to be model-
dependent. However, there is a mass-shell contribution to Eq. (3.10) which comes from the imaginary parts of the
denominators. Explicitly, we write (x+ie) = 6'/x isrb—(x) and substitute the positive-energy 5-function parts in
Eq. (3.10) to obtain the model i22deP-erident contribution to R;

ZZyZ2Q

R(s,t) =f~(s,t) (1—2ist(s) Iny)+
4(kik2)

d4k 8 ((ki k)2 m2)(k2+k)2
k'

X [far(kr k, k2+—k; ki', k2') —f~(k&,k2, k&',k2')]+model-dependent contributions. (3.11)

The integral of Eq. (3.11) can be evaluated easily in the center-of-momentum system in which k& ———k2, by the
substitution k= ki —p. The integrations over po and

l p l
give

Z2Z2n2(k 2k 2)
R(s,t) = fbi (s,t) [1—2ist(s) in'] —i

2gslkil
d cos8 dit/sr

X[f~($, cos8)—f~(s, cos8,)][1—cos8 cos8,—sin8 sin8, co&] ', (3.12)

where cos8, = 1 t/2
l
ki

l
'. —The it integration then

just reproduces the lowest order form of Eqs. (3.2)
and (3.3), since in the center-of-momentum system
2I(s) =ZiZ2n(2kik2)/2$'~2l kil and R= f~ to zeroth order
ln a.

We have just shown how the technique of Yennie,
Frautschi, and Suura for removing the infrared diver-
gence may be applied to the problem symbolized by the
Feynman graphs in Fig. 1. In the work described above
we have taken a further step in much the same spirit
to calculate the model-independent, or "on-the-mass-
shell, " electromagnetic corrections to the so-called
"strong" scattering amplitude. The result so obtained
is identical to the result obtained by the equivalent
arguments for potential scattering.

' These same techniques may be applied to the calcula-
tion of the model independent radiative corrections as
shown in graphs (e)—(h) of Fig. 1.These corrections are
the inner bremsstrahlung terms. They have no analog in
potential scattering, so that we know of no other way of
estimating the importance of such corrections.

where tl= (k,Xkr)/l k;Xkrl. For the scattering of two
spin-2 particles, the scattering amplitude becomes

M(s, t; ai,a2) =f(s,t)+A(s, t)(ei+e2) tl

+B(s,t)(ei tl)(e2 ri)+C(s, t)

X[( P)(o P)+ ( g)( g)]
+D(s~t)[(ei'P)(e2 P)—(ei 0)(e2 5] ~

where p—= (kf+k~)/l kr+k, l
and j—= (kf—k;)/l kr —k;l.

In Eqs. (4.2) and (4.3) the usual conservation laws
have been assumed. "

If the only electromagnetic effect to be taken into
account were the spin-independent Coulomb force,
then we could interpret the amplitude f(s, t) as used in
the preceding sections to be just the spin-independent
part of the scattering amplitude M(s, t; ai,a2). In that
case the data analysis would proceed in two stages.
First, we would attempt to unravel the spin-independent
part of the full scattering amplitude M(s, t;ai, a2).
Then the analysis would continue along the lines pre-
viously discussed. We would make the following
identi6cations:

IV. SPIN [M($&t& al&a2)]spin-indep. ~ f($&t) (4.4)

In the scattering of two particles with nonzero
spin, the scattering amplitude can be written as [M(Syt j alya2)]spin-indep. fs(Sqt) ~ R(s,t), (4 5)

M(s, t; ar, a2) = f(s, t)+g(s, t; ai,a2), (4 1)
so that

M(s, t,oi) =f(s,t)+(8.ei)g(s, t), (4.2)

where f(s, t) is the spin-independent part of the scat-
tering amplitude, M(s, t; ai,a2). For spin zero on spin 2,
M(s, t; ai) iS

[Mene(SqtI aiqa2)]spin-indep.
= {[M(s,t;, )]„;;„d„—f,(s,t) }e'«"&, (4.6)

where p(s, t) is given by Eq. (3.3).
"L.Wolfenstein, Ann. Rev. Nuc1. Sci. 6, 43 (1956).
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Of course, this is not actually the case. The electro-
magnetic force also has a spin-dependent part. In the
actual case, the spin-independent part of the nuclear
amplitude obtained in Eq. (4.6) requires further cor-
rection for the magnetic scattering. This additional cor-
rection is also of order n, however, it is not an important
effect unless the spin-dependent and spin-independent
parts of the nuclear amplitude are of comparable magni-
tude. At small angles, however, the spin-independent
part of the nuclear amplitude dominates.

or
o,i(s,t) =

I f,(s,t)+R(s, t) I

' (5.1)

o,i(s, t) oo,„i(s,—t)=o'(s, t) =—
I R(s,t) I

2

+f,~(s,t)R(s, t)+f,(s,t)R*(s,t) . (5.2)

The quantity a'(s, t) may be regarded as an observable
since oo,„i(s,t) is well known. Similarly the amplitude

f,(s,t) in Eq. (5.2) is completely known. The only
unknown then in Eq. (5.2) to be determined from the
data is R(s,t). The residual amplitude, for fixed s,
considered as a function of t is slowly varying relative to
f,(s,t) in the angular region where f,(s,t) and R(s,t)
are comparable in magnitude, that is in the Coulomb
interference region. It is only in this region that the
phase of the residual amplitude can be obtained. If we
can observe o'(s, ti) and o'(s, t~) at values of ti and t2

sufIiciently close together that we can ignore the varia-
tion of R with t, then Kq. (5.2) serves to identify both
the magnitude and phase of R(s, t) in the region around
t& and t&. Such a procedure has been employed in the
analysis' of p-n and p-D scattering at 40 MeV.

At very high energies, ~-p and p-p elastic-scattering
data are particularly simple to analyze. Beyond. the
Coulomb interference region, a plot of lno = lno' versus
t is linear. That indicates that lnlR(s, t) I

=a+bt for
small t. Since IR(s,t) I

is thus known in the Coulomb

V. DATA ANALYSIS

In order to obtain the information required to apply
these methods to actual physical situations, we must
be able to extract the residual amplitude from the actual
scattering data. For small-angle scattering the spin
complications can usually be ignored. In that case the
residual amplitude may be obtained from the elastic
cross section, because t'1mb~ Imb

Im p(s, t) = —rt(s) tan 'I I+ t +O(P), (5.5)
ERebi 2

where in&—=0.5772. and t(x.) is given after Eq. (3.4).
These results depend on the assumption that

expl —Ibl t(~)j&&1.

If we parametrize fz(s, t) in the same way as Eq.
(5.3), namely,

fx(s, t)= exp' (ax+—4rt), (5.6)

then Eq. (3.2) and Eqs. (5.4)—(5.5) imply

Re a~= Re a+2'(s) tan '(Imb/Re b), (5.7)

pt(~)
(s) lnl lb I

E2p i'
Reb~=Reb+g(s) Imb,

Im b~ = Im b —rt(s) Re b .

(5.8)

(5.9)

(5.10)

From Eqs. (5.7) and (5.8) we see that in the forward
direction the magnitude of the nuclear amplitude diBers
somewhat from

I R(s,O) I. On the other hand the phase
of the nuclear amplitude in the forward direction can
differ markedly from the phase of R(s,O). We note that
t(~) —& s as s-+~ so that the correction in Eq. (5.8)
can increase as lns as s ~~.

interference region, the experimental data for o'(s, t)
gives the phase of R(s,t)

A study of the available high-energy data in the
Coulomb interference region indicates that at small t
argR(s, t), like lnl R(s,t) I, is linear in t T.herefore, in this
case, it is especially easy to parametrize R(s, t) as

R(s, t)—= e&&'+~'& (5.3)

where a and b may be complex functions of s. The form
for R(s, t) in Eq. (5.3) is a very convenient form for use
in Eq. (3.3). In a manner similar to the example of
Sec. I, Eq. (1.16) to Eq. (1.18), we can obtain g(s, t)
from Kq. (5.3). The result is

(lb I
t(~)) Re b-

Reg(s, t) = —g(s) lnl I+ t +O(t') (5.4)
2p i 2

and


