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Data on the scattering of charged hadrons reflect both the strong and electromagnetic interactions. We
examine the problem of unraveling the “strong” part of the scattering amplitude from the electromagnetic
part. Specific prescriptions, involving only the use of observed scattering data, are derived for obtaining the
connection between the idealized “strong” scattering amplitude and the observed full scattering amplitude.
The importance of the ‘“‘off-the-mass-shell” or model-dependent corrections, which cannot be obtained di-
rectly from observation, are also discussed briefly. These results are equally applicable in the domains of low-
energy nuclear physics and high-energy particle physics.

INTRODUCTION

CATTERING experiments ordinarily do not yield
information about the phase of the scattering
amplitude but only yield the magnitude. An exception
to this is the Coulomb interference region where the
known phase of the Coulomb scattering gives informa-
tion about both the phase and the amplitude of the
“nuclear” scattering. Two problems arise immediately.
First, we must know the purely electromagnetic scat-
tering amplitude. Secondly, we must be able to relate
the residual “nuclear” scattering amplitude to the pure
“nuclear” scattering. By pure ‘“nuclear” scattering we
mean the scattering which would result were there no
electromagnetic forces between projectile and target.

The problem of finding the phase of the purely
“nuclear” scattering amplitude has lately assumed
special importance at high energies where we wish to
obtain the ratio of the real to the imaginary part of the
purely “nuclear” scattering amplitude in the forward
direction.

Our purpose here is to outline how the residual
“puclear” amplitude may be obtained directly from
elastic-scattering data, and further to show how the
residual “nuclear” scattering can be related to the
purely “nuclear” scattering. This problem is not com-
pletely trivial because the residual scattering amplitude
does contain electromagnetic effects which are not
necessarily small. Bethe! discussed the connection be-
tween the residual and pure “nuclear” scattering ampli-
tude in a semiclassical calculation using a specific
model of the nuclear interaction. We here discuss a
general technique for relating these scattering ampli-
tudes and present an approximation which depends only
on observable data and therefore is independent of any
detailed assumptions about the nuclear forces.

In Sec. I we study central potential scattering where
the model-independent connection between the residual
and pure nuclear amplitudes is found by assuming that
the phase shifts are additive, i.e., 8ta1=0Cou1F Onuc- A
generalization of Bethe’s phase is derived which in-

* Work performed under the auspices of the U. S. Atomic
Energy Commission.
1 H. A. Bethe, Ann. Phys. (N. Y.) 3, 190 (1958).
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volves an integral over the experimentally observable
residual amplitude.

The model-dependent effects are estimated for central
potential scattering in Sec. IL. These effects are found
to be much smaller than the model independent effects
at high energies.

The modifications of the potential scattering results
due to relativity and the connection between the tech-
nique of Sec. I and the Feynman graph formalism is
discussed in Sec. ITI. The modifications are found to be
straightforward.

In Sec. IV the effect of spin on our formulas is briefly
outlined. We observe that for small angle scattering the
complications of spin can be ignored.

Finally, in Sec. V, we outline the procedure by which
the residual amplitude is obtained from the scattering
data and exhibit model-independent formulas con-
necting the parameters of the residual and nuclear
amplitudes for high-energy scattering.

I. RELATION BETWEEN RESIDUAL AND
“NUCLEAR” AMPLITUDES

Suppose that a Coulomb potential and a short-range
central nuclear potential are acting together to pro-
duce an observed scattering cross section.

=y 1)
—= . 1.1
dQ

The scattering amplitude is given by its phase-shift
representation, as

. £2i01—1
f(0)=2(2+ 1)( - )P,(o). (1.2)
=0 2ik
The total phase shift 6; can be decomposed as
Si=ar 6", (1.3)

where o;=(1/2¢) In[T(+1+449)/T(+1—in)] is the
pure Coulomb phase shift? and 8;¥ the “nuclear” phase
shift as defined by Eq. (1.3). Then Eq. (1.2) becomes

f(e) = fc(e)"l'R(o) ’ (1 *4)

2 For nonrelativistic scattering n=2Z1Zsma/k, where h=c=1
and a~~1/137. The relativistic form for » appears in Eq. (3.4).
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where f,, the pure Coulomb amplitude, is

fc(G)EZ(ZH-l)( - >Pz(0)
i 2ik

I‘(l_l_zn) e—'iq In[sin2(8/2)]
n

T'(1—14n) 2k sin2(6/2)
and the residual amplitude R(6) is

20y

, (6:20) (1.5)

R(0)= 3 2+ 1) ¥ Py(0),

=0

(1.6)

with
filV = (23" —1)/2ik. 1.7

In a charged particle scattering experiment, we can
observe the differential scattering cross section do/d<:

do/d2=|R|*+2 Re(f*R)+| fc|*. (1.8)

At scattering angles small enough so that f. and R are
comparable in magnitude (Coulomb interference region)
these data allow us to determine both ReR(f) and
ImR(6) since f.(f) is known and R(6) is relatively
slowly varying.

One problem of great interest in nuclear physics is to
determine what the nuclear scattering would be in the
absence of electromagnetic interactions between pro-
jectile and target. A knowledge of R(f) does not suffice
to give us that information. However, from R(6) we
may obtain the scattering amplitude

fv(@@)= lim R(6)=2(2i+1)f"Py(6). (1.9)
a1 () —0 =0

In the next section we will discuss the circumstances

under which fx(f) as given by Eq. (1.9) represents a

good approximation to the nuclear amplitude of interest.
Equation (1.6) can be inverted by using the com-

pleteness and orthonormality of the spherical-harmonic

functions. Since R;= f;" exp(2is;) and

fit¥=[1—exp(—2ic,)]/2ik,

we can write
SV =12k fi"*)Ry,

from which it follows directly that

(1.10)

/ 02T F (Qar) = R(2ur) ¥ "*(2ar)

= — 24k fi* / AQR(ep) V1 (Qgp) . (1.11)

From the completeness of the spherical harmonics we
obtain

fN(Qp'p) - R(Qp’p)

=—2ik / AR (D)2 f17* 2 Vi (Qp ) V¥ (L)

=—2ik / ?—QR(Q@)ZZ:(ZZ—H) fe*Py0yg) . (1.12)
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The last sum on the right-hand side of Eq. (1.12) is
easily recognized to be f,*(0,4). In the notation we are
using, Q3 represents the polar angles between vectors
aand b and 6,4 is the angle between p’ and q. As might
be expected, Eq. (1.12) is a “unitarity”’ integral of the
form

<y
fN(Qp’p)‘_‘R(Qp’p)—Zik/ ';Q_fc*(ap’q)R(qu)- (1.13)

We note, however, that Eq. (1.13) is not unambiguously
defined since the treatment of the singularity of f.(6)
at =0 has not been described. On the other hand, both
R and fy are perfectly well behaved since their partial-
wave series both cut off at some finite angular mo-
mentum as a consequence of the finite range of the
nuclear force. Furthermore when R(f)=const (S-wave
scattering), fx is simply fx(6)=-exp(—2ioo)R, which
indicates that we must take

. dQy,
e 2% =1— Zik/ —fe*(0prq)
4

as the defining treatment of an integral over f.. That is,
all the problems of the non-uniformity of convergence
associated with the Coulomb amplitude are contained
in the S wave.? The rearrangement of Eq. (1.13) which
gives the correct, unambiguous result is

F( @) = R(@prp)e
Z'k/dﬂq *(00 J[R(Qup)—R(Rpp)].  (1.14)
g 47rf¢ (17"1 ( ap. o) . .

At very low energies where only a few / states con-
tribute, we can work directly with Eq. (1.6). De-
pending on the problem, however, there may be an
energy region where 7 is large and a moderate number of
angular-momentum states enter into Eq. (1.6), in
which case it would be necessary to use Eq. (1.13) in
order to obtain fy from R.

For very high energies where a very large number of
angular-momentum states contributes to Eq. (1.6) we
must use Eq. (1.14). However, in this case, certain
simplifications enter. First, # is small at high energies
(n— Z1Zsa; Sec. I11). Secondly, R and fy will be very
sharply peaked in the forward direction in which case it
is quite reasonable to focus our attention on fx(8=0)
for which Eq. (1.14) simplifies to

fx(0)=R(0)e2iv0jne—2iv
L d cosf /1— cosf\ ~1tin
% /_ 2 < ; ) [R()~RO)].

In order to illustrate the difference between fi(0)
and R(0) predicted by Eq. (1.15), let us suppose that

(1.15)

an experiment determines that R(6) has the form*

( 8J. T. Holdeman and R. M. Thaler, Phys. Rev. 139, B1186
1965).
4 This choice for R(6) is typical of high-energy scattering results.
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R(0)=R(0) exp(+32bf), where b is real (bk%>1) and
the square of the four-momentum transfer is = —2k?
X (1—cos6). Integration by parts in Eq. (1.15) gives
the result that

fn(0)= R(O)e—ziao[ 1—(1—e208%)

1
+2-ingge / du(l—u)“"e‘b"’“‘“’:l. (1.16)
-1

By introducing a new integration variable x=—bk2(1—u)
and neglecting all terms of order exp(—2bk?)<«1, we
then find that Eq. (1.16) is approximated by

0

dx xting™=

Fr(O)R(O)gim—n sk /

0

= R(O)e—in 1n(26k2)+1nT (1—in) = R(O)eigs (k) , (117)

since o= (1/21) In[T(1+1i7)/ I‘(I-——m)] The phase )
of Eq. (1.17) can be expanded in powers of , using the
logarithmic derivatives of I'(z), to give

¢(k)=—n In(26k*/v)+in*r?/12+---, (1.18)

where Iny=0.5772--- is the Euler-Mascheroni con-
stant. Since 522>>1 and 7 is small, it is clear that the
lowest order term of Eq. (1.18) dominates. Furthermore,
since the dominant term of the phase is purely
real, the effect of the long-range Coulomb force is to
rotate the real and imaginary parts of the forward
nuclear-scattering amplitude to produce the experi-
mentally observed quantities ReR(0) and ImR(0).

Imfx(0)=ImR(0) cosp(k)+ReR(0) sing(k);
Refx(0)=ReR(0) cos¢(k)—ImR(0) sing(k),

where ¢(k)>~—1 In(2bk?/v) can be appreciable at high
energies. If we are interested in the ratio of real to
imaginary part of fx(0) we may write

Refn(0) B ReR(0)
ImfN(O)_ an[tan (ImR(O)> "’(k)]- (1.20)

At ultrahigh energies, if we expect that Refy(0)/
Imfx(0) — 0, then we would expect to observe experi-
menially the converse of Eq. (1.20), viz.,

ReRO) (])~— tan2n(inF+ const)
~ tan ~ —tan n onst) .
ImR() o= ¢ TnETe

(1.19)

(1.21)

Therefore to ignore the Coulomb effect described here,
i.e., to assume in Eq. (1.21) that R= fy, would lead us
to the spurious conclusion that

(Refn/Imfx)o — tang(k) .

The observations of the preceding paragraph indi-
cate that a useful approach to Eq. (1.14) at high energies
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would be for us to write the nuclear amplitude as

Fw(0)=R(0)ei*®" (1.22)
where ¢(k,0) is given in general by v ‘
oo |

! 1—[R(6)/R(0
S T
-1 | cosf— cos| ‘
(1.23)

Equation (1.23) is readily derived from Eq. (1.14)
through an expansion in powers of 7 and exponentiation
as in Eq. (1.22). The O(»?) terms of Eq (1.23), as we
have seen, are nugatory at high energles Finally, we
note that the phase of Eq. (1.23) is in general complex
since R(6) is complex.

II. ADDITIVITY OF THE PHASE SHIFTS

In the scattering of a charged particle by a complex
target, we would like to find out what the scattering
amplitude would be if the electromagnetic part of the
interaction between the target and projectile were
switched off. Even assuming that the only electro-
magnetic interaction of consequence is the. Coulombic,
this scattering amplitude is not the amplitude defined
by Eq. (1.22). The scattering amplitude, Eq. (1.22),
would only be the true nuclear scattering amplitude if
the phase shifts were additive. However, it is clear that

8 (tot) — gy = 61N¢81N(77=O) ’ (21)

if 8;¥(n=0) is taken to be the phase shift that would ob-
tain the absence of the Coulombic interaction between
projectile and target. However, at high energies addi-
tivity of the phase shifts becomes an excellent approxi-
mation and the scattering amplitude given by Eq.
(1.22) becomes very close to the true nuclear scattering
amplitude.

Let us consider a charged particle moving in the field
of another charged particle. The two particles interact
via a short-range central nuclear potential Vy(r) in
addition to their Coulombic interaction. At high
energies, we may use the J.W.K.B. approximation for
the phase shift

U@r)— gﬁ -

I(I41)\12
51”’\'/ (k2 ) dr
72
® 2ky 41\
—f (/ez——”—( )) dr, (2.2)
" r 72
and

iV (n=0)~ / ( Ur)—-l(ltl)>1/2dr

7

w I+ lj vz
~/ (k”— ) dr,’
ry’ 7'2

(2.3)
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where U(r)= (2m/%#%)Vy(r). Clearly the difference be-
tween the phase shifts given by Egs. (2.2) and Eq. (2.3)
is of order %. In the high-energy limit the phase shifts
8:Y and §;Y(»=0) both become

1 £
51N251N(7)=0) O — / U(?’)d?’ ) (24)
2%

where r¢~I/k. In this same high-energy limit the dif-
ference between §;¥(p=0) and 8, becomes

77 0
A=5— 61N(77=0)ﬁ - -2;[ U(r)dr/r. (2.5)
0

In the forward direction the difference between the
amplitudes fy(n=0) and fx is
o201V _ 28, (1=0)

Afy=fu— fu(n=0)=3(21+1) T

ik

1
- S (2i+1)exBA,.  (2.6)

Since at high energies the nuclear phase shift goes as
k™!, we may approximate Eq. (2.6) by

1 I o0 dr
Afy~-22H1)A >~ — —/ Zldl/ U(r)—
k 2k3 J o Uk

4

7 o U(r) kr
o~ — — dr / 2ld]
2k3 J o r 0

7’ o0
~—— yU(7). i
%ﬁmw>&>

In the same approximation the nuclear forward scat-
tering amplitude is

1 0 kr
fa~— —/ drU(r)/ 21dl
e, 0

1 0
o~ — p / dr?U(r), (2.8)

and

A_ng E) /o i dr rVu(r) N
/: dr r*Vy(r)

I k

where (r) and (%) are average values weighted by the
nuclear interaction potential. We conclude that at high
energy

Afn/fa~Nu/kR, (2.10)
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where NV is a numerical factor of order unity and R is a
distance of the order of the range of the nuclear force.
For the scattering of pions by protons at 1 BeV/c¢
incident momentum, Eq. (2.10) yields the rough
numerical result (Afy/fx)~107% For proton-proton
scattering, the correction, Eq. (2.10), is less than 1%,
for E2100 MeV.

The high-energy limit, Egs. (2.4) and (2.5), that we
have used does not apply for infinitely strong interac-
tion potentials, as for example the hard sphere. For the

hard-sphere case
|Afw/ furl~m, (2.11)

in the forward direction. In either case, the corrections
given by Eq. (2.10) or Eq. (2.11) are negligible at high
energies relative to the effect exhibited in Sec. I.

III. RELATIVITY

So far we have discussed the relationship between
fv and R in the context of nonrelativistic potential
scattering. The basic result of Sec. I, Eq. (1.14), is
also valid relativistically for spinless particles since it
derives solely from the partial wave representation for
scattering amplitudes and does not depend on the de-
tails of the interactions. The only nonrelativistic aspects
of our observations in Sec. I were involved with the
identification of f, in Eq. (1.5), i.e., 1=2Z1Zsam/k. In
order to obtain the spinless, relativistic analog of Eq.
(1.14) and the high-energy results, Egs. (1.22) and
(1.23), it is only necessary to use for f. in Eq. (1.14)
the relativistically correct electromagnetic scattering
amplitude normalized to satisfy Eq. (1.1). In so doing, it
is convenient to work in a specific Lorentz frame, in
our case the center-of-momentum system, and then
express the resulting formulae in terms of the in-
variant scattering variables, s= (k1 initiai+ 2 initiar)> and
t= (k1 finar— k1 initia)® to obtain a result that can be
evaluated easily for any Lorentz frame.

For purposes of illustration, let us obtain the rela-
tivistic analog of Eq. (1.23) for the scattering of two
spinless particles of charge and mass Zy, m; and Z,, ms.
Equation (1.23) was dependent only on the lowest order
term of f,, in which case we use the one-photon ex-
change Feynman graph which gives®

fo(s,)=(ZsZao/ ) [s— (mi*+ms*) Js71 1%} (3.1)

In the center of momentum system (= —2k?(1—cosf)
and 4sk?=[s— (m1+ma) 2 [s— (mi—m2)?], so that it is
possible to convert Eq. (1.14) and hence Eq. (1.23) into
a relativistic form simply by replacing 2kn by 2kn —
Z1Z 0l s— (mi2+ms2) ]/A/s. Instead of Eq. (1.22) and
(1.23) we then have

fw(s,8)=R(s,t)ei¢ 0 (3.2)

5 We have omitted the -independent part of Eq. (3.1) present in
boson-boson scattering since it will contribute to an undeter-
mined S-wave scattering constant, a typical problem of boson-
boson scattering.
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K 7N
(em) + + Gstrong)

Ki (a) (c)

' m@mem}
(e) (f)

(g) (h)

F1c. 1. Graphical decomposition of the scattering amplitude.
A virtual photon is represented by a wiggly line. Graph (a) cor-
responds to f.(s,), while (b) corresponds to fx and (b), (c), etc.,
to the residual amplitude R.

~

with

é(s,2)
1—=[R®)/R1)]

B —n(s)li/—ot(w) “ |i—t]

and

n(s) = Z1Zs s— (m1®+ms?) ]/
[s— (mat-mo) Y]V 2[s— (ma—ms) ]2,

-2 ln'y]+0(n2)

(3.3)

(3.4)
where

Um)=[Ls— (mat-mo)"ILs— (m1—m2)*]/s.

Equations (3.2), (3.3), and (3.4) can be used in any
Lorentz frame and differ from the nonrelativistic re-
sult only by a new form for . We note® that 5(s) —
Z1Zsa as s—oo. Taking into account the extended
charge distribution in Eq. (3.1) causes us no difficulty
beyond complicating the integral of Eq. (3.3). On the
other hand, form factors will not affect the value of
¢(s,t=0) very markedly because they represent a

d‘k
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short-range effect, and the dominant behavior of ¢ is
determined by the long-range point Coulomb force.
For example, if we multiply Eq. (3.1) by the factor

M2 M2
ro=(5:) )
M2—t/ \M2—i¢
so as to account for the form factors and assume that

R(#)=R(0) exp(3bf) as in the example of Sec. I, we
find that ¢(s, =0) of Eq. (3.3) is now given by

(3.5)

Pform factor(s ,0) = Ppoint charge(S ,0)

—n(s) e Ei(—Q1)— ¢% Ei(—Q2)
2—V1 2— 1
(3.6)
where @point charge 1S given by Eq. (3.3),
® dx
Ei(=z)=— | —e,
. &

and Q;=(bM 2/2)~1. Once again, in Eq. (3.6), terms
of order exp[ —%bi(r)]<1 have been neglected.

At this point, let us digress momentarily to show the
connection between Egs. (3.2) and (3.3) and the
Feynman-graph formalism. For simplicity we will con-
sider spinless, equal-mass scattering. The Feynman
graphs of interest are indicated in Fig. 1. The graphs of
first order in a not explicitly indicated in Fig. 1 all con-
tain a photon buried in the strong-interaction blobs and
therefore represent model-dependent corrections, since
their calculation requires knowledge of the strong-
interaction amplitude off the mass shell. First, let us
consider the contribution to the residual amplitude from
graphs (b), (c), and (d) of Fig. 1.

A(kako) fa(ki—F, kat-k; kY, k)

R(S,l) = fN(S,i)_‘ Sm'ZlZga/

)4 B (k1— k)2 — m2Fie ][ (ot k) 2—m2+ic]

(3.7)

where (d) has been included by counting (c) twice.” The order @ contribution to R in Eq. (3.7) is infrared divergent.
This divergence is treated by using the prescription of Yennie, Frautschi, and Suura® in which a common divergent
factor is removed from f, f., and R in order to obtain the infrared finite quantities f, f., and R. That is, we write

f /
fer=I(s)1 7, (3.8)
R R
where?
I(s,)=1—8wiaZZ / o Ubike) —in(s)2 Iny+ (3.9)
Syp)=1—0om 142 +1n(s n cee .
! (2n)* B[ (im ) — e[ ot k)i mitie]

¢ For an alternative derivation of 5(s) for relativistic scattering, see W. Rolnick, Phys. Rev. 148, 1539 (1966).

7Once again we have removed from the photon numerator those terms which contribute a t-independent part to Eq. (3.1).

¢D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys. (N. Y.) 13, 379 (1961).

9 The infrared factor I (s,%) is not unique. We have chosen it so as to give 'the usual Coulomb amplitude from graphs (a) of Fig. 1 in
the nonrelativistic limit.
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in which case R is given by
R(s,)= fa(s;H[1—2in(s) Iny]
8z, 2a/ dk 4(k1k2){fN(k1"k, k2+k; k1 , ks )*fN(k1,k2; k1 ,kz )} . (3.10)
(2m)* kL (k1—k)2—m*ie][ (kotk)2—m?+ie€]

The order & term of R in Eq. (3.10) involves knowledge of fy off the mass shell and would appear to be model-
dependent. However, there is a mass-shell contribution to Eq. (3.10) which comes from the imaginary parts of the
denominators. Explicitly, we write (x+i¢)~'=@®/x—iwd(x) and substitute the positive-energy d-function parts in

Eq. (3.10) to obtain the model-independent contribution to R;

a ’iZ1Z2a
R(st)= fu(s,)(1—2in(s) Iny)+

T

XL fw(kr—Fk, katk; kY, k') — fa(k1,ke; ki k') ]+ model-dependent contributions.

(k)
[ e e

(3.11)

The integral of Eq. (3.11) can be evaluated easily in the center-of-momentum system in which k;= —k,, by the
substitution Z=%;— p. The integrations over po and |p| give

Rls0= fuls )= 2in(s) InyJ—i = = ==

X[ fw(s, cos#)— fa(s, cosb)J[1—cosh cosf;—sinf sinf, cosp |1,

where cosf,=1—1/2|k;|2 The ¢ integration then
just reproduces the lowest order form of Egs. (3.2)
and (3.3), since in the center-of-momentum system
0(s) = Z1Zs(2k1ks) /2512 ki | and R= fy to zeroth order
ina.

We have just shown how the technique of Yennie,
Frautschi, and Suura for removing the infrared diver-
gence may be applied to the problem symbolized by the
Feynman graphs in Fig. 1. In the work described above
we have taken a further step in much the same spirit
to calculate the model-independent, or ‘‘on-the-mass-
shell,” electromagnetic corrections to the so-called
“strong’ scattering amplitude. The result so obtained
is identical to the result obtained by the equivalent
arguments for potential scattering.

* These same techniques may be applied to the calcula-
tion of the model independent radiative corrections as
shown in graphs (e)—(h) of Fig. 1. These corrections are
the inner bremsstrahlung terms. They have no analog in
potential scattering, so that we know of no other way of
estimating the importance of such corrections.

IV. SPIN

In the scattering of two particles with nonzero
spin, the scattering amplitude can be written as

M(S,t; 0'1)‘72) = f(syt)—*'g(s:t; 01>62) ’

where f(s,f) is the spin-independent part of the scat-
tering amplitude, M (s,{; 01,02). For spin zero on spin 3,
M(s)t;0q) is

M(s,t,o)=f(s,)+ (A oD g(s,t),

(4.1)

4.2)

1Zza2(k1k2)
/ d cosf / do/T
-1 0

(3.12)

where 7= (k;Xk/)/|k;Xk;|. For the scattering of two
spin-} particles, the scattering amplitude becomes

M(s,t; 01,02) = f(5,0)+A(s,8) (014 02) - 7
4 B(s,)(0r-#) (o3 B)+Cs,)
X[(o1:p) (02 p)+(01-¢)(02-9) ]
+D(s,H[ (o1 p) (02 p)— (01-9)(02-0)], (4.3)

where p= (k;+k;)/ | k,+k;:| and ¢= (k;—k;)/ | k;—k,].
In Egs. (4.2) and (4.3) the usual conservation laws
have been assumed.?

If the only electromagnetic effect to be taken into
account were the spin-independent Coulomb force,
then we could interpret the amplitude f(s,f) as used in
the preceding sections to be just the spin-independent
part of the scattering amplitude M (s,f; 01,02). In that
case the data analysis would proceed in two stages.
First, we would attempt to unravel the spin-independent
part of the full scattering amplitude M (s,t; o1,09).
Then the analysis would continue along the lines pre-
viously discussed. We would make the following
identifications:

[M(S)t; O'1,‘72):Ispin-inclep. - f(s,t) (44)
and
[M (s,t; 01,02) Jspin-indep.— fo(5,8) = R(s,8), (4.5)
so that
[Mnuc(s,l; Ul;"Z)]spin-indep.
= {[M(S;t; 01;02)]Spin~ind€D-—fc(‘%t)}ew @0 ’ (46)

where ¢(s,f) is given by Eq. (3.3).
10 I, Wolfenstein, Ann. Rev. Nucl. Sci. 6, 43 (1956).
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Of course, this is not actually the case. The electro-
magnetic force also has a spin-dependent part. In the
actual case, the spin-independent part of the nuclear
amplitude obtained in Eq. (4.6) requires further cor-
rection for the magnetic scattering. This additional cor-
rection is also of order «, however, it is not an important
effect unless the spin-dependent and spin-independent
parts of the nuclear amplitude are of comparable magni-
tude. At small angles, however, the spin-independent
part of the nuclear amplitude dominates.

V. DATA ANALYSIS

In order to obtain the information required to apply
these methods to actual physical situations, we must
be able to extract the residual amplitude from the actual
scattering data. For small-angle scattering the spin
complications can usually be ignored. In that case the
residual amplitude may be obtained from the elastic
cross section, because

gai(s,t)= | fo(s,)+R(s,0) | 6.1)
or
oe1(5,0) —dcoui(s,) =0’ (s,) = | R(s,t) | 2
+ f*(s,HR(s,0)+ fo(s, ) R*(s,0) . (5.2)

The quantity ¢’(s,f) may be regarded as an observable
since ocou1(s,f) is well known. Similarly the amplitude
fe(s,8) in Eq. (5.2) is completely known. The only
unknown then in Eq. (5.2) to be determined from the
data is R(s,f). The residual amplitude, for fixed s,
considered as a function of ¢ is slowly varying relative to
fo(s,t) in the angular region where f.(s,f) and R(s,)
are comparable in magnitude, that is in the Coulomb
interference region. It is only in this region that the
phase of the residual amplitude can be obtained. If we
can observe ¢’(s,t;) and o’(s,t2) at values of #; and ¢,
sufficiently close together that we can ignore the varia-
tion of R with ¢, then Eq. (5.2) serves to identify both
the magnitude and phase of R(s,f) in the region around
t1 and #. Such a procedure has been employed in the
analysis® of p-a and p-D scattering at 40 MeV.

At very high energies, m-p and p-p elastic-scattering
data are particularly simple to analyze. Beyond the
Coulomb interference region, a plot of Ine=1n¢’ versus
¢ is linear. That indicates that In|R(s,)| =a-+b¢ for
small ¢ Since |R(s,f)| is thus known in the Coulomb
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interference region, the experimental data for o’(s,f)
gives the phase of R(s,).

A study of the available high-energy data in the
Coulomb interference region indicates that at small ¢
argR(s,t), like In| R(s,?)|, is linear in ¢. Therefore, in this
case, it is especially easy to parametrize R(s,f) as

R(s,f)=el(attn) | (5.3)

where ¢ and b may be complex functions of s. The form
for R(s,t) in Eq. (5.3) is a very convenient form for use
in Eq. (3.3). In a manner similar to the example of
Sec. I, Eq. (1.16) to Eq. (1.18), we can obtain ¢(s,f)
from Eq. (5.3). The result is

bli(m Red
181K ))+—;—z]+0(t2) (5.4)

Re (s,)=— n(S)[ln(

2y
and

Tmbd Imd
Im (s,0) = —v(S)[ tan—l(—)+—t]+oa2>, (55)
. Red 2

€

where Iny=0.5772- - - and #(r) is given after Eq. (3.4).
These results depend on the assumption that

exp[— |b]#(r)] < 1.

If we parametrize fx(s,f) in the same way as Eq.
(5.3), namely,

fu(s,)=exp}(an+bat) (5.6)
then Eq. (3.2) and Eqgs. (5.4)~(5.5) imply

Reay=Rea+29(s) tan~!(Imd/Re d), (5.7)

()
Im ay=1Im a—2%(s) ln(—]b|> , (5.8)

2y
Reby=Reb+4(s) Imb, (5.9
Im by=Im b—n(s) Reb. (5.10)

From Egs. (5.7) and (5.8) we see that in the forward
direction the magnitude of the nuclear amplitude differs
somewhat from |R(s,0)|. On the other hand the phase
of the nuclear amplitude in the forward direction can
differ markedly from the phase of R(s,0). We note that
{(r) — s as s —« so that the correction in Eq. (5.8)
can increase as Ins as s —.



