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baryons is even the decay width is

2 2T+1 2(8'—s)+3 +)2

471' 2s'+1

X(IT C(s+k—1, 1, s+&; N0))2.

k=1

(5.5)
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If the relative vy parity is odd the width is

g2 2T+1 p2e =+ (B4 1 ,)
I_(By — Btm)=>
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4 2s'+1 M,
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The proton-proton bremsstrahlung cross section is derived to first order in the electromagnetic interaction
and the nucleon-nucleon ¢ matrix. The cross section is expressed in terms of the nucleon-nucleon phase shifts
and the quasi-phase parameters needed to describe ¢ off the energy shell. The formulas are given in a form

suitable for calculation.

I. INTRODUCTION

LASTIC nucleon-nucleon scattering experiments
give information only about on-energy-shell matrix
elements of the nucleon-nucleon interaction. Off-energy-
shell elements are needed in any fundamental calcu-
lation of a nuclear system containing three or more
nucleons; that is, in any calculation which tries to
understand the many-body system in terms of the two-
body interaction. In practice either the off-energy-shell
effects are ignored if they are believed to be small or
else they are calculated from a nucleon-nucleon po-
tential which has been fitted to the elastic-scattering
data. In this latter case the potential is a device for
extrapolating matrix elements off the energy shell.

It is clearly desirable to have measurements which
give information on the off-energy-shell matrix elements
and which therefore can be used to judge various po-
tential models. The process of proton-proton brems-
strahlung,

ptp—ptpty,s

seems well suited to this purpose since it is essentially
a two-body inelastic event, the v ray being only weakly
coupled to the system.

In an earlier paper® the theory of p-p bremsstrahlung
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1 M. I. Sobel and A. H. Cromer, Phys. Rev. 132, 2698 (1963).
Hereafter this paper is referred to as I.

was outlined and some preliminary results were given.
Since then the measurements have been made at a
number of laboratories?~® and more are being planned.
Also a number of other calculations have been pub-
lished,” some of which are based on this earlier
work.”81 In this paper we present a detailed discussion
of the theory. More recent calculations based on some
potential models are given in a forthcoming paper"
and a more phenomenological analysis will be published
shortly .12

In the typical bremsstrahlung experiment the two
scattered protons are detected in coincidence telescopes
arranged at angles 6, and 6, on either side of the incident
beam (see Fig. 1). Elastic scattering events are elimi-
nated by making the angle between the two telescopes
less than 90°. The measurement of the energy of either
scattered proton determines the direction and energy

2 B. Gottschalk, W. J. Shlaer, and K. H. Wang, Phys. Letters
16, 294 (1965) ; Nucl. Phys. 75, 549 (1966).

3 B. Gottschalk, W. J. Shlaer, and K. H. Wang, Nucl. Phys. (to
be pubhshed)

4R. E. Warner, Phys. Letters 18, 289 (1965) ; Can. J. Phys. 44,
1225 (1966).

5 K. W. Rothe, P. F. M. Koehler, and E. H. Thorndike, Phys.
Rev. Letters 16, 1118 (1966).

6 1. Slaus, J. W. Verba, J. R. Richardson, R. F. Carlson, W. T.
H. van Oers, and L. S. August Phys. Rev. Letters 17, 536 (1966).

71. Duck and W. A. Pearce, Phys. Letters 21, 669’ (1966).

8 P. Signell, Proceedings of the Williamsburg Conference on
Intermediate Energy Physics, Williamsburg, Virginia, 1966 (un-
published).

9Y. Ueda, Phys. Rev. 145, 1214 (1966).

0V, Brown, Bull. Am. Phys Soc. 11, 396 (1966).

1 M. I. Sobel and A. H. Cromer, Phys. Rev. (to be published).

12 A, H. Cromer and M. 1. Sobel (to be published).
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COUNTER

TELESCOPES \’

Fi16. 1. Kinematics of
proton-proton  brems-
strahlung. Here p is the
momentum of the inci-
dent proton in the labo-
ratory, p.’ and p.’ are

the laboratory momenta
. of the scattered protons,
P and K is the momentum
of the photon. The unit
vector 7 is into the
paper and $ and § are
perpendicular unit vec-
tors in the scattering
plane.

of the v ray and so by measuring the energy of both
protons accidental coincidences can be largely elimi-
nated. In practice then at least five out of nine final-
state parameters are measured and these suffice to
completely determine the kinematics of the event.

II. FORMULATION

Our problem is to calculate the cross section for
scattering from an initial state,”® |i)=|py,ps), of two
protons of momenta p; and p, to a final state, |f)
= |p/,ps,K) of two protons of momenta p,’ and p,’
and a v ray of momentum K. The Hamiltonian for this
free system is

Hy=K+K»+K,,

where K, K,, and K, are the kinetic-energy operators
for protons 1 and 2 and the photon, respectively. The
states |4) and | f) are eigenstates of H, with the same
energy E. Letting e(p) =%p*/m, we have

Ei=E=e(p1)+e(p2) 2.1)

(2.2)

and
Ey=E=o(ps)+e(p)+K=E+EK,

respectively, for the initial and final states.
The total Hamiltonian is

H=K1+Kot+K,+VytVenm,

where Vy is the nuclear potential between the protons
and Vem is the electromagnetic coupling of the vy ray
to the protons. Further we write

H=HN+K7+ Vemr
where
Hy=K+Ky+Vy

is the Hamiltonian for free nucleon-nucleon scattering.
The operator for transitions between eigenstates of

13 We use a system of units in which Z=c¢=1. Also our mo-
mentum states are normalized so that (r|p)= (27)3/2 exp (ip-1).
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H, is given exactly by

T(E)= (VN+ Vem)"l_ (VN+ Vem)
XI:E‘I’%E_HN"—K'Y-' Vem]_I(VN_i_ Vem) )

with the usual understanding that ¢— Ot after the
appropriate integrations have been performed. Using
the operator identity (4 —B) '=A-4(4—B)"'BA™!
and keeping only terms to first order in Ve, one obtains
T=Vy+Vemt+ VNGNVN'I" VenGnV

F VNG Vet VNGNVemGnVw,

where Gy=[E+ie—Hy—K, . Next we take the
matrix elements of 7" for the photon states; i.e., between
an initial state with no photon and a final state with
one photon of momentum K. Assuming that Vy is
diagonal in the photon states it can be shown that

K|T(£)|0)=1(E)8 (K)+ (K| Vem | 0)
+ <K| Vem ] 0>G0 (E)t(E)+l(E,)G0 (El) <K I Vem I 0>
FHENGo(E)K | Vem |0)Go(E)(E).  (2.3)

Here Go(E)=[E+ie—K,—K: ]! is the Green’s func-
tion for the free nucleon-nucleon system and

HE)=Vn+VnGo(E)(E)

is the transition operator for nucleon-nucleon scattering.

The first term in Eq. (2.3) describes normal elastic
nucleon-nucleon scattering without photon emission;
the second term describes photon emission without
nuclear scattering and is not kinematically allowed.
The third and fourth terms describe photon emission
after and before nuclear scattering, respectively, and
are the terms we shall calculate. The last term describes
photon emission between two nuclear interactions and
has been shown' to be small relative to the single
scattering terms.

Taking, then,

(KI T(E) |0>= <Kl Vem |O>GO(E)t(E)
+t(E’)G0(EI) <K| Vem I O) )

we get for the complete matrix element between initial
and final proton states

(/17|3)={(p!,p¢', K| T(E) | p1,p,0)
= / BR1d®ko{ (P10, K| Ve | k1, ko,0)

X[E+ie—e(kr)—e(ks) I (ky ks | £(E) | p1,p2)
+{p! ,p | (E") | ki, ko) [E+ie— e (k1) —e(ka) T
X (kl;k2)Kl ch' pl,p2,0>} )

where k; and k. are the intermediate momenta of
protons 1 and 2.

(2.4)

14 M. I. Sobel, thesis, Harvard University, 1963 (unpublished);
M. I. Sobel (to be published).
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The contribution to Vem from meson currents in the
proton-proton system is unknown. We must therefore
neglect such contributions and include in Ve only the
coupling of the electromagnetic field to the proton
currents. Thus we take

<k1)k2)K| Vem ! pl:p2;0>
= — (¢/2rm\/K)[ G (p1)8*(p2— k2)3 (p1— K—k)

+ @ (p2)# (p1i— k)8 (p:— K—ko) ], (2.5)
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where
a(ps) =[p:-é—isuo;- (KX8)]. (2.6)

Here e=1/4/137 is the charge and p=2.79 is the mag-
netic moment of the proton, ¢ is the polarization of the
photon, and e; is the Pauli spin operator of the ith
nucleon. Since the photon is real we have K-2=0.

Using Eq. (2.5) together with the similar expression
for (py/,po’, K| Vem|k1,ks,0) in Eq. (2.4) we get

{(fIT|iy=—(e/2amr/K){ G (ps")[E—e(py+K)—e(p:') T Upy'+ K, p’ | {(E) | py, p2)
+{p', p'[{(E) | p1—K, po)[E'—e(p1—K) —e(p2) T @ (p1)+ Q (p2 ) LE—e(ps'+K) —e(ps)) I

X{py', p'+K[1(E) | p1, p2)+(p1’, po’ | £(E) | p1, p2— K)[E' —e(p1) —e(p2—K) '@ (p2)} .

The four terms in brackets will, for reference purposes,
be designated a, b, ¢, d, in the order in which they are
written. Each term is the amplitude for the photon to
be emitted by the proton of momentum py’, p1, p2’, P2,
respectively.

Because of the identity of the two protons, (f|T'|%)
must be antisymmetrized. This is done automatically
if we use the properly antisymmetrized form for the
matrix elements of {(E).

The energy denominators as written in Eq. (2.7) are
non-relativistic. Thus for the first term we have, using
Eq. (2.2),

AE,=E—e(p/+K)—e(p)=K—K-p)//m—1iK2%/m.

At the energies normally considered 1K2%/m is very
much smaller than K and can be neglected. Then AE,
is very close to the relativistic form

AE.= (K[ p:"*+m*]"2—K-p,) /m.

Corresponding expressions for the relativistic forms of
the energy denominators in all four cases are given in
Table I. In actual calculations the relativistic denomi-
nators are used.

We next consider the matrix elements of the ¢
matrices that appear in Eq. (2.7). Actually these are
matrix elements in momentum space and matrices in
spin space. Thus, for example, in the first term in (2.7)
we have the spin matrix {p,/+K, p’|£(E) |p1, p2). This
matrix can be written in terms of the off-energy-shell
center-of-mass scattering matrix, M,(k,’k,), which is
a matrix in spin space, each element of which is a func-
tion of the initial and final relative center-of-mass
momenta, k, and k,’. Since these matrices are off the
energy shell |k,| is not equal to |k,/|. The energy E
corresponds to the initial state only. The relation
between #(E) and M is

o/ +K, po'|{(E) | p1, p2)=8°(p1"+p2'+ K—p1—p)
X (ko' |t(e(ka)) | koY= — 2n2m) M (ko' ko)
X&(p/+p/+K—pi—ps). (2.8)

We shall discuss the calculation of M in detail in the

2.7

next section. The £ matrices in the other terms in Eq.

(2.7) have a similar expression in terms of M, (x=a,

b, ¢, d) with the same delta function of momentum.
Then we have

(fIT]iy= (¢/4m*m*/K)

XM (pr'+p2'+K—p1—ps), (2.9)
where
M={G(p))(M./AE.)+ (M+/AE:) G(p1)
+a(py) (M ./AE)+ (Ma/AE)G(p2)}. (2.10)

To calculate the cross section we need |{f|T|i)|?
averaged over initial proton spins and summed over
final proton spins and the photon polarization. This is
given by

(¢/167°m*K)(} tr(M9N))5* (pr'+p2'+K—p1—p2)

where (- - -) here indicates the sum over proton polari-
zation. In the laboratory system with ps=0 and p; the
momentum of the incident beam, the cross-section then
is

do= (&/m*m*p:1K) (% tr(MHIN))
X & (pr'+p2'+K—p1—p2)

X:S(Ef—E,-)d3p1’d3p2’d3K. (211)
In the experiments under consideration five of the
nine parameters describing the final state are measured
and the other four are determined by the conservation
laws. Thus we must integrate over four variables in
Eq. (2.11). For example, if we measure the solid angles
of the two final protons and the angle 6, between the
photon and the incident beam, then the kinematics is
determined. In the case in which all the particles are

TasiE I. Relativistic expressions for the energy
denominators in Eq. (2.10).

AEq= ([p*+m? 2K —K-p1") /m
AEy=— ([p2+m* 12K —K-p1) /m
AE.= ([p+m* 2K —K-ps')/m
AEg=— ([p2+m*]2K —K-pa)/m
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coplanar this cross section is
do/d2dQedb.,= (&/m*m*p1K) (& tr (MHIN))F,

where § is the phase-space factor:

(2.12)

F= [/53 (p/+p+K—p1—p>)
X8(E;— E)pi*dpy psdpy

X K%K sin07d¢7:|

= p1"2ps”K | sin (014 62)+B sin (64— 61)
—61 sin(02+07) l—l .

Here 3 is the velocity of proton i (i=1, 2) and 6; is the
angle between p;/ and pi. In the usual experiment 6,
and 6, are on opposite sides of the incident beam and
are both taken to be positive; the angle 6, between K
and p; is taken to be positive when K is on the same
side as p1’ and is taken to be negative when it is on the
same side as ps’.

In all experiments to date it has been the solid angles
of both protons and ey, the energy of proton one, that
are actually measured. The data can be easily trans-
formed into the form given by Eq. (2.12) or they can
be presented directly in the form do/dQ:dQede;s’. When
all the particles are coplanar this cross section is

da/d91d92d61'= (62/71'2m3P1K) <% tr (mfm) >EF’ 5

$y=0

(2.13)

(2.14)

where
F'= p12p"2B1 | Ba—cos (4 0,) | L. (2.15)

In T the cross section was calculated in the form
given by Eq. (2.14) and was plotted as a function of e,’
for various proton angles. There are two disadvantages
in expressing the cross section in this form: (1) the
solution of the kinematic equations is double-valued,
that is, there are two values of e,’ for each value of e/’
(2) the cross section has kinematic singularities when
plotted as a function of e,’. These singularities occur at
both ends of the allowed range of e;’. Neither of these
problems occurs when the cross section is expressed in
the form given by Eq. (2.12); this cross section is well-
behaved when plotted as a function of 4, over the entire
range from 0° to 180°.

III. EVALUATION OF THE M. OFF THE
ENERGY SHELL

In order to calculate 9 we must evaluate the four
scattering matrices, M, (x=a, b, ¢, d), which appear in
Eq. (2.10). The matrices M, and M . are easier to handle
than the other two and we begin our discussion with
them. From Eq. (2.8) we have

M= —27r2m<kullt(ey)lkv>: (y=a,0),

where e, is the energy of the initial state. This means

A. H. CROMER AND M. I.
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that (neglecting spins for the moment) M, has the form
M,=— (m/4r) / exp(—ik, 1)V ()X, (1)d?r,

where Xi, is the exact scattering state which goes
asymptotically as

X, 2 exp (iky 1)+ M exp(ikyr).

When spin is taken into account, M, is a 4 X4 matrix
in spin space. It is customary to take the incident
center-of-mass direction as the axis of quantization
which defines the representation of M,. In this repre-
sentation the on-energy-shell (|k,|=1k,/|) matrix
elements of M, have a well-known expansion in terms
of phase shifts §(k,), at the (center-of-mass) energy
1k,2/m and Legendre polynomials of the angle 6,
between k, and k,’. Sobel has shown' that off the
energy shell these elements have the same expression
as is given for the on-energy-shell elements by Stapp
et al.1® in their Table II1, if off the energy shell the a;’s
have the following form!” (using the Blatt-Biedenharn
parametrization!®):

arip1=21 (COSZEZileiB”ilAmift—}— sin%lile“ 12, 1L
KXAre,101%),
oq_H'l:i sinZeLH(e”’J“Az,Hﬁ— ei§l+2'l+1Al+2,H-1+) ,
a_l—l-'—fi Sin261_1(eiﬁl""-"‘Az_g‘z_l_—eisl'l‘lAz‘l_l—) , (31)
ay=2ie?IA,; ,

1= Ziemlez,;.

Here the phase shifts, §(%,), depend on the momentum
of the incident state, whereas the quasi-phase param-
eters A(k,’,k,) are functions of both the initial and
final momenta. On the energy shell A(k,k,) is equal
to sind(k,), where & is the phase shift which appears in
the exponential factor that multiplies A. Off the energy
shell the A’s are given, in a potential model, by integrals
over the potential, as described by Sobel.!® However,
this parametrization of M, does not depend on a
potential model. It is based on general considerations
of unitarity, time-reversal invariance, and conser-
vation of angular momentum and parity.® Thus M,
can be calculated from any assumed set of phases and
quasiphases.
In cases b and d we have to evaluate

MZ: _—27r2m<k5’ [ t(ez,) I kz> ’ (Z= b; d) ’

16 M. I. Sobel, Phys. Rev. 138, B1517 (1965).

16 H. P. Stapp, T. J. Ypsilantis, and N. Metropolis, Phys. Rev.
105, 302 (195?).

17 In the formulas in Ref. 16 (Table III) o' is used wherever
ot appears explicitly and e, ' is used wherever o1 appears.

187, M. Blatt and L. C. Biedenharn, Rev. Mod. Phys. 24,
258 (1952).

19 M. I. Sobel (to be published).
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where e.’ is the energy of the final state. To do this we
use time-reversal invariance which gives for the spin
and momentum matrix elements of ¢(e.’) the relation?

(u ks |¢(es) | Kappt)
= (=1 (—p, —ki|t(e)) | =k, —n')
= (— 1)(‘_#,<—”'7 kzl t(ezl) Ikz,, '—“'l> ’ (32)

the last equality following from parity conservation.
Now the spin matrix elements of

I.=—2mmik.|i(e.) k'), (2=b,d), (3.3)

have phase expansions identical to that of M, but in
terms now of 8(k,”) and A(k,,k.”) and with k.’ as the
axis of quantization. Then the relation

W Me|py= (=D (—p|M.| =), (z=b,d) (34)

enables us to calculate the matrix elements of M, in
terms of phases and quasiphases.

On the energy shell the scattering matrix M has a
well-known expansion in terms of the Pauli spin oper-
ators of the two protons and the five Wolfenstein
parameters,? 4, B, C, E, F. Off the energy shell we
obtain a similar expansion with some important
differences. In cases ¢ and ¢, if we define 7 to be a unit
vector in the direction k,Xk,’, # to be an arbitrary
unit vector in the scattering plane and ¢§=#AXp, M,
can be written in the form

My=Ay+By0'1'ﬁﬂz'ﬁ+cy(01'ﬁ+02'ﬁ)
+Ey01-402-4+Fyo1-poy-p
+Gy(o1-dozpt01-por-9), (3.5)
where the six amplitudes 4,, B,, Cy, E,, Fy, and G,
are functions of %,, k,’, and 6,. These amplitudes can
be expressed in terms of the singlet-triplet matrix

elements of M. Dropping the subscript y these relations
are, for cases ¢ and ¢:

=1CMu+Mout+M,,),
=i(M00—Mss_2M1—-1) )
C= iS*l’z(M(n—Mm) ,
F+E=3Mu+Mi1—M,,),
F—E= %[\/Z—(Mori—Mm) SiIIZQ
+ (M 11— M 11— Moo) cos29],
= %[ﬁ(Morl‘Mlo) cos2Q
— (Mu—M1_1—Mqo) sin2Q].
Here Q is the angle between p and the axis of quanti-
zation. In cases ¢ and ¢ the axis of quantization is along
k, which is also the direction of the incident laboratory
momentum p; (see Fig. 1). We use the convention that

 is positive when  is on the same side of p; as py’ and
is negative when it is on the opposite side.

(3.6)

2 J. J. Sakurai, Invariance Principles and Elementary Particles
(Princeton Umver51ty Press, Princeton, New Jersey, 1964).
21 L. Wolfenstein and J. Ashkin, Phys Rev. 85, 047 (1952).
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On the energy shell M has an expansion identical
to that given by Eqgs. (3.5) and (3.6). However, on the
energy shell it is customary to take $ in the direction
k,+k, so that @=36,. But time-reversal invariance
implies that on the energy shell!

\/Z(Morl‘Mlo) COSG,,= (M11—M1_1—M00) sinoy ,

so that G=0. No such relation exists off the energy
shell and so there is no direction of p for which G
vanishes.

Some care must be taken in applying Eq. (3.6) to
cases b and d. We want M, expanded in terms of the
Pauli matrices and the same unit vectors, 4, p, and g,
as M,. But since M, is calculated with initial mo-
mentum k., so that spin is quantized along k,’, the
angle which appears in (3.6) is no longer Q. Applying
Egs. (3.2) and (3.6) together with the standard sym-
metry relations!®

M_ i =Mn, M_u=Mi,,

M10= '—M-—10,

My=—Mo,

it can be shown that M, (z=b5, d) has the expansion
given in Eq. (3.5) with G replaced by —G. The ampli-
tudes A4,, -+ G, are in turn given by expressions
similar to Eq 3. 6) in terms of the matrix elements of
M, and the angle { (mstead of Q) between p and the
axis of quantization, which is now k,’. In terms of Q
and the angle a between k.’ and p; we have 8=a—Q.

To summarize, M, and M are calculated in terms of
the singlet-triplet matrix elements by using Egs. (3.5)
and (3.6). These matrix elements, in turn, are given
by the standard formulas in terms of the angle 6,
between k,’ and k, and the ay; given in Eq. (3.1). We
note that %, is the same in both cases ¢ and ¢, so that
the phase shifts are the same in both cases; however,
the scattering angles and the quasiphases are different
since the k,’ are different in the two cases. The matrices
M, and M, are given by the same expressions with the
sign of G reversed, @ replaced by {, and %, and &,’
interchanged everywhere. This means, in particular,
that the phases are calculated for the momenta k.,
which are the same in these two cases.

IV. EVALUATION OF (% tr (91'91))

The scattering matrix, M,, can be put in the form
of Eq. (3.5) for all four cases so that 9%, Eq. (2.10),
can be written in terms of the amplitudes 4, - - -, G,.
To do this most conveniently it is useful to pick the
unit vectors 4, p, ¢ to be the same for all four terms.
This can be done easily in the case of coplanar scattering
for then k,Xk,’, the direction of 4, is the same for all
terms and all we have to do is to pick $ to be the same
also.

While the choice of $ is arbitrary, the sum over
photon polarization is considerably simplified if § is
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TasBLE II. The coeficients X; and ¥; in Eq. (4.4). Only the
nonzero coefficients are listed. In this table the amplitudes
A, -+-G; are understood to be divided by the corresponding
energy denominator AE, from Table 1. Here £=3uK.

Z 0; X

1 Aapl"Q+Abp1'é+Acp2l'é—‘i£ (Ca+Cb+Cc+Cd)
Capy' - §+Copr+§+Copy’+ §—i£ (4 o+As+B.+Ba)
Copt'§+Copr+§+Copy’ - §—i8 (Bat-Bo+A.+4a)
Bapy'+§+Bopi - §+Bepe' - §—i£ (Cat+Co4-Co4-Ca)
Gopy'+§+Gop1+ §+Geps' - §—§(Eo— Ep— Fe+Fa)
Gapy'+§+Gop1 §+Gops' - §+&(Fo—Fy—E.+Ey)
FuDI’ . é+Fbpl . Q+Fcp2’ * q"‘ E(Ga_ Gb+Gc_Gd)

R R I A O
S
s
S

15 ;-
16 [ W

£(Fo—Fy—B,+By)
—#(Ba—Ba—F.+Fy)

23
:‘)‘g) '

01-§02:§  Eap/-§+Esp1-§+Eope - §+£(Go—Go+Ge—Ga)
Y;
9 [y . 'l's (A a+Ab+Ec+Ed)
10 0'2'& 1‘2 (Ea+Eb+Ac+Ad)
11 a-p 3£ (Ca—Co)+Got-Ga)
12 Ui‘ﬁ if(Ga+Gb+i(Cc—Cd))
13 0'1‘@0'2 7 ’L’E(Ca“l‘cb“i(Gc_Gd))
14 Ul'ﬁ(,'z - 15(“1(Ga"Gb)+Cc+Cd)
#
b

taken to be in the direction of the photon momentum,
K. For then the polarization vector ¢ must lie in the
#i-¢ plane so that

é=( cosp+1 sing,

KXé=K (# cosp—g sing) , 4.1)

A

where ¢ is the angle between & and §. To sum over
photon polarization we must integrate d¢/2r from 0
to 2z. That is,

& tr(tan))= (2x)1 / Ltr(mtm)de.  (4.2)

Using Eq. (4.1) we write Eq. (2.6) in the form

Q(ps) =Pz § cos¢p—i3Ku (e, fi cosp—0,-§ sing),

(x=a,b,¢,d). (4.3)
In this notation we have p.=pi’, Pr=D1, P.=D2,
pa=p2:=0, 6,=06,=01, and o.=0s=0;. Putting Eqs.
(3.5) and (4.3) into Eq. (2.10) we find that 9 can
be written in the form

16 16

M=sing Y. X,0;+cos¢ > V.0;,

=1 =1

(4.4)
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where the O; are the sixteen independent spin operators
1, cl'ﬁy “l'ﬁ) 01'9) 02'ﬁ7 Uz'ﬁ, 02'@7

and the nine independent products of these.

The coefficients X; and V; are linear combinations of
the amplitudes 4., - - -, G4, divided by their approximate
energy denominator. The expressions for these co-
efficients are given in Table II, where for simplicity
we have written 4, to mean A,/AE,, etc. Note that
for each operator O; either X; or V; is zero. This is a
consequence of the parity invariance of the electro-
magnetic interaction.

The O; satisfy the relation

1 tr(0: 0;)=48;,

so we have
Grouon)=4 > [| X[V, (4.5)

the factor of 1 coming from the sum over polarization.
The bremsstrahlung cross section is given by Eq. (4.5)
together with either Eqgs. (2.12) or (2.14).

V. CONCLUSION

In this paper the proton-proton bremsstrahlung
cross section has been expressed directly in terms of the
phase shifts and quasi-phase parameters of the proton-
proton interaction. The phase shifts are known from
the extensive measurements of elastic p-p scattering,
but there are no measurements of the quasiphase. It
is hoped that investigation of the bremsstrahlung
cross section will provide valuable information about
these important parameters.

The only approximations made here (apart from
treating the electromagnetic interaction only to first
order). were the neglect of meson currents and the
neglect of the rescattering term in Eq. (2.3). The re-
scattering term was calculated by Sobel!* in one instance
and was found to be very much smaller than the two
main terms. In any event this term could be calculated,
should it prove necessary, albeit with about an order
of magnitude more work. However, there is at present
no completely satisfactory way to estimate the con-
tribution of the meson currents. This problem deserves
further investigation.
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