
I HYSICAI, RRVr H, N VOI. UM E 152, NUMBER 4 23 DECEMBER 1966

Pion-Nucleon Scattering in the P» State*
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The E» pion-nucleon scattering amplitude is studied in order to determine the dynamical status of the
nucleon. A simple one-channel static model is constructed in which a good 6t to the low-energy data is ob-
tained with a Castillejo-Dalitz-Dyson (CDD) pole. If there is, in fact, such a pole, with the strength indicated
by our model, then one must conclude that other channels play a significant, although not overwhelming,
part in forming the nucleon. It is also possible to reconcile all the available information with a model con-
taining no CDD poles in which the nucleon is formed to a good approximation in the pion-nucleon channel
alone. A few ways by which one may hope to choose between the two models are discussed. It is shown how
the success of certain "reciprocal bootstrap" calculations can be understood, whether or not a CDD pole is
required. The large inelasticity and phase shift in the P» pion-nucleon channel at energies of 400 to 600 MeV
are probably due to coupling with the mmN channel, with all three particles in relative s waves. This latter
channel seems to be signiicant for the properties of the 1400-MeV (Roper) resonance, but probably plays a
small role in the formation of the nucleon.

1. IN'TRODUCTION

'HERE have been numerous pion-nucleon phase-
shift analyses carried out recently. ' ' All of them

6nd a large increasing phase shift in the Ptr (I=J= z,
p wave) channel over the range of pion kinetic energies
300 to '/00 MeV (Fig. 1).In fact, a large width resonance
having the same quantum numbers as the nucleon and a
mass of about 1400 MeV, often referred to as the Roper
resonance, appears to be consistent with all the phase-
shift analyses except perhaps for Cence's. Evidence for
such a resonance has also been obtained by different
methods in which it was actually possible to see a
"bump. '"—8

The aspect of the amplitude that concerns us here is
not so much the fact that the phase shift becomes
large at high energy, as that it becomes positive at a
low energy —slightly below the three-body inelastic
threshold, in fact. Rothleitner and Stech have argued
that the nucleon can be regarded as being a pion-nucleon
bound state if and only if the position of the zero is
above the inelastic threshold. We do not believe that
this is a meaningful distinction, but we show that the
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single-channel D function probably contains a Castillejo-
Dalitz-Dyson (CDD) pole' at the position of the zero
Without this CDD pole one would not obtain the
nucleon at the correct position in a one-channel calcula-
tion. These conclusions are consistent with a recent
argument of I.yth, "which allows one to conclude that
the elastic channel forces together with elastic unitarity
necessarily give rise to a pole appearing either as a
bound state or as a low-lying resonance having approx-
imately the correct residue, whether or not a CDD pole
is required.

Ever since Chew Grst suggested that there is a
reciprocal bootstrap relationship between the N and
the 6 in pion-nucleon scattering, " there have been
numerous dynamical calculations of varying complexity
performed to obtain these two particles as dynamical
states. '~" Some have even tried to include inelastic
channels. ""Balazs" and Doolen et ujI.,

"have shown
how to calculate the nucleon position and residue from
a knowledge of the long-range forces and a self-con-
sistent technique for generating the short-range forces.
Both obtain the nucleon pole position fairly well, but
they 6nd the P» phase shift decreasing and negative,
in blatant disagreement with the phase-shift analyses.
We shall argue that this discrepancy may be attributed
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to the CDD pole, which they have not included, and
that their success in locating the nucleon pole position
does not mean that inelastic channels play no role in
determining this position.

The pion-nucleon p waves at low energy are of
particular interest, because of the availability of good
experimental information. Also, the large mass ratio
allows some very convenient approximations (static
model) to be made. These two facts, together with
Chew's simple model, have led many persons to regard
this problem as the "hydrogen atom of bootstrap
theory. " From this point of view out conclusions are
rather disappointing, in that we 6nd that other channels
are probably required to calculate the nucleon mass,
although an approximate one-channel calculation does
appear to be possible for the d resonance. The residues
of the X and A poles (i e , the. .coupling constants)
can be approximately obtained from single-channel
considerations.

2. THE STATIC-MODEL BOOTSTRAP

In this section we shall brieQy review the simplest
static-model bootstrap for pion-nucleon p-wave scatter-
ing as given by Chew. '2 Apart from the intrinsic interest
of the model itself, our purpose in presenting it here is
to have the equations and notation at hand when we
argue that such a simple interpretation of the nucleon
might not be correct.

The amplitude for p-wave pion-nucleon scattering
with isotopic spin I and total angular momentum J is
dined as

ross= 2.17 ~ (2 8)

One proceeds to calculate the amplitude from the
known Born terms for single-particle exchanges. From
the work of Frautschi and Walecka, " or Abers and
Zemach, '4 we can read o8 all the relevant formulas.
For example, let us consider the Born term correspond-
ing to X exchange in the P~~ amplitude,

—g~+~' 1 1
a,r1v (01)= -P(X+M) (W—M)Qr(xP)

4z 4TVq p

+ (E-M) (W+M)Qo(xP)i, (2.9)
where

xP= 1—(s—M' —2)/2q',

EWM =$(W+M)2 —1j/2W,

hatt

——(3g 1vtv'/42r) (1/4M') ~

In the static limit (2.9) becomes

(2.10a)

(2.10b)

(2.10c)

Expression (2.3) is not the correct phase-space factor for
removing all the kinematical singularities that the
amplitude is known to contain. However, in the static
limit, for which

1/M((1 and oo/M((l, (2.4)

it is satisfactory. Another way of expressing this is to
say that the resulting kinematical singularities at
co= —3f and co= —2M —1 will be very distant and
give a slowly varying contribution over the energy
range of interest. We should also remark that in the
static limit, the connection with the S~~ amplitude,
which is a consequence of the MacDowell symmetry,
is lost.

The amplitude a11(oo) contains the nucleon pole and
ass(01) contains the A pole. The conventional definition
of residues is

—y11——reSidue Of q
'e""&"&Sin811(oo), (2.5a)

—yes ——residue of q
' tangos(&o), (2.5b)

where

q= L(W—M)' —1y'L(W+M)' —1j'"/2W. (2.6)

The experimental values" '4 are

F11=0.246&0.006 and 722=0.12&0.01. (2.7)

The position of the 6 pole is

~2r, 2J (oo) — er 21 2~I~I Sln82r 2J (CO)

p(~)
(2.1)

~=+—u and m=s&~2. (2.2)

where co is related to the center-of-mass energy s by with
xP = —Moo/qs. (2.11b)

gag 3f
atP(oe) =— —LQo(xP) —4Q2(xP)], (2.11a)

9 q2

2' J. Hamilton and W. S. Woolcoclr, Rev. Mod. Phys. 35, 737

M is the nucleon mass, and the pion mass is set equal
24 S. W. Barnes, 3. Rose, G. Giacomelli, J. Ring, K. Miyake,

to unity. The phase-space factor is defined to be
"S.C. I'rautschi and J. D. Walecka, Phys. Rev. 12D, 1486

(2.3) (196o).
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We observe that there is a short cut located approx-
imately at —1/M (pp(1/M, which actually degenerates
to a point in the full static limit. If we write

ull(~) +11(~)D11 (~) (2.12)

and assume that D»(&o) is approximately linear over
the short cut, then we find that the nucleon-exchange
contribution to the S function is

X1P(pp) = (y11/9) LMQp(Mpp) D11(0)
+Q1(Mo))D11'(0)]. (2.13)

-0

s =(M+I)
s =(M-l)2

s=o

u=o
i)2

u = (M+1)2

we can write
D11(—cu33) = 1,

16 F33
F11~(PP)=—

9 pp+&33

(2.14)

(2.15)

If we suppose that other forces are negligible,

The second term is very small away from the cut, of
course, but it does give a modest contribution to the
nucleon-pole residue.

An analogous argument can be made for 6 exchange.
However, since we need this term only away from its
short cut, and since we normalize at the 6 pole,

FIG. 2. Mandelstam diagram for pion-nucleon scattering, display-
ing the s- and ~-channel physical regions.

amplitudes. It is this fact that makes our whole analysis
possible. One way to visualize how this comes about
is to study the Mandelstam diagram for pion-nucleon
scattering (Fig. 2). The partial-wave expansion is
convergent for s&0, with the convergence best very
near to the s-channel threshold. It is therefore clear
that there must be rapid convergence in the low-energy

parts of the I-channel physical region. This is the
justification of the static-model crossing relations which

we write down in the next section.

u»(~)' 1/9 —4/9
u13(~) —2/9 —1/9
u31(pp) —2/9 3/9
.u33(pp). . 4/9 2/9

-4/9 16/9'
2/9 4/9 u13 (—co)

4/9 u»( —)
2/9 1/9. .u33(—co).

(3 1)

~+~33 P(~ )+11(~)
D»(pp) = 1— de'. (2.17)| CO 4) 33 GO

—M

For the choice 4=14, we will have

3. A SIMPLE MODEL AND ITS IMPLICATIONS

(We shall defer a discussion of the importance of other
In the static limit, crossing for the p-wave pion-

The dispersion relation for D»(pp), with elastic uni- nuc e amPlitudes is given by

tarity, requires a cutoff A:

D11(0)=0, Neglecting u13(cv) and u31(co), which are known to be
very small at low energies, leaves

thereby forcing the nucleon pole to appear at the correct
position. One can show that at low energies the D func-
tion given by (2.17) is approximately straight, so that
one has

fu11(M) ) f1/9 16/9) u11( pp) )
(u33 (M) J k4/9 1/9& u33 (—pp) )

(3.2)

D11(CO) = —M/M33. (2.19)

Using this expression, one calculates for the nucleon
pole residue

y11———E11(0)/D11'(0)= 2y33, (2.20)

which is in remarkably good agreement with exper-
iment. The corresponding calculation carried out for
the amplitude u33(co) also yields the relation (2.20).

Before going any further, we should pause to make an
important observation. The key fact about scattering
of particles with a large mass ratio —as is discussed by
Doolen et a/. ,

" for example —is that a partial-wave
expansion in the s channel is rapidly convergent on
the nearby portions of the left-hand cuts. This means
that crossing synunetry will relate umptitudes on the
left and the right and not simply discontinuities of

tu»(~)i tO 2i ~u»( —~)i

Eu33(a)) i-; 0) ku33( —a&))
' (3.3)

or, in other words,

u11(co) =2u33(—a)). (3.4)

Now it is possible to show that there is no solution of
(3.2) for which u11(&o) and u33(&v) will both satisfy elastic
unitarity. Similarly, the only solutions of (3.1) satisfying
elastic unitarity have all four amplitudes equal and
even, but this is unacceptable, of course. (The proof of
these statements is tedious and not especially illuminat-

ing. It depends critically on the particular choice of the
phase-space factor. ) We therefore Gnd it convenient to
approximate (3.2) by
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and

ImR+((v) =0
=p(~)

ImR ((o)=p(co)
=0

for co&1
for co& 1,
fol co + —1
fol co+ —1,

(3.6a)

(3.6b)

R+(co)+R (a)) =ip(&u). (3.7)

It is then apparent that the most general solution of
(3.4), satisfying elastic unitarity for both a»(~) and
a33(~), may be written in the form

'( ) = —R+( ) —lR-( )+F( ), (3 8)

where F(&e) is meromorphic except for t-channel force
cuts. We remark that an amplitude constructed on the
basis of (3.8) differs from a similar one calculated in
the ED ' framework, with any of the usual approxima-
tions to the left-hand cut, in that it satisfies an approx-
imate crossing condition exactly instead of satisfying
an exact one approximately. Of course, to achieve this
desirable situation, we had to use static-model approx-
imations, which limit the region for which such an
expression is expected to be reliable to small co. Formula
(3.8) may appear pathological in that it determines
the high-energy form of the phase-shift independent
of other details of the forces, at least if F (~) grows less
rapidly than R+(a&). We therefore repeat that (3.8) is
intended to be a suitable formalism only for low-energy
approximations.

Since the Born terms corresponding to t-channel
exchanges are quite weak compared with the I-channel
ones (see Sec. 4), it should be a fairly good approxima-
tion not to include any t-channel force cuts in F(&u).
Furthermore, since the other branch points which
F(&o) should contain (inelastic thresholds, kinematical
singularities, etc.) occur for rather large values of cu, one
may hope to obtain a reasonable representation of
a»(~) at low energies by making a simple expansion of
F(co). Unfortunately, the expressions R+(~) defined in
(3.5) could be modified by the addition of an arbitrary
cubic polynomial without changing either their analytic
properties or their asymptotic behavior. Therefore,
there is no simple a priori justification for representing
F(ar) by anything simpler than a cubic polynomial.
This would require more parameters than we have
available, however. Thus, even though it is completely
unwarranted at this stage, we shall nevertheless examine
what a linear approximation to F(&o) produces. We can
then determine F (&o) by assuming that the position and
residue of the 6 resonance are given. In this way we find

~» '(~) = —-'ip(~) —kLR+( )—R+(—~»)3
+1.3(a+(u8g). (3.9)

In order to solve (3.4) together with elastic unitarity,
we erst introduce the functions

(3.5)

The virtue of these functions is that

ImA i (o)')
do)', (3.11)

1 ImA i(a&') 1
A i(M) =— dM +—

GO CO g GO
—

GD

and since unitarity implies that above threshold

I
A i(~) I

& 1/pi(~), (3.12)

there must be a cancellation between the two integrals
of (3.11) if either of them vanishes more slowly at
infinity than 1/p&(co). The estimate of (3.12) is made
somewhat more stringent by the inclusion of inelasticity.
In the case of (3.9) or (3.10) for example, the force term
may be approximately represented by 2&33/(cu+co33).
This term by itself begins to exceed the unitarity bound
for co=3. Therefore, in order to provide a cancellation
for or&3, the second integral must have appreciable

2' P. Coulter and G. Shaw, Phys. Rev. 141, 1419 (1966).

The phase shift corresponding to this expression is
plotted in Fig. 1.We notice that it starts positive and
retreats to zero without passing through 90'. Neverthe-
less, it is clear that the amplitude does contain a
resonance at co=2. In short, this amplitude contains
no bound states, a resonance and (on the basis of
I.evinson's theorem) no CDD poles. The value of the
phase shift at large energies, while it is certainly not
expected to bear any relationship to reality, does allow
us to count the number of CDD poles contained in the
expression we have written down.

In order to make a connection with the formulas of
Sec. 2, let us force aii(a&) to contain the nucleon pole at
the correct position without introducing a CDD pole.
This can be done by adding a quadratic term to (3.9),
a prescription more or less equivalent to choosing the
cutoff in (2.17).One obtains

~» '(~) = —2'(~) —kLR+(~) —W(—~»)j
+1.3 (a)+(F33)—0.79 ((a+a)33)'. (3.10)

Equation (3.10) gives y» ——0.44, which is about twice
the experimental value. The corresponding phase shift
is sharply decreasing, reaching —40' for E = 200 MeV
and approaching —z asymptotically. This might be
rather puzzling in that the approximations of Sec. 2
gave a residue in agreement with experiment. However,
Coulter and Shaw" in doing the corresponding calcula-
tion (no CDD poles, cutoff chosen to give the nucleon
pole position, elastic unitarity), but with t-channel
forces and relativistic factors included, found y~~ ——0.48
and an amplitude with behavior similar to (3.10) as
well. This reinforces our confidence in the interpretation
we have given to (3.10), and allows us to conclude that
the remarkable success of the nucleon-residue calcula-
tion with the approximations of Sec. 2 is fortuitous to
a large extent.

Lyth has recently made an interesting argument"
which is worth mentioning at this point. He argued
that since a partial-wave amplitude may be written in
the form
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contributions from cd'&3, since Ima»(ro) is positive
deinite on the right-hand cut. Indeed a resonance or
bound state with residue = —2y» is required. (This is
just the estimate of the residue that we obtained in
Sec. 2.) Both (3.9) and (3.10) contain a state below
co=3 as required. The agreement of the residue with the
estimate given above is within a factor of 2 in each
case. This is about all that can be expected because of
contributions from neglected parts of both the left-
and right-hand cuts.

Equations (3.9) and (3.10) are not at all close to the
experimental amplitude, which is perhaps not surprising
in view of the procedure by which they were obtained.
There is a striking feature of the experimental amplitude
that provides at least a clue as to how one might
proceed. Namely, the phase-shift changes sign from
negative to positive at an energy near to and perhaps
slightly below the inelastic threshold (&v=2). Clearly
the addition of a cubic term or any higher order poly-
nomial to (3.10) cannot provide a sign change of this
type. This behavior can be represented in the form
(3.8) only if P(~) contains a pole at the corresponding
location. This pole may be a CDD pole from the
standpoint of a one-channel calculation, a possibility
about which we shall have a good deal more to say and
which we shall also make more precise. Two more
undetermined parameters have now been introduced
into the problem. Since there is no evidence for addi-
tional zeros at low energy in either a»(&o) or a»(&u), we
suppose there is just one. Then if we wish to leave the
position and residue of the 6 pole unaltered, it is
reasonable to try adding a term of the form

tt (%+Ass)'/(M —X) (3.13)

to (3.9). In principle, one could determine tt and X from
the position of the zero and the slope of err(~) there.
In this way one might obtain an amplitude containing
the nucleon pole with nearly the correct position and
residue. However, as a practical matter, it is more
convenient to determine p, and X from the nucleon
position and residue, which are known to considerably
greater accuracy. We And

p= 1.5 and X= 1.9. (3.14)

These values are very close to those implied by Roper's
calculated phase shift —in fact, there is no discernible
discrepancy. Putting all the pieces together, we have
obtained the expression

~» '(~)= —est (~)—st%(~)—W(—~»)3
+1.3 (a)+~ss)+1.5 ((a+cuss)'/(a& —1.9) . (3.15)

The phase-shift corresponding to (3.15) is compared
with Roper s phase shift in Fig. 1. We observe that it
retreats to zero at high energy, and therefore the
amplitude, in the form in which we have written it,
contains one bound-state pole and one CDD pole.

The fact that (3.15) agrees well with the experimental

FIG. 3. Phase shift
Ss~(co) as given by Roper
et al. (solid line) and as
calculated from (3.15)
(dashed line).
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90
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aP 00 200 400 .600
(Mev)

phase at low energies —in particular that the position
of the zero was correctly determined —strongly suggests
that the possible quadratic and cubic terms that we
have omitted are in fact quite weak. As a rough
estimate, they would not be expected to change (3.15)
by more than about 20% for ~&u

~
(3, if we require that

reasonable agreement with the experimental situation
be maintained. As far as we can tell it was just a lucky
coincidence that these terms were not needed. It would,
of course, be much more satisfying if a more funda-
mental explanation of this circumstance could be
provided. With this observation as the justification,
we may now regard (3.9) as giving a qualitative indica-
tion of how the amplitude would be expected to behave
if the pole of (3.15) were a CDD pole which we omitted
from a calculation while maintaining the position and
residue of the 6 pole. A comparison of (3.9) and (3.15)
then gives a rough indication of the importance of
other inelastic channels in this case. Of course, the fact
that in the form (3.15) the pole is a CDD pole is not
sufhcient grounds for concluding that a model with a
more realistic behavior at high energies would neces-
sarily contain one.

So far in this section we have shown that there is a
reasonably accurate low-energy representation of ut&(re)

containing a CDD pole. Furthermore, if the CDD pole
term is not included, the nucleon pole becomes a
resonance. In the following section we shall investigate
whether different interpretations may be possible in
other models. But 6rst, since we have the formulas at
hand anyway, let us see what can be said about a»(&d).

The phase shift 5»(&v) determined by (3.4) and (3.15)
is compared with that given by the phase-shift analyses
in Fig. 3. Notice that the phase shift 8»(~) that we
obtain from either (3.15) or (3.19) (derived below)
approaches x very slowly from below:

ass(re) s-—s./in'. (3.16)

As I evinson's theorem is usually stated, "'

+CDD +B= (1/7r)L3(~ ) 3(~0)j y (3 1~)

one would infer that our ass(re) must contain one CDD
pole, since it approaches m and has no bound-state poles.
However, a more careful investigation shows that if
3(re) approaches a multiple of s. sufficiently slowly from
below, (3.17) implies that there is one more CDD pole

' N. Levinson, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 25, No. 9 (1949)."R.L. Warnock, Phys. Rev. 131, 1320 (1963).
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than is actually the case. We show in an Appendix that
for a phase shift behaving as in (3.16), there is in fact
no CDD pole. The pole in (3.15), which acts as a CDD
pole of the D function associated with ar&(cv), is a zero
of the 1V function associated with ass(~).

In analogy with (3.9), we fit F (co) in (3.8) by a linear
function chosen so as to give the nucleon pole with the
correct position and residue:

ass
—'(co) = ip—((o) R—((o)+1 5+. 9 2(v . .(3.18)

This expression has a resonance at co=4.0.
As in (3.9), we can offer no fundamental reason for

expecting a linear fit to F (a&) to give meaningful results.
There we did succeed in showing by comparison with
experiment that terms more singular at infinity were
not required. If that circumstance persists in this case,
then (3.18) can be regarded as providing evidence
that the force due to the short cut arising from nucleon
exchange in elastic pion-nucleon scattering is sufficient
to form a resonance. This is not surprising, since the
Lyth argument applied here predicts a state with residue

approximately ~p» below co=3.1. At any rate the
position of the resulting resonance in (3.18) should

probably not be taken too seriously. This case does not
dilfer drastically from (3.9), in which the nucleon

appeared as a resonance.
One can continue as we did for the nucleon channel,

and, in complete analogy with (3.10), add a quadratic
term to (3.18) so as to get the 6 resonance at the
correct position, while maintaining the nucleon pole
position and residue. This procedure gives

ass '((o) = ip((o)—R(cv—)+1 5 9 2.(a —3 .9a)'—.(3.19)

(3.19) has a 6 residue of about 0.075. That this is

smaller than 0.12 is complementary to the fact that the
value ass ——0.12 used in (3.10) gave a nucleon residue
which was too large. However, if one adjusts for the
difference between p(~) and qs(cv) at the position of the
6 resonance, using the definition (2.5b), one finds that
(3.19) actually gives y»=0.11, which is really very
good. The point we are making is that deviations from
static-model kinematics at the energy of the 6 resonance
require ass to be about 50% larger when used as the
residue of a force pole than when used as the residue of
a resonance pole in conjunction with the phase-space
factor (2.3). This fact indicates a limitation of the
model (3.4). This being the case, it would probably be
stretching a point to maintain that (3.19) is better
than (3.10).

The 33 phase shift corresponding to (3.19) is identical
with that for (3.15), within a few degrees, at all energies.
This is a reflection of the fact that the CDD pole is (3.15)
plays a very small role in determining the 33 phase shift.

4. CAN THE NUCLEON BE CONSIDERED A

PION-NUCLEON BOUND STATEP

The principal concern is to determine whether the
nucleon can be regarded as being formed in the pion-

nucleon channel, at least in some approximate sense.
In order to state as clearly as possible what this would

mean, we require that in order to be so regarded it
should be approximately calculable in a one-channel
model without CDD poles, if we use elastic unitarity
and the forces due to exchanges in crossed channels.
Other criteria could undoubtedly be devised, but this
choice seems to us to be a reasonable one. For a discus-
sion of the significance of a CDD pole in a one-channel
calculation, the reader is referred to Refs. 29—31.

Rothleitner and Stech claim to have "proved" that
the nucleon can be a bound state of the pion-nucleon
channel if and only if the zero of the real part of the
phase shift is at a higher energy than the first inelastic
threshold. ' Their work has two shortcomings which, in
our opinion, vitiate each half of their conclusion.

The first shortcoming is that they make assumptions
about asymptotics which, for the zero below the inelastic
threshold, preclude the possibility of the N function's

developing a zero instead of the D function's requiring a
CDD pole. It is easy in potential theory, for instance,
to give examples for which such a zero arises in the N
function. For example, a potential giving rise to a bound
state and a low-energy resonance is in this category.
We observe, however, that a potential for the P~~ state
based on the first Born approximation to 6 exchange
alone is not of the type we have just suggested. This is

known from the large number of relativistic ND '
calculations which have been performed with just this

input. It is quite unlikely that inclusion of the higher
order Born approximations to 6 exchange would make
an appreciable difference.

The second shortcoming in the analysis of Rothleitner
and Stech is connected with their definition of the
conditions under which the nucleon may be regarded as
a pion-nucleon bound state. They suppose that a
calculation is performed in which in addition to the
information we would require as input, one also knows

the E. factor

2—2g cos28OtotR—
o, i g'+1—2q cos25

(4.1)

If the phase shift has a zero at a point above the
inelastic threshold for which the inelasticity is small

(p is near to 1), then R will be sharply peaked there.
When such an E is included in the appropriate ND '
equations, " it will cause the D function to have a
sharply peaked behavior at the corresponding point.
Therefore in this case the E, factor is introducing much

the same information about inelasticity into the problem
as a CDD pole below the inelastic threshold would. By
formulating our criterion for a bound state in terms of

29 J. B. Hartle and C. E. Jones, Phys. Rev. 140, 890 (196&);
Ann. Phys. (N.Y.) 38, 348 (1966).

' M. Bander, P. Coulter, and G. Shaw, Phys. Rev. Letters 14,
270 (1965).

3~ J. Finkelstein, Phys. Rev. 140, 8175 (1965).
sm G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
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elastic unitarity only, we avoid having to make such
an artificial distinction.

If the zero of aii(~) does correspond to a CDD pole,
then, as we showed in a preceding section, this CDD pole
(or other channels presumably) is required in order to
obtain an approximate dynamical understanding of the
formation of the nucleon. This statement depends only
on the low-energy behavior of the amplitudes in (3.9)
and (3.15) and should therefore be reliable. Perhaps
we should pause here a moment to clarify our use of
the word "approximate. " The criterion we have just
applied is based on the pole position; since (3.9) contains
a broad resonance at co=2, this is unambiguous, at
least if one takes (3.9) seriously. Another approach
one might consider makes use of the pole position as
the strength of the coupling of the crossed-channel pole
is increased. It turns out that if p» is increased by 50%,
then the pole in (3.9) is brought to the correct nucleon
position.

A very similar statement can be made in terms of an
E/D formulation. Assuming that the pole of (3.12) is
a CDD pole, D(cv), normalized to 1 at &o= —~3:, can
be written in the form

If we further assume that for low energies

16
X((u) =—

9 (v+co33
(4 3)

then we can determine the pole parameters of (4.2) by
comparison with (3.12). This procedure yields

X= 1.9 and p =0.32. (4 4)

~ith these parameters the pole term in (4.2) has the
value ——,

' at co=0. Therefore if the cuto6 is chosen so
that D(0) =0, the integral term will be —,

' at the nucleon
pole. This might be interpreted to mean that the forces
in the pion-nucleon channel alone provide —, of the
total binding. Such a statement is undoubtedly model-
dependent to a certain degree. Still, it is probably fair
to say that the pion-nucleon channel provides more than
half the binding even if there is a CDD pole. Indeed
the Lyth argument seems to guarantee at least that
much by itself.

Notice that the amplitude determined by (4.2) and
(4.3) contains one more parameter (the cutoff) than
the formula (3.15) to which it is supposed to bear a
strong resemblance. This is because (3.15) happened to
agree with the experimental values very well without
the inclusion of quadratic or cubic terms. Our attitude
toward (3.15) here is that it provides a convenient
low-energy representation af the amplitude which allows

us to determine the CDD pole parameters for use in
an X/D calculation.

By choosing the cutoff in (4.2) so that D(0) =0, and
then making a linear approximation to the integral as
in (2.19), we obtain

D(a) = 1+0.32((u+(F33)/((u —1.9)—0.29((v+(u33) . (4.5)

The resulting amplitude has a nucleon pole residue
y~~= 0.15, which is somewhat small, but perhaps
adequate in view of all the approximations that have
been made. In any case, it gives a measure of the
extent to which (3.15) agrees with a corresponding
amplitude computed by S/D techniques.

Although we have already encountered some ambigu-
ity of interpretation in the above discussion, it is clear
that if there is a CDD pole its residue is suKciently
large for it to be playing an important role in the
dynamics. The really dificult question is whether the
zero of the amplitude does in fact correspond to a CDD
pole. Even though (3.12) gives a definite answer, the
formulas of Sec. 3 are certainly not reliable for settling
this question. The existence of a CDD pole is closely
tied up with questions of asymptotic behavior, whereas
Sec. 3 employed low-energy approximations. Ke could,
for example, add to (3.12) a term such as

t n(~+~33)'/(~ —p)]; 1/n&&1, p&&1, (4.6)

without appreciably changing the low-energy behavior
of the amplitude. The modified amplitude will no longer
contain a CDD pole, since the phase shift will retreat
back through zero at P and end up at —m. This demon. -
strates that no study of low-energy behavior alone can
allow one to decide whether or not there is a CDD pole.

It is rather unlikely that phase-shift analyses carried
out to higher energies than have been done to date
would help to decide whether there is a CDD pole, at
least in the foreseeable future. Such an analysis would
have to be very accurate up to energies beyond the
resonance region (several BeV), where the great
multiplicity of contributing partial waves would create
serious practical problems. Inelasticity would further
compound the difhculties of such a program.

As has already been suggested, an amplitude written
in the form 1V/D can have a zero in two inequivalent
ways. Either the forces are such that the E function has
a zero, or, as a consequence of the effect of inelastic
channels (or an elementary particle), the D function
has a CDD pole. This distinction is well-dehned once
the D function is required to satisfy a singly subtracted
dispersion relation. Strictly speaking, in any realistic
calculation only a finite number of channels can be
explicitly included. The others may be represented by
the strip approximation method, or any other suitable
technique that may be developed. Such calculations
put some of the eAects that "ideally" belong in the D
function into the X functions, and in general one
would expect that the particular way in which this is
done could affect the asymptotics gf the calculated D



1332 JOHN H. SCHWARZ

functions. Thus, we would expect that there will
always be ambiguities which may make it difFicult in
practice to decide whether any given zero is an E-func-
tion zero or a D-function CDD pole. We are asking the
question for a»(~) calculated only in a one-channel
model with elastic unitarity. The difBcult questions of
asymptotics remain, however, and we cannot really
expect to find a definitive answer. Yet we know that
there are cases for which the answer is obvious (e.g.,
to obtain the A as a "resonance" of the pion-nucleon
system would obviously require a CDD pole). So we
discuss here some approaches by which one might
attempt to decide which case applies to the amplitude
+11(~)

We emphasize from the outset that the suggestion
that the X function has a zero at low energy is a radical
one in that it runs directly counter to the usual picture
that forces at low energy are dominated by the short
cut associated with 6 exchange. Nucleon exchange gives
a very small contribution and is certainly not the
culprit for such a crime. Unfortunately, there is con-
siderable disagreement in the literature over the
strengths of the various other forces. We shall con-
centrate our attention on the values given by Abers
and Zemach" (AZ) and Donnachie, Hamilton, and
Leass (DHL). The latter values were used by Lyth in
the numerical parts of his work.

The first discrepancy is in the strength of the 6-
exchange Born term. At threshold AZ find a value for
this term of 8.8)(10 ', whereas DHL obtain 2.5)(10 '.
These numbers are not exactly comparable in that AZ
keep the complete Born term whereas DHL use only
the portion corresponding to the nearby short cut.
Using the static model of Sec. 2, we calculate the value

It is our opinion that corrections due to relativistic
phase space and the faraway cut can reconcile this
number with the value given by AZ, whereas the value
used by DHL appears to be wrong. For the threshold
value of the p exchange Born term, AZ give approx-
imately 0.01 whereas DHL find 0.03. Again these
numbers are not exactly comparable, because DHL
retain only the nearby portions of the cuts. A more
important difference, however, is that AZ neglect the
magnetic coupling of the p and make only a very rough
estimate of the electric coupling. DHL, on the other
hand, make a rather careful study of the relevant
nucleon form factors. We conclude that the AZ estimate
of the 6 and DHL estimate of the p couplings are the
best choice. This gives a p force about one-third the
6 force. DHL have also estimated that exchange of
two pions in an I=J=O configuration provides a force
about one-half as great as p exchange. Coulter and
Shaw" used the correct 6 coupling and allowed the
strength of the p coupling to vary over a range of

~ A. Donnachie, J. Hamilton, and A. T. Lea, Phys. Rev. 135,
3515 (1964); Ann. Phys. (N. Y.) 17, 1 (1962).

reasonable values. Their work shows that the correct
long-range forces by themselves cannot produce the
zero. We conclude that if there is a zero in the E function
additional forces of considerable strength have to be
provided by distant singularities.

An interesting approach has been taken recently by
Atkinson and Halpern. '4 They show that the couplings
of degenerate SU(6) symmetry imply that other chan-
nels (e.g., s.D) play a more important role than s.cV in
forming the nucleon, and that a CDD pole is con-
sequently to be expected. These arguments are not
conclusive because of the difficulty in estimating the
importance of symmetry breaking. It is possible, how-
ever, that an approach that can estimate the symmetry
breaking, such as the current algebra method combined
with the methods of Atkinson and Halpern, may
eventually provide the most reliable statement of
whether a CDD pole is expected to occur.

If the zero arises as a zero of the Ã function, it is
necessary that the short-range forces have important
repulsive components. Such a possibility has been
suggested by Chew" in connection with the mechanism
of "Pomeranchuk repulsion. " Chew pointed out that
the J=O contribution of the force due to exchange of
Pomeranchuk Regge pole gives a strong repulsion
which is electively of longer range than one would
estimate simply on the basis of the distance of the
nearest singularities. This mechanism arises in the
context of the strip approximation, in which the effect
of thresholds above the strip boundary is included in
the forces. Therefore the strong repulsion obtained in
this way includes the eBect of both distant right and
left singularities. We have seen in Sec. 3 that the
long-range parts of the forces corresponding to single-
particle exchanges produce a reasonance but probably
not a bound state. Therefore, in addition to the repulsion
that Pomeranchuk exchange may provide, we need an
additional short-range attraction to provide the rest
of the binding. This attraction might arise from the
long cut associated with 6 exchange. An attempt at a
calculation to establish this point would be inconclusive
because of the need for a cutoG. What one can say is
that such a combination of ingredients could possibly
provide a consistent model for the behavior of the
P~~ amplitude in the elastic region.

On the basis of the discussion in this section we can
suggest two different possible models for the formation
of the nucleon (assumed not to be elementary). The
first is that low-lying channels other than pion-nucleon
provide substantial forces for its formation, and that the
effect of these forces can be introduced into a one-
channel calculation only by the inclusion of a CDD pole.
In this model, the forces in the pion-nucleon channel
alone are sufficient to bind a resonance. The second

34 D. Atkinson and M. 3.Halpern, Phys. Rev. 150, 1377 (1966).
The author is grateful to them for informing him of their results
prior to publication."G. F. Chew, Phys. Rev. 140, 81427 (1965).
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possibility is that other low-lying channels are not
important, and that the forces in the pion-nucleon
channel alone are suQicient to give a deeply bound state.
In this case, in addition to this single-channel attraction,
there is important repulsion arising principally from
the inhuence of the whole array of closed channels.
This repulsion can be represented by Pomeranchuk
exchange in the strip approximation, and it causes the
phase shift to turn positive. Although both these
possibilities are consistent with all the available in-
formation, we tend to regard the former as the simpler
and in some ways more attractive alternative. As has
already been suggested, a refinement of the methods of
Atkinson and Halpern may provide the best hope for
making a choice.

5. RESOLUTION OF A PARADOX

We have argued that the nucleon might not be
calculable as a bound state of the pion-nucleon channel
without the inclusion of a CDD pole. Several authors,
however, seem to have done exactly this. True, the
phase shifts they obtain are qualitatively wrong, but
still they seem to have calculated the nucleon pole.
A good example of such a calculation is the recent one
of Doolen et al. ,

"in which the assertion is made that,
given the long-range forces and by use of elastic
unitarity, the nucleon pole position is found to 5%
accuracy, and the residue to 20%%uq accuracy.

We shall demonstrate that although their calculation
has a certain validity, it does not imply that the nucleon
is formed in the pion-nucleon channel. Rather, they have
shown that the P~~ amplitude which is most consistent
with crossing symmetry, given the P» amplitude,
contains the nucleon pole. Our contention is that this
is a consequence of relativity, and nothing more, since
the correct P» amplitude already knows about the
nucleon pole in its crossed channel.

The argument we are making is most easily under-
stood in the static limit, for which E and 6 exchange are
represented by poles. In this model, crossing is given by
an equation such as (3.1), or (3.4), let us say. If we
now impose crossing symmetry we have (3.8). The
important point is that in this way one is effectively
assuming knowledge of the complete crossed-channel
amplitude and not only of the left-hand cut discontin-
uities. This is possible because of the large nucleon-pion
mass ratio, as was emphasized earlier. Suppose we next
represent F(&u) in terms of distant singularities (Balazs
poles) and choose the parameters introduced in this
way so as to fit the experimental P» amplitude as well
as possible. The expression so obtained is constrained
not to have the CDD pole which we included in (3.15),
and hence must break down for cv&1.9. It is clear,
however, that the more Qexible the parametrization
introduced into F(~), the closer to ra = 1.9 the amplitude
obtained will be approximately correct. In particular,
the nucleon pole position and residue will be found

quite accurately. This argument is essentially un-
changed when rephrased in terms of a relativistic
calculation not containing the approximations to
crossing that are implicit in this discussion. In the
relativistic form this is the method of Doolen et al.

We therefore conclude that Doolen et al. , calculate
the nucleon pole parameters as a conse, uence of the
way in which they impose crossing symmetry and not
because the nucleon is formed in the pion-nucleon
channel. Furthermore, if they had allowed for a CDD
pole, they could have obtained better results with the
same number of parameters —e.g., one CDD pole and
one Balazs pole. These parameters would be no more
"undetermined" than the ones they use, in that they
could be calculated by the same procedure as they use
for the Balazs poles alone —namely, fitting to the
requirements of crossing.

Once one clearly understands the argument we have
just given, he may wish to re-examine other calculations
(e.g., that of Sec. 2) of bound state or resonance poles
to decide which ones are true calculations of "dynam-
ical" states. Admittedly, most examples are not as
easy to see through as the one we have just discussed.

0. THE ROLE OF THE FIRST
INELASTIC CHANNEL

The inelasticity parameter )Fig. 1(b)$ p» shows a
rapid decrease to a value of about 0.2 at 1400 MeV
(center of mass), indicating that coupling to inelastic
channels is quite appreciable. All the analyses are in
agreement on this point. Strictly speaking, the channel
responsible for the inelasticity is the three-body channel
+ATE. However, the quantum numbers of the P~i
channel are such that the three particles can be in
relative s waves. This configuration is favored kinemat-
ically at low energy and also by the strong attraction
between pions in the I=J=O configuration at low
energies. "The identification of this channel is further
confirmed by the fact that no other pion-nucleon partial
wave has anywhere near as much inelasticity at these
energies. Also, Kirz et a/. ,

"have been able to identify
the importance of this configuration experimentally.

It is worthwhile to investigate what effect strong
forces in this inelastic channel can have on the phase
shift err(~). Coulter and Shaw" have performed calcula-
tions including the experimental inelasticity by means
of a Frye-Warnock calculation. ""They find that the
resulting phase shift is modified only slightly —tending
to become less negative in a calculation without a CDD
pole and more positive in a calculation with one. We
wish to argue now that the channel consisting of ~xE
in relative s waves is responsible for the large inelasticity

"R. H. Dalitz and R. G. Moorhouse, Phys. Letters 14, 159
(1965)."J.Kirz, J. Schwartz, and R. D. Tripp, Phys. Rev. 130, 2481
(1963).

's G. Frye and R. L. Warnock, Phys. Rev. 130, 478 (1963).
39 P. Coulter, A. Scotti, and G. Shaw, , Phys. Rev. 136, 31399

(1964).
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and the change in the phase shift attributable to
inelasticity in a Frye-Warnock calculation, but that by
itself it may not be responsible for the CDD pole, if
there is one.

Since the three-body configuration xwX is rather
awkward for us to discuss, we would like to represent it
by a two-body configuration which might be more or
less equivalent. Since it is known that the s™wave
m.-E forces are very weak, whereas the s-wave x-x
forces are very strong, the natural two-body configura-
tion to consider is 0-E; 0- represents the xx I=J=O
configuration at a mass of about 400 MeV. As a matter
of fact, Brown and Singer have proposed that there is
in fact a true resonance (i.e., a pole of a scattering
amplitude). ~ Although much evidence has been cited in
its favor, "" the effect is noticeably absent in certain
experiments such as the recent one on K,4 decays. "
The possibility that there is an important enhancement
without an actual resonance is dificult to exclude,
particularly in view of the theoretical suggestion of
Chew4~ that the mw phase shift may be decreasirig
through —,'x.

In this two-channel model (sr' and 0.1V) the inelastic
threshold is at co=2.8, which just coincides with the
energy at which inelasticity begins to set in sharply
(Fig. 1). Corresponding to the two channels there will

be two eigenamplitudes, one of which vanishes at the
inelastic threshold, whereas the other one need not do so.
Furthermore, since in the case of two channels it is
easily seen that the sum of the two eigenphases equals
the sum of the two phases for scattering in each of the
elastic channels, the nonvanishing eigenphase must
just equal the phase 8»(a&) at the inelastic threshold,
i.e., must be about 20' there. Now since this is the
eigenamplitude that contains the nucleon pole, the
same arguments we gave in the single-channel case
concerning the possible existence of a CDD pole should

apply here as well. Admittedly some care shouM be
taken in discussing eigenamplitudes, because they
contain cuts associated with the diagonalization. Also
the one which we have said contains the nucleon pole
is not an analytic continuation of a»(&v) below the
inelastic threshold. We do not believe that these
difhculties will affect our conclusions, although it is a
possibility we cannot definitely exclude. There does not
appear to be any simple argument with which to settle
this question conclusively.

4' L. M. Brown and P. Singer, Phys. Rev. 133, 8812 (1964).
4' F. S. Crawford, R. A. Grossman, L. J.Lloyd, L. R. Price, and

E. C. Fowler, Phys. Rev. Letters 11, 564 (1963).
4' R. Del Fabbro, M. DePretis, R. Jones, G. Marini, A. Odian,

G. Stoppini, L. Tau, and R. Visentin, Phys. Rev. Letters 12,
674 (1964).

4' V. V. Anisovich and L. G. Dakhno, Phys. Letters 10, 221
(1964).

44D. L. Lind, B. C. Barish, R. J. Kurz, P. M. Ogden, and
V. Perez-Mendez, Phys. Rev. 138, 81509 {1965).

'5 M. Olsson and G. B.Yodh, Phys. Rev. Letters 10, 353 (1963)."R.W. Birge, R. P. Kly, U. Camerini, et a/. , Phys. Rev. 135,
8416 (1964).

47 G. F. Chew, Phys. Rev. Letters 16, 60 (1966).

7. INVESTIGATION OP A
TWO-CHANNEL MODEL

We have argued in the preceding section that coupled
p-wave channels could not possibly account for the
large inelasticity in the I'» channel. Nevertheless it
may be worthwhile to investigate whether the presence
of a bound state or resonance formed in the ~A channel
could possibly account for the general features of the
phase shift.

A calculation was therefore performed along the
following lines. Static-model kinematics was used,
although the nondegeneracy of the mS and xh thresh-
olds was maintained. For the forces the following Born
terms were kept [corresponding to Figs. 4(a)-4(d),
respectivelyj:
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If the other eigenphase (the one that vanishes at the
inelastic threshold) contains a reasonance pole, then
this will serve very nicely to explain why the phase
shift calculated by Coulter and Shaw with inelasticity
included becomes larger at high energy than the one
calculated without inelasticity. The point of this
discussion is to emphasize that if the 0-X channel
introduces a resonance into the problem, it will not
start "pulling" the phase shift to appreciably more
positive values below the inelastic threshold. On the
other hand, the large value reached by the phase shift
at higher energy suggests that there probably is such a
resonance. Whether or not this resonance is actually
made in the o-E channel is beyond our ability to answer.
The fact that such a resonance is s-wave would appear
to be an argument against it, although the mechanism of
"Pomeranchuk repulsion" suggested by Chew" might
provide enough of a barrier to hold it together, especially
since it is a very broad resonance. On the other hand,
if the phase shift continues up through m, as could very
well happen, then with the same arguments we used
for the nucleon itself, we could argue that closed
channels may be playing an important role in making
the resonance. If this is the case, its s-wave aspect is
less of a problem. In either case there is a strong
attraction provided by nucleon exchange in 0-S scatter-
ing, which undoubtedly is an important ingredient in
the whole picture.

To summarize, we believe that the m.S and 0-S
channels are both important contributions to the
complete dynamics of the E'» wave. However, the
possibility of calculating the nucleon is not likely to be
substantially affected by including only the 0-S channel.
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Of the three possibilities at co =~33 (principal value,
~is prescription), only the principal-value integration
gives a result satisfying Hermitian analyticity. This is a
natural requirement to impose when the x~ threshold is
taken to be real. When constructing the E function
from the Born terlns we will also need to know the real
part of D at the pole positions. The determination of
these values involves integration across a double pole.
Although more awkward from a calculational point of
view, such a principal-value integral is perfectly well
de6ned.

It was expected that making G sufficiently large would
form a second state. While this state could not cross the
position of the force pole at co», it could be brought
quite close to it. We were rather surprised, therefore,
to 6nd no second state arising as G was increased. In
fact for G&0.08 it was even impossible to maintain
the nucleon pole position. (This effect set in for 6=0.20
when the two off-diagonal terms had opposite signs. )
The explanation for this puzzling behavior is that by
increasing G we also increased the coupling between the

The terms shown in Fig. 4(e) and 4(f) were not included
because their static-model crossing elements are 1/9 and
1/36, respectively; G represents the square of the she
coupling constant.

The value for G is not known experimentally,
although any reasonable symmetry scheme will predict
it to be comparable to yi& and F33 (if it makes any
prediction at all). Rather than work with a value given
by SU(6), for example, we decided to search through a
range of values for G between 0.0 and 1.0. There is one
further unknown feature about the forces we are in-
cluding: the relative sign between the two off-diagonal
force terms. We therefore investigated both values of
this sign. (An over-all sign for the off-diagonal terms is
of no consequence in this model. ) Finally, since we
wished the nucleon to merge from the calculations, we
chose a cutoff in each case to ensure that the nucleon
would have the correct mass. The reason that we chose
to work with one cutoff for all four D-function integrals
is that only in this way would there be few enough
parameters to enable us to reach any conclusions. Of
course, there is a good deal of arbitrariness in this
prescription, especially since one of the Born terms we
include t Fig. 4(b)] involves exchange of a different
spin from the other three. For most values of the
parameters this is the least important term, however.

Notice that two of the pole terms in (7.1) occur in the
physical region of the ~E channel. This situation arises
from treating the unstable 6 as a stable particle that
gives rise to a real threshold, while neglecting the md
channel. We must, therefore, decide how the correspond-
ing D-function integrations are to be performed. A
typical integral that arises in this way is
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FIG. 5. Phase shift result-
ing from a two-channel
calculation described in the
text.
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channels, which resulted in an increased attraction in
the first channel as well. Therefore to maintain the
nucleon pole position a smaller cutoff was required. But
with this smaller cutoff there was less binding available
for a second state, even though G was larger. By the
time G had reached 0.08, the cutoff had become so
small (A.=10) that the results were already quite
meaningless. For all reasonable cutoff values, the phase
shift in the xS channel always was found to be negative
and decreasing.

In order to make sure that our ideas were correct, we
repeated the calculations, neglecting the Born term of
Fig. 4(c). In this way the interchannel coupling was
made small and independent of G. As G was then
increased from 0.0 to 1.0 the approach of the second
state to the force pole at co=co» could be followed by
observing that Re Deta(&o33) went from —2.46 to
—0.53. But even for the latter value the mX phase
shift still was about —10' at ~». The phase shift made
a very sudden rise to a value above 90' in the vicinity
of the second state. This behavior is plotted in Fig. 5.

These calculations suggest that the behavior of the
E'» amplitude is not likely to be understood on the basis
of P-wave channels alone. The spacing between the
nucleon and the Roper resonance is too small if the
latter's width is due mainly to xX decay. The simplest
model with a chance of success would seem to require
mS, xh, and 0-S operating in conjunction, the latter two
channels being mainly responsible for the position and
width of the Roper resonance —whose coupling to the
~X channel is relatively weak.
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CONCLUSION

We have shown that the pion-nucleon P~~ amplitude
very likely contains a CDD pole at a position near to
the ~xN inelastic threshold, where the phase shift has
been experimentally determined to pass through zero,
although the possibility that there is no CDD pole
has not been rigorously excluded. If there is a CDD pole,
it has sufficient strength to play an appreciable role in
the dynamics of the P» amplitude, indicating the
importance of inelastic channels. By removing this pole
in a suitable way we obtained an estimate of the
amplitude that one should calculate by using elastic-
channel forces only. We found that the amplitude
constructed in this way contains the nucleon pole as a
low-lying resonance having approximately the correct
residue. A two-channel calculation (~X and ~A) showed
that a strongly coupled p-wave channel could not
produce the Roper resonance with a sufficiently large
width while maintaining the correct nucleon position.
We also argued that the CDD pole is probably not
introduced by adding the s-wave o.N channel. It
therefore appears that at the very least the three
channels xN, m-h, and o-N are required to calculate both
the nucleon bound state and the Roper resonance
accurately.
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APPENDIX A

In Sec.3 it was stated that if an amplitude containing
no bound states has a phase shift asymptotically
behaving according to

then the amplitude contains no CDD poles. This is
true in spite of the fact that Levinson's theorem, as
it is usually stated, would imply that there is one CDD
pole.

Let us first introduce the Omnes function D(cu),
normalized to unity at co=0:

(o " 8 (a)')
D ((u) = exp —— d(o'

CO CO CO

(A2)

" ImD(co')
D(co) = 1+— do&'.

GO M —
CO

(A3)

A sufhcient condition for D(co) to satisfy (A3) is that

lim—
( 47)~00

=0 (A4)

since this will ensure that in the equation

D(~)—1 1 D((o') 1—
d(0

M 27I1 M (M —M)
(A5)

the contribution from the circle at in6nity, which
arises as the contour is enlarged, vanishes. Therefore,
we need only show that D(co), specified by (Ai) and
(A2), satisfies (A4). It is easy to show from (A1) and
(A2) that if one neglects factors weaker than logarithms,

(A6)

A criterion for deciding whether D(~) is the correct D
function or CDD poles are required is whether or not
D(&u) defined by (A2) satisfies the once-subtracted
dispersion relation

8(co) n —vr/incr, (A1)
This completes the proof.


