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It is easily checked that these equations also guarantee

A«(v, k') -+ 0 for m ~0. (3.13)

The integral in (3.9) is now indeed determined by the
s Ã scattering amplitude as (v,k') continued from
k'= —m ' to k2=0 leaving m, which enters in any
calculation of Its(v, k') as a parameter, at its physical
value. In the limit m —+ 0 we get, because of (3.13) and
(3.8), g.(o)=C(= 1) (3.15)

which, of course, is a consequence of the assumed cur-
reg, t conservation.

Assuming Eqs. (3.12a, b) to hold for finite pion masses
we get the wanted equations

m~4

os, (v, m, ') =— as(v, m.'—),
R'ql.

(3.14)
ms 4

a N(v, 0)= m'v'aI(v, 0)= us(v, 0).

The k' dependence of a&(v,k') is presumably weakI4
so that the abovementioned approximation should be
meaningful.

In summarizing, we restate that to derive the Adler-
Keisberger relation the only assumptions needed are
Gell-Mann's scaling condition and the assumption of
no subtraction in MI(v, ks). The PCAC condition in a
form proposed by Nambu then provides a tool to relate
the absorptive part of MI(v, k') to the IrE cross section
k'=0. Covariant Schwinger terms antisymmetric in
isospin indices necessitate subtractions in various ampli-
tudes but do not alter these conclusions as long as they
do not inQuence MI(v, k')."
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In this paper we consider those consequences of time-reversal invariance (or, briefly, I' jnvarjance) which
are independent of dynamics. A general prescription is developed to find all those tests of p invariance which
are valid for arbitrary values of the form factors. Our considerations are independent of whether or not any
of the other usual conservation laws (such as parity conservation) hold. The spina of the particles may be
arbitrary. The results and methods of earlier papers dealing with the nondynamical properties of particle
reactions are used. For elastic processes it is shown that T invariance eliminates some of the product sets
and curtails others, but that no entire subclasses are eliminated. The restrictions on observables imposed
by T invariance are of two types: There are so-called "mirror relations" between pairs of observable com-
ponents, and there are relations which are not of the mirror type and involve a number of observable compo-
nents. It is shown that the number of relations of the latter type is always nonzero whenever T invariance
is not implied by other assumed conservation laws. Therefore, the mirror relations do not form a complete
set of tests of T invariance. They do not even form a suKcient set of such tests, as they can be satis6ed by a
symmetric as well as an antisymmetric 3E matrix. A proof is given that in any non-mirror-type relation no
particle is unpolarized in all the observable components which appear in the relation. It is also shown that the
only reaction in which all mirror relations foHow from parity conservation alone is the reaction involving
two spin-~ and two spin-0 particles. A number of examples of elastic reactions are worked out in detail.
For inelastic reactions the results are less interesting, since the restrictions imposed by T invariance can all be
written as mirror-type relations between observable components of the direct and time-reversed reactions.

I. INTRODUCTION
' 'N view of some recent experiments, the universal
~ ~ validity of time-reversal invariance has been re-
peatedly questioned. The purpose of this paper is to
give a comprehensive discussion of tests of time reversal

+Work performed under the auspices of U. S. Atomic Energy
commission.

invariance which are valid regardless of what the
dynamical details of the interactions are. Furthermore,
our results will be relevant regardless of whether or
not other conservation laws hold.

In a series of papers we have recently developed a
general formalism for the study of the nondynamical
structure of particle reactions of arbitrary spins and
we will further develop this formalism to consider
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consequences of time-reversal invariance. In Sec. II,
the properties of the 3II matrix under time reversal
invariance are listed, and the modifications are dis-
cussed which these bring about in the factorization of
the M matrix, and in the class and subclass structure
of the observables of elastic reactions. It is then shown
that the restrictions of time-reversal invariance result
not only in the rather obvious mirror-type relations
between observables, but in addition, also bring about
other, more involved relations among the observables.
In Sec. III, a general formula is developed giving all
nondynamical time-reversal invariance tests for any
reaction involving particles of arbitrary spins. Some
examples are worked out in Sec. IV. Finally, Sec. V
deals with the rather trivial case of inelastic reactions.

4r
m~

4 ms Na QNM

(~ e &) ++

(» 8)Re Im
Re

TABLE II. Product sets and subclasses for rotationally invariant
and T-invariant observable components. The symbols ( and u
denote "even" and "odd, " respectively. The symbol /~ denotes
the total number of l's appearing in one term of M and one term
of Mt together. Similarly m~ and n~ denote the number of m's
and n's, respectively, in this combination. The symbol 4 denotes
the total number of /'s contained in one term of Si and in one term
of S~ together, and similar de6nitions hold for mq and ng.

II. THE STRUCTURE OF THE M MATRIX AND
THE OBSERVABLES UNDER TIME REVERSAL

As in our previous papers, we will base our description
of elastic particle reactions on the 3E matrix which we
write as"

Xm (~
Re

, ' ( ~ ~)

Im

Re
Im

Im
Re

M =p a~["]S[J],T [J]", (2 1)

, ' (« .)
Re
Im

where the u's are the form factors or invariant ampli-
tudes, the S's are the spin tensors, and the T's are the
m.omentum tensors composed of

q' —q q'Xq
m—= , 6—=lXm, (2.2)

I
a' —«I

where q and q' are two noncollinear momenta in the
reaction, which go over into (—1) times each other
under time-reversal Lsuch as the momentum of the in-
coming and outgoing s[ in reaction (3.1)$. The index
J denotes the rank of the tensor, and the index r labels
the particular set of /'s, m's and e's contained in the T.

The observable components L can then be written as

I,=Tr(MSrM]&v)

P a~,"'az,"'*Tr(S[J].T[~,]"S[~,].T[~,]"
J'y, rj Jp, r2

Im

M =M'+M", (2 4)

where M' does not change sign under time reversal,
and M" does. Let us furthermore denote by X(M),
p, (M), and v(M) the number of Ps, m's, and [s's, re-

spectively, that appear in each term of M. Then, from
Table I, we see that for M' w'e must have

The restrictions on 3f and L under time-reversal
invariance (henceforth called T invariance) for elastic
processes can be discussed easily once the properties
of l, m, e, and S~J ~

are known under this transformation.
These are given in Table I.

Let us now write the M matrix as

XS[ ].'JT[Js] S[Jv] T[Jv] v). (2.3)

TABLE I. Transformation properties of the quantities appearing
in the 3f matrix, under space reQection and time reversal.

and for M",
p(M)+v(M)+ X=$,

p (M)+ v(M)+ J= u,

(2 5)

(26)

Quantity

Space reQection
Time reversal

—l +m
+t —m

Sp)
—n +Spy)

(—1)~S[g]

'P. L. Csonka, M. J. Moravcsik, and M. D. Scadron, Ann.
Phys. (to be published); P. L. Csonka, M. J. Moravcsik, and M.
D. Scadron, University of California Radiation Laboratory Report
Ko. UCRL-14222 (unpublished).

2 M. J. Moravcsik, in Recent Developments in Particle Physics
(Gordon and Breach, Science Publishers, Inc. , New York, to be
published).

and hence

X(M)+]u(M)+v(M) =J,

X(M)+]s(M)+v(M)+J=$,

(2 &)

(2.8)

where $ denotes "even" and u denotes "odd."The last
term on the left-hand sides of Eq. (2.5) and (2.6) arises
from the transformation property of S~z~ under time
reversal.

On the other hand, we also have
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TAmz III. Product sets and subclasses for observable com-
ponents of rotationally invariant, parity-conserving, and T-in-
variant reactions. For notation, see Table II.

rotation invariance alone is assumed, we have

Mg(=)MsQxMs, (2.15)

lg ms ns

IM
mM
+M

Re

Im

Im

where (=) denotes "nondynamical equality, " i.e., the
two sides are equal in every respect except for the values
of the form factors, and Qx denotes an outer product
in spin space.

In order to emphasize the similarity between re-
Qection invariance and T invariance, we will introduce
the notation (M ); for the M matrix of reaction i in
the case when rotation and reQection invariance holds,
with u=+ when the product of intrinsic parities of all
particles in the reaction is +1, and a= —when this
product is —1. Then we have

(M') t(=) g (M')sQx(M') s, (2.16)
so that Eqs. (2.5) and (2.6) are equivalent to

and
X(M) = $,

X(M) = u,

(2.9)

(2.10)
respectively.

Similar results hold also for M~. If we now define, as
in Ref. 3

(2.11)

m~= II, (M)+p (—Mt),

»ss»
—=v(M)+ v(Mt),

(2.12)

(2.13)

'P. L. Csonka, M. J. Moravcsik, and M. D. Scadron, Ann.
Phys. (to be published).

then we get from Eq. (2.9), for an observable com-

ponent generated by a T-invariant M matrix

(2.14)

Thus we get a modiication of the subclass and
product set tables as compared to Tables II and III
in Ref. 3. These modified tables are shown in Tables
II and III. It can be seen that neither in the purely
rotational-invariant case nor in the rotation- and
reQection-invariant case are any complete subclasses
eliminated, although in both cases complete product
sets are wiped out as T invariance is imposed. It should
be added, however, that Tables II and III do not
indicate the total extent of the restrictions imposed by
T invariance, since Eq. (2.9) is only a sufhcient but not
a necessary condition for Eq. (2.14) to hold. In other
words, in addition to wiping out certain product sets,
Eq. (2.9) will also restrict the remaining product sets
to consist of bilinear products of form factors both of
which pertain to a term in the M matrix which has
X(M) = g.

The factorization of the M matrix for a T-invariant
case is formally the same' as in the parity-conserving
case. Let us assume that reaction 1 can be factorized
into reactions 2 and 3. The corresponding M matrices
are denoted by M&, M2, and M3, respectively. Then, if

where the sum goes over all possible combinations of
b and c such that

bc=a. (2.17)

df=b. (2.21)

There are therefore four terms in the sum of Eq. (2.19).
Correspondingly, we can also factorize the observable

components. We use the notation

(L);=Tr(M,S»M;tS v),

(L );=Tr((M ),Sr(M ),Sv),

(L.b);—=Tr ((M.),S»(Ms),Sv),

(L.g ');—=Tr ((M.');Sr (Me');S v) .

We can then write

Lt (=)LsLs,

(L")i(=)Z (L'")s(L')s
with

a=ce, b=df;

that is, the sum has four terms; and

(L.s)~(=) Z (L")s(L.»)s

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

The actual number of combinations is two for each
value of a. If now rotation invariance and T invariance
are assumed, we can define (M,), as the M matrix of
reaction i in this case, where a=+ if the M matrix
does not change sign under time reversal, and a= —if
it does. We can then write

(M,),(=)g (Ms),Qx(M,)„(2.18)

with the restriction on b and c given by Eq. (2.17).
Again, the sum in Eq. (2.18) contains two terms.

If now rotation, reQection, and T invariance are
assumed, then we have

(Ms )t(=) P (Ms')sQx(M»')s, (2.19)

where the sum goes over all values of c, d, e, and f
subject to

(2.20)
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with restrictions given again by Eq. (2.28), i.e., again
with four terms in the sum.

Finally

(L,s ')~(=) g (Lo&' )o(Lo(')o) (2.30)

participating in the reaction, and (P) the case when
only bosons are present.

The number of observable components Q have also
been derived before. We have

where
a=ei, b= fj,
c=gk, d=hl,

(2.31)

(2.32)

so that the sum now has 16 terms.
Now let us investigate the type of linearly inde-

pendent relations among observable components that
arise when T invariance is imposed. A very obvious
type of relation that appears is

p S

—,'x' (n)
Q.=,'

-',x'+-' (p)
'

Qr=x',

—',x' (n)
QP+r =

—:*'+-,'(p)

(2.39)

(2.40)

(2.41)

(2.42)

x=—(2sg+ 1)'(2s,+1)' (2.34)

where s~ and s2 are the spin of the two particles par-
ticipating in the (elastic) reaction, we have

Xp= X, (2.35)

(2.36)

Er ',x+,'Qx, ———-(2.37)

(2.38)

where (n) denotes the case when fermions are also

L(a,b; c,d) =+L(c,d; a,b), (2.33)

as it will be seen later, where in. L(x,y; s,m) we denote
by x the spin state of the first initial particle, by y the
spin state of the second initial particle, by s the spin
state of the first final particle, and by m the spin state
of the second final particle. We will restrict ourselves,
for the time being, to the discussion of reactions in.-
volving four particles only.

We will call Eq. (2.33) a mirror relation. It is clear
that mirror relations must hold if T invariance holds.
It is, however, not a priori clear (a) whether a mirror
relation might not hold, owing to another invariance
principle, even in the absence of T invariance; and,
(b) whether mirror relations are the only restrictions
on the observables brought by T invariance. In fact,
we will demonstrate, that, (a) some mirror relations
can, under special circumstances, also hold when T
invariance does not, (b) there are other linearly inde-
pendent relations beside the mirror ones in the presence
of T invariance.

In order to show this, we must recall the formulas
giving the number of form factors E under the various
conservation laws. These are derived in Ref. 3, and
will only be quoted here. The subscript zero refers to
rotation invariance only, P to rotation and reQection
invariance, T to rotation and T invariance, and P+T
to rotation, reflection, and T invariance. Using the
definition

Let us furthermore call 8 the number of bilinear
combinations of form factors (i.e., the total number of
products in all product sets). We have, by squaring the
appropriate S's,

&p=X'

4g (~)

4x'+kx+k (p)

B,= ,'x'+ ,'x~x+ ,'x-, --
(2.43)

(2.44)

(2.45)

—,', x'+-,'x~ x+-,'x (~)
(2.46)

ggx +4x+x+ox+o+x+gg (p)

The quantity Q Bgives the -number of linearly inde-
pendent relationships that must be present among the
observable components. These are

&o=-Qo—Bo=o, (2.47)

~P-=QP —BP= (2.48)

Qr Br 4x ox+x ox'

~P+T:QP+T BP+T

(2.49)

—,', x' ——,'x~x——,'x (~)
(2.50)

—,', x'——,'x~x —-', x—-„'~x+—,', (p)

For all 6's we can show that

(2.51)

where, except for Ap, the equality holds only for @=1
(i.e., when all particles are spinless).

Now we turn to the calculation of the number of
linearly independent mirror relations. Any observable
component has a mirror image observable component
unless it is of the form L(a,b; a,b). This latter type of
observable component will be called self-mirrored. The
number of self-mirrored observable components is
clearly x, and they clearly Inay all be nonzero under
parity conservation. Thus the number of pairs of ob-
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servable components between which linearly independ-
ent mirror relations might exist is one-half times the
difference between the total number of observable
components and the number of self-mirrored observable
components

(2.52)Vp ———x'——'x

V~+z =

—,'x' ——,'x (u)

(p)

-x'—-x1 1
4 2

(2.53)

(2.54)

(2.55)

Let us define A;—=6;—V,, which gives the number of
linearly independent nonmirror relations. This is
expected to have significance only for i= T and
i=P+T. We get

and
A r ——-', x(gx —1)',

—,'x'+-,' (-,'x—~x)'

—;(*—1) +-,'(-;x—~x+-,')'

(2.56)

(~)
. (2.57)

(6)

All three of these A's are positive for x&1, thus
proving that there are nonmirror relations among the
observable components. In the case of A&, these clearly
are a result of the imposition of T invariance, since
previously the number of relations among the ob-
servable components was zero. For A~+z this is not
so clear. Previous to the imposition of T invariance,
the number of linearly independent relations among the
observable components here was given by Eq. (2.48).
After the i~position of T invariance the number of
linearly independent relations is given by Eq. (2.50).
Thus T invariance brought about

~I+r—~I =
-„'x'—(-,'x+-,'~ x)'& 0 (~)

(2.58)
—:(+1)'-(-."+-.'V*+-:)'&0 (8)

new relations. On the other hand, the mirror relations
might not be all independent now, since the relations
which exist as a result of parity conservation might now
make one mirror relation a consequence of another. An
example for this will be given in Sec. IV. All in all,
therefore, the situation in the parity conserving case
is rather complex, and it is not immediately evident
whether there are relations required by T invariance
in addition to the mirror relations. For the case of only
rotational invariance, Eq. (2.56) clearly proves that
the mirror relations do not represent all the restrictions
that T invariance imposes on the observable
components.

For the parity-conserving case the question also
arises as to whether mirror relations could not hold
even in the absence of T invariance. In this connection
we will now show that the only reaction in which mirror

relations hold among all observable components as a
result of parity conservation is the 0+2 ~0+~ re-
action. Actually, this statement is already plausible
from Ref. 3, where we have shown that the only reaction
where T invariance cannot be tested if parity is con-
served is the 0+2 —+0+2 reaction. It could still be
possible, however, to have another reaction where,
although mirror relations held as a result of parity
conservation only, T invariance could be checked
through a relation of a nonmirror type. We now show
that there are no such reactions.

A mirror relation between two observable components
would mean that

Tr(MSrM[Ss) = &Tr(MSsM[Sz) . (2.59)

In terms of the so-called four-traces' and the bilinear
combinations of form factors, this can be written as

Z E E Z ~s"'~z "'*Xss s s "'""'"~
Jg J2 rI r2

1+ r2*XS S rlrgrarl

Jy J2 ry r2

+»srsm~s =Tr(~[si] T[szl ~[&ll T'[»l

+5 [»l T[»] ~[&z] T[&zl ) ~

{2.60)

Since the bilinear combinations of form factors are
independent of each other, Eq. (2.60) implies

Qs s s J rlrlr2rE —+g s ~ s ~ rlrEr2rl (2 61)

where the sign on the right-hand side is either + for all
J~, rj, J2, and r2, or —for all J~, rj, J2, and r2. But we
havel 3

X& & & &
rirrr2rZ (])»+&—g+»+ZJ

Jg JgJg J~
J J g s 1jrp r2rI (2 62 )

so that, for a given Jr and Js, Eq. (2.61) is equivalent
to the requirement that Jz+J2 be always even or always
Qdd.

Now let us look at the subclass structure of observable
components as given in Ref. 3, Tables II and III. We
see from there that each observable component receives
contributions from two product sets, one of which has
J&+/2 even, and the other Jz+J, odd. Equation (2.59)
will therefore be satisfied only for those reactions for
which for every observable component one of the two
product sets is empty. When is this the case?

In order to answer this question, we have to use the
formulas giving the number of products in a product
set. For an irreducible reaction 0+s —& 0+s, with
parity conservation, these formulas are as follows4.

Product set (]]]):
i6L(2s+1) —1$+(3s +3s+1) (bosons), (2.63)

~'~ (2s+1)'+~(2s+1) (fermions); (2.64)
4 P. L. Csonka and M. J. Moravcsik, J. Natl. Sci. Math. (to be

published).
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Li++(x,0; s,O) = eiLi++(s,G; x,0),
L,++(O,y; O,w) = e,L,++(O,w; O,y),
Li (x,O; s,O) = e2Li (s,O; x,O),

(2.72)

(2.73)

(2.74)

L2
—

(O,y; O,w) = e4L2
——

(O,w; O,y), (2.75)
' P. L. Csonka, M. J. Moravcsik, and M. D. Scadron, Nuovo

CUnento 42, 743 (1966).

Product set (u$u)

—,', L(2$+1)'—1j'+$($+1) (bosons), (2.65)

is (2$+1)4—~ (2$+1)2 (fermions); (2.66)

Product set (Jul)

is $(2$+1)'—1$'+$($+1) (bosons), (2.67)

i'e (2$+1)4+q (2$+1)' (fermions); (2.68)

Product set (uuv)

ieg(2$+1)' —1j—$($+1) (bosons), (2.69)

tie (2$+1)4—4 (2$+1)' (fermions) . (2.70)

To two of the subclasses the product sets ($/)) and
(uvu) contribute, while to the other two subclasses the
product sets (iv)) an.d (u$v) contribute. For the first
two subclasses the product set (uvv) is the smaller one,
so wc must now determine under what condition that
is empty.

For bosons the only integer solution of Eq. (2.69)
being zero is for s=0. This already proves, therefore,
that for bosons the (uuv) product set is never empty
except for the trivial reaction 0+0—&0+0. We can
thus abandon the boson case and turn to the fermion
case.

For fermions in all subclasses, the smaller product
sets have the same number of products, given by Eq.
(2.70). The only half-integer solution of Eq. (2.70)
being zero is s= —', . Thus, we get the result that for the
reaction 0+s —&0+s all mirror relations are required

by parity conservation, and this is the only irreducible
reaction which has that property.

As a matter of fact, this is altogether the only re-
action with that property, because there are no com-
posite reactions with that property at all. This can be
seen by remarking that the necessary condition for a
composite reaction having that property is that its
constituents have that property. This, however, is not
a sufhcient condition. In order to see that, let us in-
vestigate the only possible" candidate, the reaction
is+2i —+ —',+is. The observable component Lo for this
reaction can be factorized into the observable com-
ponents I.i of —,'+0 ~ —',+0, and L2 of 0+s ~ 0+s, as
follows:

Lo++ (x,y; s,w) =Li++ (x,O; s,0)L2++(O,y; O,w)

+Li (x,0; s,O)I.2 (O,y; O,w) . (2.71)

The necessary and sufhcient condition for a parity-
conservation-induced mirror relation for the composite
reaction is therefore

III. NONDYNAMICAL TESTS OF TIME-
REVERSAL INVARIANCE

In this section our aim is to find a complete set as
well as sufficient and necessary sets of linearly inde-
pendent nondynamical tests of time-reversal invariance
for elastic-scattering reactions of the type

$1+$o+ ' '+$na~ $1+$2+ ' ' '+$m i (3.1)

where the s~, s2, ~, s are particles with spins s~,
s2, ~, s respectively. The values of the spins are
arbitrary.

A certain relation satisfied by elements of the 3f
matrix will be called trivial, if they are satisfied for
aziy M matrix (whether time-reversal invariant or not).
For example, if M;I, is some element of M, then
M;q —M;z ——0 is a trivial relation. Similarly (M;i—M;I,)
)&M~ =0 is trivial. Analogously, a certain relation
between observable components will be called trivial
if it is satisfied for any M matrix. For example if
L(Sz,Sp) is an observable component, then L(Sz,Szp)

L(Sz,S$)=—0 is a trivial relation.
We say that a certain linear combination of ob-

servable components is a test of time-reversal invariance
(or, briefly "T test"), if it is not trivial and is satisfied
whenever time-reversal invariance holds. In other
words, a T test is a necessary condition for T invariance,
it must be satisfied if T invariance holds, but T invari-
ance does not necessarily follow if a T test is satisfied:

(T invariance) m (a T test is satisfted). (3.2)

We call a set of T tests sufhcient and necessary if T
invariance holds if, and only if, every T test in the set
is satisfied.

(T invariance) ~ (each T test in a suflicient and
necessary set is satisfied). (3.3)

We say that a T test is a nondynamical 2' test (or,
briefly, an NDT test), if it does not make use of any
knowledge of dynamics. In other words, an NDT test
is a T test no matter what the numerical values of form
factors are. '

' The results to be obtained are analogous to the ones obtained
in Ref. 3 to test parity conservation and to determine parities,
and which are related to some previous results obtained by using
the method of "Bohr rotation. "Loosely speaking, the results of
the present section in this sense are related to "Bohr rotations
and time reversal, "which divers from the ordinary Bohr rotations
in that it also contains an operation which exchanges the spin
states of initial and final particles.

where each e, is +1 or —1, and we must have

&162—6364 ~ (2.76)

It is, however, easy to find observable components for
which this is not true. For instance, for g=m, z=0,
and y=w, we have ei= e2= e4=+1 and ea ———1, which
violates Eq. (2.76). Thus, there is no composite re-
action for which all mirror relations hold just by parity
conservation, in the absence of T invariance.
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s+s' ~ s+s'. (3 4)

All such reactions can be decomposed into the two
constituent reactions

s+0 —+ s+0, (3.5a)

0+s' -+ 0+s'. (3.5b)

In the first part of this section we shall derive results
for reactions of the type shown in Eqs. (3.5), and the
corresponding results for reactions shown in Eq. (3.4)
will be derived from these.

To obtain NDT tests for reactions (3.5) we label the
rows and columns of matrices in spin space by ns, where

m is the projection of spin along a suitably chosen axis.
In. 'the following we chose this axis to be parallel to ns

defined in Eq. (2.2). In this representation T invariance
holds if, and only if, the 3f matrix is symmetric

(T invariance) &-+ (M=M). (3.6)

Therefore, an NDT test is any linear relation between
observable components which holds whenever 3f is

symmetric, independently of further dynamical details.
In order to find such relations, we define the (2s+1)
X (2s+1) spin space matrix S„.„by its matrix elements

An NDT test will be called linearly independent of a
set of other NDT tests, if it cannot be written as a
linear combination of those in the set, if the numerical
values of form factors are arbitrary.

A set of NDT tests is called (linearly) complete, if
all NDT tests can be obtained by linear combination
of those T tests which belong to the set.

A sufFicient and necessary set of linearly independent
NDT tests is a sufhcient and necessary set of NDT
tests each of which is linearly independent of the others
in the set.

The only invariance principle we shall assume to
always hold in nature is invariance under rotations in

three space.
It was shown in Ref. 5 that if observables measured

in connection with an elastic reaction of the type shown

by Eq. (3.1) are to be used to construct NDT tests,
then the number of ingoing particles must not exceed
two. Therefore, in all further considerations we may
restrict ourselves to elastic reactions of the type'

where the (s, s; p, ', —p l J,M& are Clebsch-Gordan co-
efhcients with the usual phase convention which makes
them real, and the 0j,~ are (2s+I)X (2s+I) matrices
in spin space. They are nonzero for 2s& J&0, J&SI
& —J, and their elements are de6ned by'

(sm'lflj. iirlsm&=( 1)' "(s s'm' mls M& (39)

The QJ,~ form a complete set of linearly independent
(2s+1)X(2s+1) matrices in spin space. All elements
of QJ,~ are real, because so are the Clebsch-Gordan
coefficients. It also follows from Eq. (3.9) that

Qj,3f = (—1) Qj,—M (3.10)

where the superscript f means Hermitian conjugation.
Substituting Eq. (3.9) into Eq. (3.8) one finds that

S„„given by Eq. (3.8) does indeed satisfy Eq. (3.7):

(s,m'l S„.„ls,m&

2$ 28=2 Z (—1)' "(, ;~', —~l~,M&(—1)'-
J=O J'=0

X(s, s;m', ml J,—M&8~,„. „8~,„.„
(3.11)

flj, M 2tflj, M+( I) IIj,—M]y (3.12a)

1
0j,ij [0j,iir

—(—1)~0j ~]. (3.12b)
2i

That these matrices are Hermitian follows from Eq.
(3.10). The Qj,ji'+& are symmetric, while the 0j ~& i

are antisymmetric. Of course, if iV=0, then QJ,~(—) ——0
for all J. We also have, for integer J values,

IIj, ij'+'=~(—l)~Qj, ij&+i. (3.13)

In terms of these Hermitian matrices, Eq. (3.8) becomes

where we have replaced the lower limit of summation
over J and J' by zero. This can be done because the
Clebsch-Gordan coefficients vanish anyhow whenever
p,

'—p, /3f. The last line follows from the well known
orthogonality property of Clebsch-Gordan coefficients.

Equation (3.8) can be rewritten in terms of the
Hermitian matrices

(s,m'
l S„„ls,m&= b„. .b „. (3 7)

(—1)' "(» ~'~' —~I~,M)
J=)Ml

Thus the S„„is a matrix, all of whose elements are
zero, except the one at the intersection of the p'th row

and pth column. Any S„.„can be written as

2s

S„,„= P (—1)'—i'(s, s; p', pl J,M&Qj, jr=„„,—(3.8)

X l flj,ii'+'+0 j,ia & ']. (3.14)

The S„.„matrices have been defined in such a manner
that for any two matrices 2 and 8 we can write

Tr(S„,„,AS„,„,B)= g (S„N„),pA p„(S„,„,),)Bi
nPy

7It was shown in Ref. 5 that a sufBcient set of NDT tests
always involves observable components which yield polarization
information about all those particles in the reaction whose spin is
nonzero. Indeed, all sufhcient sets to be derived satisfy this
theorem.

=A„,„,B„4„,.

If we choose A =M, 8=%~, then

Tr(SpgpiMS /2/4M t) =M p, /2M pa/4*.

(3.15)

(3.16)
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The symmetry of M implies

M=M m (M„,„, M—„,„,)M„,„,*=O, for all p1, pz, p3, p4 and (pz/p2);

M„,„,(M„,„,* M—„,„, ) =0, for all p1, p2, &&32, p4 and (p3&p4) .

(3.17a)

(3.17b)

(Of course, when p1——p2 then Eq. (17a) becomes trivial. Similarly, Eq. (3.17b) is trivial when p3
——p4. )

Applying successively Eqs. (3.6), (3.17), (3.16), and (3.14), we obtain

Here

2 invariance m 2»uzu3u4
——0, for all p1, p2, p„, p4, (p, ,/p2),

~u u u u 0 for all P& I42 P2 P4 (Pz+P2) (3.18)

g„,„,„,„,=—Tr (S„,„,MS„,„,M t) —Tr (S„,„,MS„,„,M z)

2e 2e
= g g ((s, s;&I33, —p&~I,M31)(s, s; pz, —p4~I, M24)LL(QJ, &&f3, +,QJ.»424+ )

JW J'=0
—L (Qg, »r33

—
3Qg. ,»r24'

—&)+zL (Qg, zr33&—,0g. ,&3z24'+')+ zL (Qg»r31 &+&,Q~, »z24& &)]
—(—)" "'(&, &; pa, —P2~I3M32)(&, &; pl, —

P4~ J,M14)LL(fig, M32+&,0J',M34&+ )

—L(QJ, &&z32& &,Qq, 3r34& &)+iL(Qq, &&z32& &,QJ,~34&+&)+zL(Qq, »z33&+&,Qg, »434& &)1)(—1)" u u4. (3.19a)

We have used the notation
Maj =p3 p]~ etc. ~

L(Qg, 34'+',0g. ,34' &)=Tr(Qg, &3r&+—&MQ g. ,J2z. & &M), etc. ,
— (3.19b)

~ulu2u3u4 ~ulu2u4u3+~u3uiu2ul ~u3u4ulu2 0 3 ( '2 a)

and also
(3.20a)PlP2P3P4 I&z281P3I&z4 &

PlP2PIP2 ~P1P2P182
u1u3u3u4 u1u2u4u3 + u3u4u2u1 u3u4u1u2 0 ~ (3.21b)

(3.20b)
A complete linearly independent set of NDT tests

can now easily be written down. We erst write down
the set of all 2»„,»„4 and Z„,„,»„4* with p~(p, 2. Then,
to take into account Eq. (3.21), we divide them in
groups of four, those four which are connected by Eq.
(3.21). Out of each group we omit one. (If p3 ——p4, then
two of the 2's in Eq. (3.21) represent trivial relations;
of the remaining two we omit one. )

Next we rewrite this complete set of linearly inde-
pendent NDT tests in a more manageable form. Our
aim is to write as many as possible of the NDT tests
in the form

Since the QJ, &&z&+& form a complete set of (2s+1)
&&(2s+1) matrices, the density matrix in spin space
for any spin-s particle can be written as a linear com-
bination of them. The expectation value of any spin
observable in the final state of reaction (3) can then be
written' as a linear combination of I.(Qq, ~&+&,Q~. , »z. &+&).

Accordingly, the L(Q~, &3&&+&,Q~, &3&. &+&) form a complete
set of observable components. Then Z„,„,»„4

——0 is a
linear relation between observable components (and
they are given in the "spherical representation"). Com-
parison of relations (3.2) and (3.18) shows, that for &zzzy

V&ZLN8$ P1P2P2P4(P1/Pz), the Zu1u2u3u4 0 Or Zu, u2u, u,*=0
is en EDT test.

Furthermore, the set of all 2„,„,»„, with p, ~(p2
together with the set of all Z»»»„4* with p, y(p2 is a
complete set of NDT tests. This follows from the fact
that all bilinear combinations of elements of 3f implied
by the symmetry of M are of the form (3.17), and these
are all contained in the set of an 2»»»„, together with
the set of all Z»»»„4~ with p~&p, 2. This together with
Eq. (3.18) proves the statement.

On the other hand, in this set not all Z»»»„4 and
Z„,»»„4* with p&(p& are linearly independent. In

u3u2 u3u4* u2u1 u4u3*= ~ (3 )

As will be shown later, relations of this type are closely
related to mirror relations. " We note that if p3 ——p, 4,
then two of the four 2's appearing in each of Eqs. (3.21)
are trivial, of the remaining two one only is linearly
independent and that can be written in the form (3.22).
This can be seen using Eqs. (3.19a) and (3.16). If on
the other hand, when p3/p4 and neither p$ —p3 p2 p4,
nor p~=p, 4, p, ~

——p, 3 holds, then none of the four g's ap-
pearing in each of Eqs. (3.21) are trivial and three of
them are linearly independent. Four linear combinations

and g„,»»„4*=0 is the equation obtained from fact,
oCplp @3+4 0 by taking the complex conjugate. Equation
(3.16) together with the first line of Eq. (3.19a) shows
that
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of these six linearly independent g's can be written in
the form of Eq. (3.22), while the remaining two cannot.
The erst part of this statement can be proven by
exhibiting four such linear combinations:

~PIPSPSP4+ P4PSPIP2 PIP2 " P4PS

M—„,„PI„,„,*=O, (3.23a)

(s,s; pi, psl J,M)=(sl s; —ps, —

pilpul

—M), (3.26)

we And that
@P1P2P3II4 ~I13P4»P2 & (3.27a)

relations to hold, as expressed by Eq. (3.25) and making
use of the well-known property of the Clebsch-Gordan
coeKcients that

~PIPSP4PS+ ~P4P3PIPS " PSPI " P4PS

—M„,„,M„,„,*=0, (3.23b)
which together with (3.20a) implies also

I11IJ2IIBJI4 ~IJ1P2V4P3 (3.27b)
and their two complex-conjugate relations. The fact
that the remaining two cannot be written in such a
form follows from the observation, that the set of all
g and Z* for pi&LM2 is a complete set of NDT tests,
and therefore must contain a sufhcient set of NDT
tests. On the other hand, all equations of the form
(3.22) do not require the symmetry of M, in fact, an
antisymmetric M would also satisfy them. The addi-
tional two conditions are the ones which require that
3f be its own transpose. These two conditions can be
chosen to be Z»»»„4 ——0 and Z»»»„4*=0. In the case
when p3/p4 but either pi=@3, p2=p4, or py=p4, IJ2=p3
holds, then according to (3.20b) the g»»P3P, is no
longer linearly independent of its complex conjugate,
nor are the two equations in (3.21). Equations (3.23)
are then equal to their own complex conjugates and
we are left with one relation which is not of the form
of Eq. (3.22). This can be chosen to be Z»»P3P4

——0.
It will now be shown that the set of all relations of

the type (3.22) holds if and only if, the set of all mirror
relations hold. To prove it, substitute Eqs. (3.16) and
(3.19a) into (3.22), observe that the transpose of

(flJ', M ) = sflz M (3.24)

and obtain

L(Og M I''&; Dg. ,M «&) = 41&L(Qs. ,M. «&; Qs, M &'&). (3.25)

This last equation is, according to the definition given
in Sec. II, a mirror relation. Clearly the trivial mirror
relations satisfied by self-mirrored observable com-
ponents correspond to the trivial relation of the type
(3.22) when pi ——ps and ps ——p4. As we have just shown,

any complete set of linearly independent NDT tests
includes at least one nonmirror relation. In fact, the
number of linearly independent nonmirror relations is

I s(2s+1)is, as is evident from Eq. (2.56).
We are now in a position to write down a complete

set of linearly independent NDT tests in a simple form.
%e include in the set all mirror relations which we
denote by {2;„}, and Ls(2s+1)]2 nonmirror
relations. As we know, the latter can be chosen to be
the vanishing of Z»»»„,=0, Z~,„,„,„,*=O for all pi&@2
and @3&@4.Instead of choosing the restrictions p~&p2,
F3&@4, we may choose another set of restrictions

l»l&lpsl lpsl&lp41 if I»l=lpsl then»«
ps) 0, if

I ps I
=

I p41, then ps(0, p4) 0. The set of these
conditions we shall denote by (2}.Assuming all mirror

~PIPSPIP2( )

and if p J =p, 4, @2=p3, then

~PIP2»PI (+)

(3.28c)

(3.28d)

Finally, we can define yet another set of nonmirror
relations, namely (Z (p,5)}, y =+, 8=&, defined as
the set of conditions requiring the vanishing of all

~P»P P h' ~) r 7=~ I&=+ lpil ~alps
if

I pal =
I p41 and/or lpil = lps, then

either @3&0or @3=0&@4

~PIP2PSP4 ( YI~) 2 L~PIP2PSP4 (+)
+v b (-1)"""-"-"~-„,-„,—,.—,.(v)j (3 29)

The advantage of using the set (Z(y, B)} is, that each
condition in it is in general a linear combination of
roughly half as many terms as in the set (Z(p)}.This
follows from a property of the Clebsch-Gordan co-
efficients:

(s,s; pi, psl J,M)= (—1)"—s

x(s, s; —pi, —psl J, —M). (330)

Substituting Eqs. (3.30) and (3.28) into Eq. (3.29) we
And

~PIPSPSP4(VI~)
2s 28

C(s; pspipsp4, J,J')
J=l~»l J'-l~24f

XL "&(flJ,M31, fir, M„)+(—1)'+"
2s 28

X P g C(sI pspspI 4i J,J )
J=I3f321 J ~IM14(

XL(»(Qs, M„., Qs. ,M„) (3.31a)

Instead of including into our complete set the set of
conditions {2},we now choose to impose the equivalent
set of conditions {2(y) },y = &, defined as the vanishing
of all Z„,»„,„,(y), where r=~,

I pil & ps, I psl &
I psl

andif lpil = 1psl then pl(0 p2)0, if ps = Ip41, then
ps&0, p4&0

2 sp4 2 (~plp2psp4+~p p4p p ) Re~ 2 l4 (3'28a)

1
(—)= (r

~PIPSPSP4 .K~PIPSPSP4 ~PSP4PIPS)2l'
=1m+ pl pspsp4 ~ (3 28b)

Of course, if pi ——p3, p2
——p4, then
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where

J+J' can take only even integer values if 8=+
J+J' can take only odd integer values if 8=—

and the following notation is used:

Mgg=p~ Jtlg ~

y=+ and y= —.This helps when carrying out actual
calculations. To illustrate the use of these formulas, the
case when s=2 is worked out in detail in the next
section.

It is now easy to write down a sufhcient and necessary
set of i~nearly independent 1VDT tests. We claim that the
set of all oCpI+2pI» is such a set, i.e.,

C(s; p,pyp. pe, J,J')=—(s, s; p, pgI J—,M, y)

X(s, s; p. pe I
J—',M,e),

L (QJ,M~))QJ' M~~)=—L(QJ,M~~
+ IQJ, M~~

+ )
—L(fix,~., ' ', fix,~„' '),

L&—
~ (Qs, sr...Qs. ,sr„)=L(Qs—,~., & '; Qs,-sr, „&+&)

(3.31b)

T invariance (=) Z»»»»=0 for all pqWpq .(3.33)

To prove this, we only have to use Eqs. (3.19a), (3.16)
and (3.6) and show that

M=M (=) (M„,„, M»—„,)M»»~
for all »Wp, m. (3.34)

If p~ ———
pm then 2», », », „,(y) does not belong

to our complete set of linearly independent NDT tests.
This is so because it does not satisfy the condition that
if IpqI = IpuI then p~&p2 (if pq(p2, then —pq) —p2).
Therefore, it is a linear combination of 2» „,»„,(y)
and the other conditions belonging to our complete
set. Since we are interested in counting linearly inde-
pendent conditions, we must not count the two con-
ditions 2», »,»,„,(&,8) for 8=+ and 8= —separately.
Alternatively, we may count the two conditions given
by b=+ and 8= —separately, but then we have to
restrict the values of p3 by requiring for example p3(0.
Indeed, the 2», »,»,„,(y,b) for p3)0 are then linear
combinations of those in which p3(0, because

&., „,...(v,&)+v.& (-1)"+"-"-"
XX„,, „,, „,, „,(y,8)—=0. (3.29')

Similarly, if @3=—p4, we have to impose the condition
@3&0,because we have

~ —.h )+7 (—1)"'"
XZ „,, „,,„,, „,(y, b)=—0. (3.29")

Finally, if p&
———p, 2, and at the same time p3 ———p4, then

it follows from Eqs. (3.20a) and (3.22b) that

&., —...., .—»(v, —)=—o. (3 29lll)

In conclusion we can say that a complete set of
linearly independent NDT tests, (Z}„~&,&„ is obtained
by adding to the set of all mirror relations (2;„„},
a set of Ls(2s+1)]' nonmirror relations, {Z(y,5)}.

The set (2;„„}is given by the set of all equations of
the form (3.25) and the set of conditions (Z(y, b)} is
obtained by requiring that Z»»»„, (p,b) vanish for
y= &, 6= &, and for all those values of p~, p~, p, 3, and
p4 which satisfy the condit~»s that I»I & I»I I»I
&Ip4I, »&o and if l»l=lp4I and/« I»I=I»I,
then, in these special cases, we have either @3&0, or
we have ps

——0(p4. The expression for Z»»»„, (y,5) is
given by Eqs. (3.31).Note that the C(s; p„p&p,pe, J,J')
coefIicients appearing in Eqs. (3.31) are the same for

First of all, it is clear from the foregoing that in relation
(3.34) the ~ holds. Furthermore, if either M»»&0 or
M»»&0, then relation (3.34) implies that M»»
=M„,„,. If on the other hand, both 3f„,»=0 and
M'„,„,=0, then again M„,»= M»„,. On the other hand,
if any one of the relations is omitted, for example

Z„, » „,„,, then T invariance need not hold because
M„, „,/M„, „, may be true if M„, „,=0. This con-
cludes the proof.

Proceeding just as we have done after Eq. (3.26),
one can show that'

(2„,»»»= 0 for all pg(pm} (=)2»»»»(+, 8), (3.35a)

for 8= +1 for all @gap,g

which satisfy Ip~I )&Ip2I, pq(0, (3.35b)

(w"en Ip~l= Ip21~ then Z„,„,„,„,(+—)—=0 and only
5=+ has to be tested) where Z»»„,„,(+8) is given by
Eq. (3.31a), if in it we substitute p& ——p&, p4

——p2. There-
fore, a sufhcient set of linearly independent NDT tests
is given by all 2„,„,„,„,(+, 5) for which p&, p& satisfy
Eq. (3.35b).

We remark that this set contains at least one
NDT test which involves measurement of the most
"complicated" observable component, namely,
I.(Qj 28 ~ 2g 0J 2g ~ 2g). —Ther—efore, —one —cannot
establish T invariance using this set without making
any assumption about dynamics, and get away
without measuring the most complicated polari-
zation tensors possible. To prove this statement,
choose p, ~

———s, p~=s and observe that according to
Eq. (3.31a), the expression 2, ,+.. .,+,(++) involves
L&+'(Qs=~„~ g„Qs. ~, ,~ 2,). It can also be seen, that
all other observable components appearing in
2 .,+.. .,+,(++) have M= M'&2s, and, consequently,
cannot cancel this observable component.

We are now in a position to prove the following
simple theorem. ArIy rtonmirror relatiorI, is a linear

8 When neither p1 ——p3, p2
——p4 nor p1 ——p4, p2=IM3 holds, then to

obtain Eq. (3.27a) it was necessary to assume the validity of all
mirror relations. However, in the present case p1 ——p3, p2

——p4 and
Eq. (3.27a) now follows just by using Eq. (3.26), mitholt assuming
anything about mirror relations.
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combination of observable components which have the

property that some spin information is given about all
the particles with nonzero spin before scattering by at
least one observable component appearing in the relation.
The salre is true about all Particles after scattering.

To see this, we recall that according to Eq. (3.19a),
any nonmirror relation can be written in the form

Zv v v v —=Tl'(Sv v MSv uM) ,
Tl' (Sv v3MSv v4M ) =0

where p&&p~, @3&@4. If p„.—p~
——0, then p3 —p2 is

certainly not, and vice versa. Similarly, at most only
one of p2 —p4 and p~ —p, 4 can be zero. First of all assume
the case when t32—t31&0, t32 —t34&0. (The proof is
similar in the other three cases, when (a) t33—&t31&0,

&32 &34 03 (b) t33 t31 03 t32 t34+ 03 (c) t32 t31

t32—t34
——0.) Equation (3.14) then shows that the first

term in the above equation can be written as a linear
combination of observable components: L(QJ,&&r'+&,

Q&,3r &+&) where JNO and J'&0. Accordingly, all of
these observable components contain some polarization
information about the particle of spin s before scat-
tering. They also contain polarization information
about this particle after scattering. The second term
may similarly be written as a linear combination of
observable components L(Qs",&&r" &+&,Qq". 23. &+&) where
M"—=pp —pg/ p3 —pg—=M 34'= p2 —p4/IJ, 3

—
IJ,4—=M'".

Therefore, the L(Qs, M"'+&,Qs". , sr. .&+&) are all dif-
ferent from all L(Q~ »r&+&,Qq. ,24 &+&), and cannot cancel
any of them. This concludes the proof.

Theorem 3 of Ref. 5, referring to T invariance, is an
immediate consequence of the foregoing. In our present
language it states that any sufficient and necessary set
of NDT tests must include tests in which observable
components appear giving some polarization infor-

mation about all participating particles. This is now
obvious, since we know that for reactions of the type
(3.5) any su%.cient and necessary set of linearly inde-
pendent NDT tests must include nonmirror relations.
)In view of what is said below it is clear that this is
true also for reactions of the type (3.4).7

We mention in passing that the "observable effects
of invariance principles" given in Ref. 9, Sec. 8, to test
T invariance in fermion-fermion scattering experiments
are all what we here call NDT tests. They form a com-
plete linearly independent set of NDT tests for those
experiments which are discussed in that section. Of
course, they do not form a sufficient set since they do
not include nonmirror experiments. This is so because
they refer to experiments in which one particle is
unpolarized, and the polarization state of another one
is not measured, in other words, no spin informa, tion is
obtained about two of the particles.

Turning now to the composite reaction (3.4), we
factorize its M matrix according to Eq. (2.15). A
complete set of linearly independent NDT tests can
then be obtained by "multiplying together" the corn-

plete sets of linearly independent NDT tests of the
two composite reactions, or relations closely related to
them. This fact is of great help when actually writing
down NDT tests. The underlying principle is easy to
understand, and all proofs are simple generalizations
of the ones given above for the simpler reactions (3.5).
Therefore, we shall not go into details.

Let us define

vlv3v3v4 ( v3vl v3v4 )
+Tr(Sv, »MSv, v4Mt) . (3.36)

Observe that from Eq. (3.16) it follows that

f ~ vlv3u4v 0 for all &31 &32 &33 &34 (t31+t32)&
(M= —M)&= &i

~~ vlv3v3v4 0 for all &31 &32 &33 t34 (t31/t32)~
(3.37)

A suKcient linearly independent set of linear relations
between observable components for 3I=—3f to hold
is given by the, set of all mirror relations together with
the set (2'(y, b)), the set" of 2' »v, v( v4by) =0 for which
the t3 satisfy the conditions stated before LEq. (3.29a)7

(M = —M) & = &(Z;„.,)+(Z'(~, b) ). (3.38)

Let us introduce the convention that whenever we
write some quantities in round brackets with a sub-
script 1, 2, or 3 outside the bracket, then the quantities
refer to reactions (3.4), (3.5a) and (3.5b), respectively.
Thus (M')1 is the M matrix of reaction (3.4), (S„„)2
is a matrix in the spin space of particle s in reaction
(3.5a), etc.

as
Any 2 belonging to (2) can be written schematically

2 =Q C (J&M&41, J2M2e2)L(Qs &lr
&"& Qs &3r

'"')
(3.39a)

where 2 is some 2 belonging to (2}.Similarly, any
2'e belonging to (2') has the form

C (J1M1413 J2M242) 3 C (J2M3433 J4M 464)

2'e =Q C'e(J3M343, J4M444)

XL(QJ sr & QJ sr "&) (3 39b)
The coefficients

' P. L. Csonka, Rev. Mod. Phys. 37, 177 (1965).' The definition of g'»„~», (y,b) is analogous to the definition''...,(., )

are defined by Eqs. (3.39). The summation runs over
all values of all arguments of the coefficient C.
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Any one of these relations, for example the pth one,
can be written as

P. t
Itt1 @2' 31Jt4' Il SPG Ittv ftts

=Q C (J1Mlel) J2M2e2 ) J3Mses) J4M4e4)

( J1M1 ) J2M2 ) J3M3 ) J4M4 ) ) (3.42)

where the summation goes over all arguments of C.
Every one of the Eqs. (3.42) is an NDT test for re-
action (3.4).

It is easy to prove that the set of all 2„,...„,& is the
same as the set of all 2»...„, t' and the set of all
2'». ..», where

Z„,...„s e=Q C (J1Mlel, J2Mse2)

XC~(JsMses ', J4M 4e4)

XL(+J)M\ )+J3M3 ) J3M3 ) J4M4 ) )

=Q C (J1Mlel ) J2M2e2) (3.43)
XC'&(JsM ses, J4M4e4)

X ( J)M) ) J3M3 ) J3M3 ) J4M4 )

In other words, all NDT tests for reaction (3.4) can
be obtained if we require that all relations of the form
(3.43) be equal to zero. The coefficients of observable
components in these relations are products of certain
coeKcients of relations (Z or 2') referring to the two
constituent reactions (3.5). In this sense we can write

schematically for the set of all (2 tl)

{(g),}= {(g) 2}QX{ (2)3}+{(2') 2}QX{ (2')3}, (3 44)

Similarly, one can show that

{(@)1}complete {(+)2}completeQ~~ {(+)S}complete

+{(& )2}completeQ&& {(& ) s}complete ~ (3 45)

Analogous statements hold for sufficient and necessary
sets. Equations (3.44) and (3.45) are a simple con-
sequence of the fact expressed in Eq. (2.16), that a
symmetric (M)1 matrix for reaction (3.4) consists of
two parts, one is a product of two symmetric M
matrices, referring to the constituent reactions, and
the other part is a product of two antisymmetric M
matrices.

IV. EXAMPLES

In this section we will discuss three reactions in
detail as examples for the results of Secs. II and III.
If we wish to emphasize that a certain observable

The symmetry of M& clearly implies the following
relations:

+p)et&364ip5pep)es (( pips)2( p5p6)S
—(M...)2(M" )33(M...,*)2(M....') s=o. (3 4o)

According to Eq. (3.16), these relations can be written
as

(component) switches sign under parity transformation,
then we will call it' a "pseudo-observable (component) ".
In other words, we use the phrases "observable (com-
ponent)" and "pseudo-observable (component)" analo-
gously to the phrases "scalar" and "pseudoscalar. "

L(o,sss; 0,0) =L(0,0; O,sss),

L(o,t; 0,~) = L(0,~—; 0,~),

L(o,l; 0,0) = —L(0,0; O,t),

L(0,~; o,m) =L(o,m; 0,~),

L(0,~; o,o) = —r.(o,o; 0,~),

L(0,&; o,m) =L(o,~; o,f)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

These are the set of relations denoted in Sec. III by
{2};„„.The seventh relationship cannot be a mirror

type, since Eqs. (4.3)—(4.8) exhaust all the possibilities
in this respect. A more detailed inspection reveals that
the seventh relationship comes from subclass L(I-1)
and is

L(0,0; 0,0)—L(0,2N; O, sss) =L(o,ss; O,ss)

—L(o,l; O, l) . (4.9)

Although in this rather trivial case the above rela-
tionship can be obtained virtually by inspection alone,
we will now derive this relation again as an illustration
of the general techniques developed in Sec. III. In this
case, Eq. (4.9) represents the only relation in the set
{Z(y,i't)}.To find this set, we have to 6nd the set of all

"P.L. Csonka, M. J. Moravcsik, and M. D. Scadron, Rev.
Mod. Phys. (to be published).

1. -23+0 —5 —23+0) Rotation Invariance Only

For this reaction we have

M=bp+bso }+bsts m+bsts 8, (4.1)

where 0- is the Pauli spin matrix. If T invariance holds,
we have

Mr bp+——bsts m+bso 6 (4.2)

For a discussion of the subclass structure of this
reaction, see Ref. 11, Table II. This table presents all
observable components and pseudo-observable com-
ponents for the case of rotation invariance and parity
conservation, from which we can obtain the pure
rotation invariant case by ignoring all headings which
refer to parity quantum numbers.

The total number of observable components in this
case is 4'= 16. The number of bilinear combinations of
form factors, if T invariance holds, is, on the other hand,
only 9. Thus there must be seven relations among the
observable components, imposed by the requirement of
T invariance. Of these, six are mirror-type relations,
which can be obtained immediately from the subclass
tables by making b&=0.
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Z»»»„, (y,b) which satisfy pi&go, //o&p4, go&0. Since
every /i can take only the value + tsand —st, only the
choice pt ————„po———,', /io ————',, /i4

——+o satisfies all
these conditions. Furthermore, since in this case @1=p3
and /i, =p,4, according to Eq. (3.28c) this 2 vanishes

identically for p = —.At the same time, because
/ii ———/io, /io ———/i4, we conclude from Eq. (3.29') that
g vanishes identically for 8= —.Therefore we have to
evaluate only 2 1/2, +]/2, 1/2, +1/2.

For this purpose we use Eq. (3.31a), and find

1 1

&—vo,+vs.—vo.+vs=& Z &o, o' —
r,»+olIO)&s s o

—ol~ 0)LL(Q~.o' ',Q~.o'+') —L(QJ.o' 'Q~, o' ')j
J=O J'=0

+( 1)1+1/2+1/o Q Q &t 1. i 1
i J 1&&1 i, 1 1

i

JI 1)
J 1 J'~l

XLL(Qz, i'+', Qz, it+') —L(QJ, tt i,Q&. , tt—i)j, (4.10)
where J+I' can take only even values, since 5=+.

According to Eq. (3.12), we have QJ oi &=0. Therefore we can write

~-1/2, +1/2, —vo,+1/2(+)+) = &s) s; —s, + s (0,0&&s, s i s )
—s (0)0)L(Qo, o +,Qo, o

+ )

+&s, s; —s, +s I1,0)&s, s
'

s~
—s I 1,0)L(Qi,o'+', Qi.o'+')

+8 s i o~ s I 11 1&8) s i sp s I Iy 1)[L(Ql,-i + )Qt,-t + —L(Qi,—i )Qt,-i )). (4.11)

Looking up the Clebsch-Gordan coeKcients we find

1
&-:, l ——:,+llo, o)= —&-:, l; l, ——:Io,o)= ——

1
&t t. t +t ~10) +&i t. t t ~10) 2'

2. —,'+0~ —,'+0, Rotation and Reflection Invariance

In this case we have

M+=bo+boo m, (4.15)

and hence T invariance (which is expressed by bi ——0)
has no effect on the observable components at all. This
result has already been proven by other methods in
Ref. 3.

Therefore the only linearly independent nonmirror-

type relation is

&-t/o, +i/o, -vo,+i/o (+,+)= ——',L(Qo, o'+', Qo, o'+')

+tI (Qi o(+) Qi o(+))+I (Qi t(+) Qi t(+))
—L(Qi, t'-i, Qt, i&

—
&) =0. (4.12)

Q],0 0 '5$
p

z

0, &+~=—e l, (4.13)

01,1&
—&=—e A'.

Thus we 6nally obtain

2—V2,+V2,—1/2,+1/2(+p+) sI L(op0 j 010)
I.(o,m; 0, )—IL(0,~; 0,~)—

+L(o,l; O, l) J=o (4.14)
which is Eq. (4.9).

Finally we can express this result in terms of the usual
o- matrices by using

QP, Q
—1 p

26=2 p=o. (4.16)

The mirror relations have been indicated also in Ref.
12. In addition, however, there are nonmirror-type
relations. They occur in those subclasses where, as
Ref. 12 indicates, the number of independent observable
components decreases when T invariance is imposed,
but where mirror-type relations do not exist. These are
subclasses I-1, I-4, and I-7. A brief inspection shows
that these nonmirror-type relations are as follows:

For subclass I-1:
I.++(0,0 00)—L++(0 m 0//o) =L++(l l l,l)

L++(l,e; l,e), (4.17)—
L++(O,l; O, l) —L++(0,/s; 0,/o) = L++ (l,o; 1,0)

L++(e,o; e,o) . (4.18)—
For subclass I-4:

L++(t//, 0; 0,//o) = L++(m, t//; 0,0)
+L++(/o,e; l,l)+I++(n, l; l, /s) . (4.19)

'~ M. J. Moravcsik, in Proceedings of the International Con-
ference on Polarization Phenomena of Nucleons, Karlsruhe, 1965
(to be published).

3. —,'+-', ~ —,'+-,', Rotation and Reflection Invariance

The subclass structure of this reaction has been
given in Ref. 12. In terms of the notation used there,
T invariance requires:
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TABLE IV. Pseudo-observables L+ for the reaction 0+1 —+ 0+1.

Subclass
R-I 1

L+ (o,l)
L+ (ll,l)
L+ (nn, l)

Subclass
R-I 4

L+ (O,lm)
I+ (ll, lm)
L+ (Nn, lm)

Subclass
R-I 2

L+-(ln, l)
L+ (m, erg)

Subclass
R-I 5

L+ (lw, lm)
L+ (m, e)

C»C»*

+'.
+3$
+3$

C22C218
1
1
6
1
6

C13C328

+4$
+~1

C11C32*

+8
+1

CIsCIp
—$

+3$—-$3

C11C128

2+-
1
6

CssCIP

+4$
1 '—-$2

C31C12*

+-

CssC32*

—$1'——$3
+3$

C31C328

+3

Class I
Subclass
R-I 8

L+ (O,wm)
L+ (ll,nm)
L+ (Nn, wm)

Subclass
R-I 7

L+-(O,n)
L+ (ll,n)
L+ (eN, N)

Subclass
R-I 3

L+ (m, l)
L+ (le,mm)

Subclass
R-I 6

L+ (m, lm)
L+ (le,n)

Class II

C22C23*
1
2
1
6
1
6

C22C2P
—$1'

31'
YZ

C13Csg
—1
+8

C11C328

C13C12*
1
2

+3
1
6

C11C12

+i.
$

+3$

CssC12*

+1
+8

C31C128
1'

$21 '
$

CssC32*
1
2
1
6

+3

C31C32*

+i.
+M3'

2'——$3

Subclass
R-II 1

L+ (l,o)
L+-(l,ll)
I+ (l,en)

Subclass
R-II 4

L+-(tm, O)
L+ (lm, ll)
L+ (tm, sn)

Subclass
R-II 2

L+ (l,ln)
I.+ (Nm, m)

Subclass
R-II 5

L+-(tm, tn)
L+ (e,m)

C22Csp

C22C128
1
2
1
6
1
6

C31C23*

CIIC23~

+8
+1

C31C2p

C11C218

1
6

CssC21*
1 '

$

+2$

C13C21*

+8

CssC23*

2'—$3

C13C23*
1
2
1
6

+3

Subclass
R-II 8

L+ (nm, O)
L+-(nm, ll)
L+-(nm', nn)

Subclass
R-II 7

L+-(n,O)
L+ (n, ll)
I,+ (e,ee)

Subclass
R-II 3

L+ (l,m)
L+ (nm, ln)

Subclass
R-II 6

L+ (im, m)
L+ (N,ll)

C22Cs2*
1
2
1
6
1
6

C22C128

+i.+~1'

+M

C31C2p

+8

C11C23*
1'

+4$

C31C218

1
6

CIIC2P
—$

+3$1'
$3

CssC2P

+1
+8

C1sC28

CssC23~
1
2
1
6

C13C23*

—$—-$3
+3$

For subclass I7:-
L++(O,n; m, l)+L++(O,l; m, n) = L++ (l,o; n,m)

+L++(n,O; l,m). (4.2O)

Of course, had we not assumed that reQection invari-
ance holds then the number of nonmirror relations
would be higher.

4. 0+1—+ 0+1, Rotation Invariance Only

This reaction was discussed in Ref. 13, and the sub-
class structure of the observable components was given
in Table III of that reference. Since we are considering
the case of rotation invariance only, we will have

where M~+ and 3f~—are the M matrices in Ref. 13
referring to this reaction in the presence of reAection

invariance. The table in this reference was prepared
with rotation and reQection invariance in mind. To use
it for the case of rotation invariance only, one should

simply ignore the headings referring to the reQection

properties (++, ——,+—,—+) and consider the
whole line for each observable.

The pseudo-observable component subclasses were

not discussed in Ref. 13, so they are given here in Table
IV.

If T invariance holds, we have

Cla Col y C21 C12 p C2$ C32 (4' )Mi ——M~++Mi, (4.21)
"M. J. Moravcsik, in Proceedings of the Wi11iamsburg Con- Thus the number of independent form factors is reducedference on Intermediate Energy Physics, 1966 (to be published),

p. 517, by 3.
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L+ (m, lm)+2L+ (l-n, n) L—+ -(ll, l)
+-',L+ (O,l) =0, (4.29)iV~ ——6,

Br=36, (4.23)
~p= ~T =36.

Ep=9,
Bp=81,

@=9,
go= go=81,

A p=45,
L+ (m,nm)+ 2L+ (ln, l) —L+ (nn, n)

y-', L+-(O,n) =0, (4.30)

Let us use for this example the general formulas relations are
developed in Sec. 2. In this case we have

Thus we see that T invariance will impose in this case
45 relations among the observable components, of
which 36 are of the mirror type, and 9 are not. Further
use of the formulas of Sec. II also reveals that of the
36 mirror relations, 16 will be among the observable
components and 20 among the pseudo-observable com-
ponents, while of the 9 nonmirror-type relations 5 will

involve observable components and 4 will involve
pseudo-observable components.

The mirror relations are easy to write down and will
not be reproduced here. Of the nonmirror relations
among the observable components, three will involve
observable components from subclass I-1, in conjunc-
tion with subclasses I-5, II-1, and II-6, respectively,
because if Eq. (4.22) holds, the product sets of these
subclasses will partially overlap. A straightforward
calculation yields

V. INELASTIC REACTIONS

The case of inelastic processes turns out to be trivial.
This makes their discussion very simple, but less inter-
esting. There are only the "obvious" nondynamical
relations, and no "hidden" ones.

Consider the reactions

and

$1+S2+ ' ' '+Sm ~ $~1+$~2+ ' ' '+S~, (5.1)

', L+ —
-(O,nm) —2L+ (ll,n-m)+ ', L+ --(m, n)

—4L+ (ln, lm) =0, (4.31)

22 L+ (O,lm) —2L+ (nn, l m) +2L+ (m, l)
—4L+ (ln, nrz) =0. (4.32)

This completes the list of nonmirror-type relations for
this reaction.

4I.(ln, ln)+-'L(m, m)+-', L(0,0)—~L (O,ll)
——L(0,nn)+L(ll, nn) =0, (4.24)

$~1+$~2+ ' '+S~ ~ $1+$2+ ' ' '+S~y (5.2)

L(nn, nn)+L(ll, nn) ——',L(0,0)—-,'L(0,ll)
+-',L(l,l)+2L(nm, nm) =0, (4.25)

9L(0,0)+&L(O,nn) —L(ll, ll') —L(ll,nn)
+-,'L(n, n)+ 2L (lm, lm) =0. (4.26)

Similar overlaps between the subclasses I-2 and I1-2,
and I-3 and II-3, respectively, yield the other two
relations

2L(lm, nm) 2L(n, l) = z—L(ln, 0)+L(ln, ll)

+I.(ln, ,nn), (4.27)

I.(lm, l) —I.(n, nm) = ——,'L(m, O) ——',I.(m, ll)
', L(m, nn) . (4.—28-)

Similarly, one can find four relations among pseudo-
observable components, resulting from the partial
overlap in the product sets of the following pairs of
pseudo-observable component subclasses: I-1 and I-6;
I-2 and I 7; I 3and I 8, and finall-y l-4-and I 5-. The-

where the s~, s~, ., s„are particles with spin s~, s2,
s, respectively.

We show that a complete set of linearly independent
NDT tests is given by all relations of the type

L(S1,S2, ,S~; S~z, ,S„)
= (—1)'L'(S~i, ,S„;Si, ,S ), (5.3)

where the observable components I. and I.' refer to
reactions (5.1) and (5.2), respectively, Si, , S„ in
their arguments refer to particles s~, , s„, respec-
tively. The l8 is defined as

ls—=l(S1)+l(S2)+ +l(S„),
and l(S1) is the number of l's appearing in Si, etc.

First of all it is clear that if T invariance holds, then,
Eq. (5.3) is valid for all Si, , S„.Thus any relation
of the type (5.3) is an NDT test. Furthermore, no other
nondynamical relations are implied by T invariance.
This follows from the observation that all equations
of the form (5.3) completely determine all observable
components of the time-reversed reaction, once all
observable components of the direct reaction are given.
This proves the statement.


