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The relationship between the A —+ B+p photonic decay process and the "inverse" nuclear-Coulomb-Geld
coherent production process B+Z~B+y'+Z-+A+Z LZ—=high-Z nucleus, y'—=exchanged virtual
Coulomb photon) is studied in some detail for arbitrary particles (A,B).A procedure is described for the de-
termination of the rate of A —+ B+y from measurement of the differential cross section for A-particle
coherent production by a B particle incident on a high-Z nucleus. A numerical application of the formulas
derived is worked out in the case E +Z ~E* +Z, and it is estimated that a E energy in the range 3—15
BeV is required for a successful determination of the rate of E* —+ E +y.

I. INTRODUCTION
' 'T has been suggested that the rate of photonic decay
& . A —& 8+y, with (A,B)= (s',y), (rt,y), (Z',A) (p+,sr+),
or (E*+,Z"), can be determined by measurement of the
di6'erential cross section for A-particle coherent produc-
tion by a 8 particle incident upon a high-Z nucleus. ' 5

This general conclusion follows because the coherent
production process 8+Z~A+Z is dominated by the
photon-exchange pole for sufliciently small momentum
transfer to the nucleus and because a type of micro-
scopic reversibility holds for electromagnetic processes
(see Eq. (2.3) below). We shall denote .the photon-
exchange process by 8+Z-+ 8+y'+Z-+ A+Z, where
7' is the exchanged virtual photon associated with the
Coulomb 6eld of the nucleus Z.

An essential feature possessed by all the processes
listed above is the common angular dependence of
the coherent production cross sections. With the ex-
ception of the h.+Z~Zs+Z process, they behave,
apart from the factor associated with the photon propa-
gator, like 0' for small values of the production angle
e(0—= cos '(pe p~)), and even the h.+Z-+ Z'+Z process
has this behavior provided that (ntg/Eg)s«1. If the
nucleus Z is regarded as a charged spin-zero particle,
then, with the exception of the h.+Z~ Z'+Z case, it
is possible to infer the 8' behavior without specification
of the detailed mechanism of virtual-photon exchange,

' (v-',y): H. Primakoff, Ph s. Rev. 81, 899 (1951);V. Glaser and
R. A. Ferell, ibid. 121, 886 1961);C. Chiuperi and G. Morpurgo,
Nuovo Cimento 19, 497 (1961).' (v,&): C. M. Andersen, A. Halprin, and H. Primakoif, Phys.
Rev. Letters 9, 512 (1962); G. Belletini, C. Bemporad, P. L.
Braccini, L. Foa, and M. Tofler, Phys. Letters 3, 1/0 (1963).' (Z',A): J. Dreitlein and H. Primakoff, Phys. Rev. 125, 1671
(1962).

'(p+,v+): S. M. Herman and S. D. Drell, Phys. Rev. 133,
B791 (1964); G. Morpurgo, ibid. 131, 2205 (1963); G. Morpurgo,
Nuovo Cimento 31, 569 (1964).' (E*+,E+): M. A. B. Beg, P. C. DeCelles, and R. B. Marr,
Phys. Rev. 124, 622 (1961).

i.e., this behavior is a property of the conservation laws
characterizing the over-all reaction. In particular, for
y+Z —+ sre+Z or y+Z —+ si+Z, angular-momentum
conservation implies that the corresponding coherent
photoproduction amplitudes vanish in the forward, i.e.,
8=0, direction so that the 8' dependence is justi6ed;
for p(E*) rnesons, which cannot be produced with zero
helicity by sr(K) mesons incident on a spin-zero nucleus
because of parity conservation, an auxiliary argument,
very similar to that used for the case of 7+Z -+ sre+Z,
justiGes the 8' dependence. In contrast, for the A+Z ~
Ze+Z case, a general inference regarding the small 0
behavior cannot be made; in fact, without some ex-
amination of the mechanism of coherent production, one
would anticipate a behavior like 0' rather than 8'.

We shall develop and extend the Weizacker-Williams
approximation in a manner which clearly shows that
it is a consequence of electromagnetic clrreet coesermtioe
alone that this fls behavior holds for any 8+Z-+ A+Z
nuclear-Coulomb-Geld coherent-production process at
high incident energies and small production angles.
In particular, we shall see that in this limit only trans-
verse virtual photons (as viewed in the rest frame of A)
are important, and that as a consequence the helicities
of A and 8 diGer by one unit; this circumstance, to-
gether with angular-momentum conservation, is in fact
responsible for the 0' dependence.

Proceeding along similar lines, we shall also obtain a
relation between the cross section for 8+y ~X and the
nuclear-Coulomb-Geld production cross section, 8+Z+-
8+y'+Z +X+Z, where X—represents an arbitrary
set of particles. If one thinks of X as representing- the
decay products of particle A, this relation is particularly

K. F. Weizsacker, Z. Physik 88, 612 (1934); E. J. Williams,
Phys. Rev. 45, 729 (1934); V. N. Gribov, V. A. Kolkunov, L. B.
Okun and U. M. Shekhter, Zh. Kksperim. i Teor. Fiz. 41, 1839
(1961) (English transl. : Soviet Phys. —JETP 14, 1308 (1962)g;
I.Pomeranchok and I. Shmushkevich, Nucl. Phys. 23, 452 (1961).
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useful when discussing the production of extremely by
short-lived particles A.

In Sec. IV, we give a brief general discussion of
strong-interaction-induced B+Z —+ A+Z coherent pro-
duction and define the relevant signal-to-noise ratio
to be considered in assessing the potential success of
any procedure to extract the A —+ 8+7 decay rate.
A priori estimates of the signal-to-noise ratios when A

and 8 are, respectively, vector and pseudoscalar SU3
octet members are given in Sec. V; particular atten-
tion is given to (A,B)=(K*,E ).

We consider any two particles, A and 8, having mass

mA and mB, respectively, and spin values SA and SB.
The A ~B+y and B+y —+A vertex functions can
be written as

qB=—1 if 8/y,
lf B=p ~

&B )tg=+1

(2.5)

(~y) '2 (~A,XB), e()tr) ' T(Xg)AB) i

x y=—x y =x y—xoyo, (2.1)

where, up to a proportionality factor, T()z,)&) and

T() ~,X~) are the A —+ B and B—+ A electromagnetic
transition currents, XA, XB, and P~ are the helicity
quantum numbers of the three particles, and e(X7) is a
unit 4-vector describing the polarization of a photon
of helicity X~. In the language of an effective Lagragian,
Z. (x)=j. (x) A(a), r

r()~,) ~)= (2E~2E~)"'(B;outl j (0) I A; in)
22

Z'() Q ) n) = (2E~2E~)"'(A; out
I j (0) I

»' in) ~

whence, as a consequence of the Hermiticity of j, (0)
and of the equivalence of "in" and "out" electro-
magnetic single-particle states, we obtain a type of
microscopic-reversibility relation

ZeF (q') (p ,;+p, )*0%.,).;.
P"=v'= (Pz Pz; r)'= (P~ P—~)'—

2- 1/2

=2EAEB 1—
+B—

1 m~'+my'
cos8———

&A~B

where ) „=+1, —1 correspond to the two states of
transverse (circular) polarization of the emitted photon.

We now turn to the B+Z~ A+Z coherent produc-
tion process in the Coulomb field of a high-Z nucleus,
B+Z —+ B+y'+Z ~ A+Z. Since we shall ultimately
consider the case of relatively large nucleus mass, and
ignore any nucleus magnetic-moment interaction, the
nucleus can be treated as a Ze-charged spin-zero
particle characterized by a form factor F(q'). The
Z —+ Z+7 vertex function may then be written as

T() g, ) a) = T*(X~,Xn) . (2.3) 8=cos (Pa Pg) . (2.6)

Helicity amplitudes a() &,)t~) are defined by

e*(X~) T(Xa,) Ir) =a(Xn.X„)d(S~))a)Xa —)v) 4), (2.4)—
where, in the rest frame of A, 0' is the angle between
an arbitrary quantization direction along which the
spin of A is measured and the direction of motion of 8,
and d(J,),X'; 4') is an appropriate symmetric-top
eigenfunction. s Using Eqs. (2.1) and (2.4), the photonic
decay rate I'(A —& B+p) is given in the rest frame of A

B: p =(p,iE )B' B
A: p =(p, iE~)

From the diagram of Fig. 1, the Z —+Z+y vertex
function of Eq. (2.6), and the p+B ~ A vertex function
of Eq. (2.1), the total and differential cross section for
B+Z —+ A+Z coherent production in the nuclear

7 The factor of (2E&2E&) in Eq. {2.2) and below is appropriate
only if A and 8 are bosons and should be replaced by a factor of
P(E~/mg)(Ee/re)) if A and B are fermions. However, this re-
placement does not change the final result in Eq. (2.22).

s M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959).
We consistently omit the factor exp(f/' (Xs , —X„)$4&—) multiply-
ing d(Sg, hg, Xs—X„;4'), where C is an azimuthal angle.

Y': q=(q, iq)

z:p, = (p „iE . ) '.
p =(p, iE )

Z;I Z;I

Fxo. i. Feynman
diagram for 8+2~
y'+Z —+ A+Z.



PHOTO NIC DECAY RATES 1297

Coulomb Geld are given in the laboratory frame by =imz84 +(pz, r) —2imz84 in the case of relatively

large nucleus mass, we have

[~(a~A)]c..i= dn
do(B —+ A)

—cou~ I pB I/EB
lyAI .

C&'"&p.A, XB)——v2mz sin8'[«(+1)

X
(24r)o

d'pz;f d'pA 1 1
(2z)4

2Ez;f 2EA 2E~ 2mz
—«(—1)j Tp, A,»), (2.11a)

l~(qo) lo
X6(pB+pz pA —pz;f)—Z'e'

(q')' 2(5'B+1)

x g l(pz., ;+pz,).Tp.„& )Io;

gag = j. if mg=0)

—= -', (25B+1) if mB=0. (2.7)

We now exploit the fact that, on the basis of Eqs.
(2.7) and (2.5) and the "microscopic reversibility" rela-
tion in Eq. (2.3), a definite connection exists between
[o(8~A)fc,„i and F(A ~8+y). To deduce this
connection we write

lyAI
C&' '&(XA,»)—2m — cos8'«(l)

mA —EA

+«(t) T(X=,»), (2.11b)

where

PB' (PA' Pz—')
cose'=—

I
pA' pz;*'I-

PB 'PZ;& j

PB'(PA PZ; )
cos8=— =pB pA.

I yA —yz;, I

(2.12)

We now introduce the essential restriction of elec-

tromogneti c clrremt coeserva6orI, viz. ,

(pz,+pz, t) (.,&A, B)=C""(&&A,&B)+C ' "(&A,&B); q T(XA,XB)=0. (2.13)

C&"&pA,»)=—p (pz. .+pz..)'*(&,,)
X«p, ,) T(&A,»),

"'"( A, B)=(Pz +Pz;I) [«—*(t)«(l)

+«*(t)«(t)g T(&,&B), (2.8)

This, when applied in the rest frame of 2, yields, using

Eq. (2.10),

0=q' T'(XA, »)+z(qo'/ I q I
)T4'(&&A, &&B)

= «'(t) T'(& A,~B)+(qo'/I ql'«'(t) T(& A»)
=.(t) T(& „XB)+(qo'/lql'. (t).T(& A,&B). (2.14)

where «(&1), «(t), and «(t) are an orthonormal set of
polarization unit 4-vectors which satisfy the complete- Hence, substituting Eq. (2.14) into (2.11b),
ness relation

EA IyAI qo'
C&"&0&A,l&B)=2mz 1— cos8'

mA EA lq'I

+[«o*(t)«p(t)+ «u*(t) «p(t) j= 8up (2 9) X«(t) TPA, & ). (2.15)

In order that «(&1), «(l), and «(t) describe, in the rest
frame of 2, transverse, longitudinal, and timelike
photons, respectively, in both the decay and the pro-
duction processes, we take as an explicit representation

For relatively large nucleus mass so that Ez,.f
Ez,; mz, EA=—EB, .h——igh incident energies (EB))mA,

mB) and small production angles (8«1), the expression
for q' in Eq. (2.5) becomes

«'(W1) = W-,'v2[«'(I)ai«'(II)g,
«'(I) = (6'X q', 0), «'(II) = (6',0),
"(t)=(,0), "(t)=(0,'),

@—=qXPZ~ ) q=y z&yzf =PB i (2.10)

qo~E [$o+8oj 8—= io(mAo —mBo)/EBo (2.16)

and, since (1/q')' appears in the 8+Z —+ A+Z coherent
production cross section [Eq. (2.7)j, we shall only be
interested in values of 8= b. Under these circumstances
we also have

where, in this discussion and below, primed and un-
primed symbols will refer to quantities measured in
the rest frames of A and of Z (laboratory frame), re-
spectively. Then, obtaining «(&1), «(l), «(t) from «'(+1),
«'(t), «'(t) by the Lorentz transformation connecting
the restframes of A and Z, and noting that (pz~4+pz;r)

8' 2EBmA8/(mA' mB )=—m„/EB—

I
«'I

I pz, ;—yz;r I

(2.17a)

(2.17b)
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whence, substituting into Eqs. (2.11a) and (2.15),

mZEB 8
C&"&pA,XB)—:—2v2 Le(+1)

SEA —mB
—e(—1)7 T(XA,XB)

mzl e(+1) e( 1)7' T(~Ap~B) y (2.18a)

~B ~A2 & 4&B2~A202
C&'"p,A, XB)—2mz +-

mA +Bs -2 (mA mB2)2

e(t) T(XA,XB)

=mz(mA/EB) e(t) .Tp A, XB) . (2.18b)

As in the decay process A -+ 8+y Lsee Eq. (2.4)7 we
write e(X~) TpA, ),B) in terms of helicity amplitudes
a(xB,x,) as

e(&,) T(XA,ZB)=.'(X,).T'(XA, )iB)
= a(XB,&I.„)d(SA,XA,XB—Xv;0'),

8'=—cos '(—pB' pz );
note that e'(t) corresponds to X„=O, and record the
following smaLL-eagle property of the symmetry-top
eigenfunctions':

d(~,~,~'; q)=z&,&,
"'y~" "'ll+~&„& "'q'+ 7;

e)„~~»= i, ax~. ~» =I. (2.20)

Thus, at small production angles 8=cos '(PB PA), the
dominant terms in C&'"&(XA,X~) and (C&'"&(XA,XB) cor-
respond to A,A=PB+1 and LA=KB, respectively, and the
quantity

&&A,&B I (pz„+pz;f) T(& A. ,7B) I

'

of Eqs. (2 7) and (2.8) is given by

2 l(pz„+pz, f& T(&A,&B)l'
Xg,)B

l
C'"&(XA,XB)+C&' '&P A, XB) l'

Xg, XB

=Q ( l
C&'"&(KB+1,XB) l

'+ [C""&(XB—1)XB)l'

+ l
C&' "(XBXB)

l
') . (2.21)

Furthermore, e(&1) T(XA,XB) is comparable in magni-
tude with e(t) T(XA,XB), since the transition currents
T(KB+1, XB) and T(XB,XB) differ only in the helicity
quantum number of A; with this in mind, combining
Eqs. (2.21) and (2.18), we obtain, up to corrections of
order (mA/EB)',

l (pz; '+pz;f) Tp A, ~B)
l

'
~A~KB

=Q L l
c "(kB+1,xB) l

'+
l
ct'"& (AB—1,xB l

s7

and, in view of the "microscopic reversibility" relation
in Eq. (2.3), and of Eqs. (2.4) and (2.19), make the
crucial substitution

a(X~,Xv= &1)= e*(XB,X~= &1). (2.24)

Then, inserting Eqs. (2.24), (2.23), and (2.16) into
Eq. (2.7), and comparing with Eq. (2.5), the high-

energy, small-angle form of the differential cross sec-
tion for 8+Z~A+Z coherent production in the nuclear
Coulomb field is given by

8z'nlrb(q') l
sr(A ~ 8+y)/mA

d~A —Coul A l
1—mB'/mA 7'

n=—es/47r= 1/137,

»B' (2SA+1)
XAB=

»B (2SB+1)

XXAB
ps+, gs7s

Equation (2.22) shows that the nuclear Coulomb
Geld is, so to speak, selective with respect to the helicity
states of 2 that are produced in it. As an example of
this "selection rule, " consider the process h.+Z —+

&+y'+Z ~&'+Z; if XA=+s, then, according to
Eq. (2.22), Xz'= —s (or Xz' ——ss, which however is
ruled out since Sz ' ———,'), i.e., the hyperon spin is flipped"

by the nuclear Coulomb field, and, therefore, in the
approximation of Eq. (2.22), the nuclear-Coulomb-field
coherent production amplitude does not conserve
angular momentum in the forward, i.e., 0=0, direction.
Thus, Eq. (2.22) provides the rationale for the "rnys-
terious" vanishing of the high-energy, forward, nuclear-
Coulomb-field A —& Z coherent production amplitude
discussed in the Introduction.

The expression in Eq. (2.22) for

&&,;x, l(pz, ~+pz;r) T(&~,&s) l'

involves the exchange of transverse virtual photons
only. Thus, using Eqs. (2.19) and (2.20) we can write
Eq. (2.22) as

z2+B402

Z l(Pz +pz;r) TO~»~)l'=
~A s~B (mA2 mB2) 2

loP „X,)l', (2.23)
&B Ay=El

8~z'~B'0'
P Pl.(—1) T(&.+1,~.) l

(mA2 mB2)2 XB

+ l e(+ 1) T(XB—1,XB) l
'7 (2.22)

9 A. R. Edmonds, Angular 3Eonzentum in Quantum Mechanics
(Princeton University Press, Princeton, Near Jersey, 1957l.
Based oD Eq. 4.1.1.5.

—=-,'(2SB+1), mB ——0;

q'-=KB'[8'+8'7 "o= '(mA' mB')/ZB' (2 25)-—
We should also mention that in obtaining Eq. (2.25) we
hive in addition neglected any deviation of the helicity
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amplitudes from their q'= 0 values since qs/m~s
=mz'/Ea'«1 according to Eq. (2.16).

Equation (2.25) is the basic relation which connects
the B+Z-+A+Z coherent production in a nuclear
Coulomb field with the A ~B+y photonic decay
rate. Special cases of Eq. (2.25) correspond to

2re -+ y+y,
f~v+7
t2 ~ 2r+V 2

Z' —+ A+y

V~V+V2 5 ~ V+7 XAa 1 y

XAB 5)
K*-+E+y, W -+ 2r+y~X„a=3,

XAB ~ ~

Finally, it is worth remarking that if F(qs) =F(0) for
q'&28'Ea' ' i.e., for 0'&8' the n[d 0(B2A)/ dQ~] c« i

has a sharp maximum for 0=8; this sharp maximum
constitutes one of the prime distinguishing features for
the B+Z~ A+Z nuclear-Coulomb-field coherent
production process.

III. RELATIONSHIP BETWEEN THE CROSS SEC-
TIONS FOR B+y —2 X AND B+Z—+ X+Z IN

THE COULOMB FIELD OF A HIGH-S NU-
CLEUS (X—=MANY-PARTICLE STATE)

In this section we generalize the previous discussion
by replacing the single-particle state A by an e-particle
state X with e&1. Our goal is to obtain a relation be-
tween the B+7—+X total production cross section,
a(B+y ~X), and the B+Z~ B+y'+Z -+ X+Z
nuclear-Coulomb-field coherent production diGerential
cross section, [do (B-+ X)/dQ]o, „i.

In analogy with Eq. (2.1), we write the B+p +X—
vertex function as

.(),) r([) »7»„), (3.1)

G(s) =—

(2~) sn

d pi dp„
~(p —p —p )

2E] 2E„

x 2 2 I (),) r([) 7,).)l';
Xg, [Xx] ) &=+1

px=—f p;, p» (p»,iE»), ——P =(pt, iE'-);

s= —px'= —(pa+ p, )2, — (3.2)

with 2)a and 2ta' defined in Eq. (2.25). We now transform
from the set of 3n integration variables, pi p„, in the
above expression to the set px plus the remaining

' The goodness of this approximation depends upon the size
of the nuclear radius R) i.e.,

q2Jt2(2$2Ea2E2 —lL(222A2 222B2)2/Ea2)E2

muSt be « t fOr F(q2)—F(0).

where p,x] denotes the set of 22 helicity numbers as-
sociated with X.The cross section o (y+B —2 X) is then
given by

(22r) 42)a2)a'
-(B &+X)= =();

4(2Sa+1)(s—ma')

3e—4 variables internal to I,
d'pi/2Ei d'p„/2E„= Jd4P»dp;„2, (3.3)

We now turn to the B+Z 2 X+Z coherent produc-
tion process in the Coulomb field of a high-Z nucleus:
B+Z -+ B+&'+Z —+ X+Z. Combining Eqs. (2.6),
(2.9), and (3.1) with the analog of Fig. 1 (A replaced
by X), and considering the case of relatively large
nucleus mass, the nuclear-Coulomb-field induced 8~X
coherent cross section is given in the laboratory frame
by

'gB

[ (B X)]c„i—— (2 )2H,
I pal (»a+1)

d'pi d'p-
I
E(q')

I

'
B= ~ ~ ~ ~(Ea—Ex)

(22r)'" 2Ei 2E (q')'

x Z l~l Z ..*(),).0,)]
&a, [&x]

+[e4*(l)e(l)+e4 (t)]) T([)t»7,) a) I'

P"=q'= (Pz —Pz;r)'= (P»——P )'

=2Ea' 1—[(1—s/Ea )(1 ma /Ea )]
1 s+ma'

Xcose——
2 EB'

t)=cos '(P P)' (3 5)

where the e(&1), e(t), e(t) are obtained by an A-rest-
frame —+ Z-rest-frame Lorentz transformation from the
e'(&1), e'(t), e'(t) defined in Eq. (2.10). Again we make
the same change of variables as before [Eq. (3.3)] and
obtain

Z QgB
(a(B—2 X)]o..i —— (22r2) d4P» b(Ea —Ex)

I pa I
(25'a+1)

IE(q') I'
h,

(q')'

dp;.J Z
)~, f'AX]

k=-
(2') sn

xl([ Z .*(),).() „)7
Xg~+1

+[e4*(t)e(t)+ «*(t)e(t)]) &D»7»a) I

'

where J is the Lorentz-invariant Jacobian of the trans-
formation and dP; 2 need not be made any more ex-
plicit than to say that it is a Lorentz-invariant dif-
ferential. Combining Eqs. (3.2) and (3.3), we have

4(25a+1) (s—ma')
o (B+y~X)= a(s)

(22r) '2) a2)'a|
g(s) —= dpi-2~

(22r)'"

X P P Ie(X,) 1'(P.»7»a) I
. (3.4)

Xg, flax] X~=+I
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(2~) sn

with

X
l 2(X,) T(p,x),XB) l', (3.7)

(3.8)

Equations (3.6), (3.7), and (3.8) yield

d2o(B ~X).
[0(B + X)fc 1 dQxds

d~xds —Coul

Z 0! 'QB

lP(q2) l' — (22r) d Px
EB (25B+1)

g(EB Ex) 2FB482—
X g($)

(q2) 2 (s mB 2)2

Z cl

dQxds (27r)' —,'(EB'—s) 't2

EB (25B+1)

lP(~2)l2 2EB482
X g(s), (3.9)

(q2) 2 (s mB2) 2

With the exclusion of «(Xr), the integrand of h is a
Lorentz invariant, and since «(Xr) depends only upon
Px, factors of 24P r) can be taken outside of the integral
sign in h and the remaining invariant integral calculated
in the rest frame of X. In this frame let us take the s
axis along the 3-momentum of8.Then, for a given value
of XB, diferent values of X~ correspond to different
values of the s component of the angular momentum J,
and integration over the angles associated with dp; t
demonstrates that t.here is no interference between
terms with different values of Xr[2(l) and 2(t) are
characterized by X~=Oj. We note that in the case of
the production of a single-particle state 3 there is no
integration over any internal angles and we have to use
the property of symmetric top eigenfunctions given in
Eq. (2.20) in order to establish that there is no inter-
ference between terms with different ) ~.

In analogy with the single-particle case we apply the
current conservation condition [Eq. (2.13)j and con-
sider the case of high incident energies (EB))gs,mB)
and small production angles (8((1). Then, bearing in
mind the absence of the interference terms discussed
above, we have, to order (gs/EB)2, (mB/EB)',

as

d'0(B ~ X)

d~xds —coul

Z2nlF(q2)
l

'

o(B+y.~ X)
X-

S—mB' [8'( )+8'j'

q2=-EB2[82(s)+8'j,

g(s) —=—',(s—mB')/EB',

ffB= 1~ BWQ p

(3.11)

where I'~ ——total decay rate of A, K '= lpBl =
l
—p„l

= (s—mB2)/2+s, (25&+1) is replaced by 2 if mB=0,
and the "microscopic, reversibility" condition

I'(B+y -+ A) = I'(A ~B+y)
is deduced on the basis of considerations such as those
which justify Eq. (2.3). Thus, with»' as in Eq. (2.25),

7r (25g+1)
0 (B+r -+ X)=—»'

2 (25B+1)

4s I'(A ~ B+y) I'(A ~ X)
X (3.13)

(s—mB')' (gs—mg)'+ (I'g/2) '

so that inserting Eq. (3.13) into Eq. (3.11) yields

which constitutes the basic result of the present section.
Kith reference to subsequent discussions, we note

that g(s) and so 0 (B+y~ X) and, within our approxi-
mations, [d'a(B —+ X)/d.Qxdsjc«~ [see Eqs. (3.4), (3.9),
(3.11)),vanish unless the "helicity" of X, Ax= hm~»~ 2

X[Jx"Px] is equal to KB+1 [see Eqs. (2.7) and (2.22)].
It should also be noted that Eq. (3.11) is an appropriate
generalization of Eq. (2.25); to show this, let us assume
that o(B+y —+ X. ) is dominated by a particular reso-
nance which we identify with the "single-particle" state
A. The Breit-Wigner resonance formula for 0 (B+y—+ X)
is then given by

7r lt2(25~+ 1)
a(B+r —+ X)=

2(25B+1)

I'(B+r ~A)l'(A —+ X)
X (3.12)

(gs —mg) '+ (I'g/2) '

»' (25~+1)
=4Z2nl F(q2) l

'
» (25B+1)

sl'(A —+ B+y) I'(A ~X)
X-

(s—m ')' I'x

1 I'~/2 8'
X (3.14)

2r (gs —m/)2+ (I'g/2)2 [82($)+8 j2

d'px =dEx«xi pxl 'd
I
p'I

= [4(Ex' s)j ' 2dExdQxds(Ex2 —s) . (3.10)—
Equations (3.4) and (3.9) give the high-energy, small-

angle form of the differential cross section for B+Z~
A+X coherent production in the nuclear Coulomb field

where g(s) is related to a(B+y -+ X) by Eq. (3.4), and
where we have made the change of variables dQxds



152 PHOTONI C DECAY RATES

do(B ~ X. )- d'o(B ~ X)
ds

d~x - Coul dard~ —Coul

IE(q') I
'r(A ~ B+V)/m~—8Z'o.

mA2(1 mB2/m~2)o

»' (2S~+1) 8s r(A X)
X (3.16)

r)~ (25n+1) LB'+8'7' Fg

Equation (3.16) is in agreement with Eq. (2.25) in the
limit F(A ~ X)/F~ —+ 1, so that Eq. (3.11) is indeed
an appropriate generalization of this last equation.

IV. STRONG-INTERACTION-INDUCED
B+Z~ A+Z PRODUCTION

We write the differential cross section for the coherent
production process B+Z~ A+Z as

da(B ~ A)
~
M, (En, 8; )I.g,Xg)

de &A, &a

+M,(E.,8;).,).) ~, (4.1)

where M g and 3fg are the Coulomb-field and the strong-
interaction contributions to the amplitude for B+Z~
A+Z +/A xB~ Mc(En 8; X~,&n)

~

' is the Coulomb-Geld
cross section, )do (B~A)/d0~7c«&, given by Eq.
(2.25). Within the context of the usual impulse approxi-
mation for a spin-zero nucleus,

Ms(En, 8; Xg,&n) =AF(q') ((Z/A)P, (EB 8 Xg ~B)

+$(A Z)/A7p„(E, 8;),X—)q), (4.2)

where F(q'), q' are defined in Eq. (2.6), and P„D)„7 is
the strong-interaction-induced non-spin-Rip amplitude
for the process B+p~A+p ttB+e~A+n7. Equa-
tions (4.1), (4.2), and (2.25) yield the following ex-
pression for the signal-to-noise ratio R(E~):

R(E~)—= (L Q (Mo(Eg, 8) Ag))tn) ('7

XL g ~Ms(E&,8; &&,&&)
~ ] }o=ot@g)

Z ' (E~/m~)4—SXg~-
A L1—mn'/m&'7'

nr(A -+ B+y)/mg
X

L & l (Z/A)P~+L(A —Z)/A7P I
'mn'7o=o«w

8(En) —=—,'(mg' —m ')/E, '. (4.3)

If now I'&«m&, we rn.ay use

Fg/2

~ (gs —m~)'+ (r~/2)'

=8(gs —mg) = 2m~8(s —mg'), (3.15)

and integrating Eq. (3.14) over s we obtain

The numerical value of R(En) is decisive in any
evaluation of the possibility of a successful determina-
tion of F(A ~B+p) from a measurement of do (B—+A)/
dQ~. Unless the signal-to-noise ratio is at least of order
unity, it would be dificult to extract reliable information
about F(A —& B+y) as has recently been accomplished

by Belletini et a/. "in the case of F(7r' +-y+y).
The above expression for the signal-to-noise ratio is

somewhat smaller than a detailed treatment including
the effects of "absorption" (i.e., B Zinit-ial-state and
A-Z Gnal-state interaction) would yield. Such a treat-
ment has been given by Morpurgo" and by Engel-
brecht" for the process y+Z-+s-o+Z. These authors
find that the Coulomb-Geld-induced amplitude is rela-
tively unaffected by absorption, but that the magnitude
of the strong-interaction-induced amplitude is reduced

by a factor =2. Such an effect can be expected in
general because the absorption mechanism is short
range (strong interaction), and although for small mo-
mentum transfers the production takes place at rela-
tively large distances whether it is Coulomb-field or
strong-interaction —induced, the Coulomb-field effec-
tive-interaction region corresponds to much larger
values of separation than the range of the absorption
potential, and therefore 3fz is essentially unaffected by
absorption. On the other hand, the largest separations
that can effectively contribute to the small-momentum-
transfer strong-interaction-induced amplitude are of the
same order of magnitude as the range of the absorption
potential, and therefore absorption has a pronounced
effect upon M 8.

so= f(1 '~'V) = f—(~'~'V) = f(E:*'E."V)

f(lt eoR.o&) f(geo~o&) . (5 1)

in addition, the coupling constants associated with
photonic decays of the y and co mesons are given by

f(y7roy) = ', U3(a cos8„„bsin8—„„), —
f(oorroy) = stv3(a sin8„„+b cos8„„), (5.2)

"G. Belletini, C. Bemporad, P. L. Braccini, and L. I'oi, 5uovo
Cimento 40A, 1139 (1965).

"G. Morpurgo, Nuovo Cimentio Bl, 569 (1964)."C. A. Engelbrecht, Phys. Rev. 133,8988 (1964).
'4 K. Tana)ta, Phys. Rev. 1BB,B1509 (1964).

V. A PRIORI ESTIMATES OF SIGNAL-TO-NOISE
RATIO WHEN (A)B)= (V,P)

In this section we shall make a priori estimates for
the signal-to-noise ratio when (A,B)= (V,P), where V
and I' are, respectively, vector and pseudoscalar SUB
octet members. In this case, any empirical information
that can be obtained wouM be of great interest in testing
SVs, at present only the value of F(ro —+ ~'+y) = 1 MeV
is reliably known from experiment.

U-spin invariance predicts the following relations
among the coupling constants associated with photonic
decay modes of the type V —+P+y":
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srsinsg„„F(ce ~ s.s+y)
=1'(p+ ++7)= 1'(p' '+v)
=F(Ea+~E++y)
= -', r(E*o~Ko+q) = -'r(E"~E'+7)
=-;r(z,*o z,o+ &)=-;r(z,* z,+~). (5.5)

The preceding equations do not take into account the
actual mass differences among the particles within V
and within P. To do this in a very provisional way, we
identify the coupling constants with those appearing in
the most general Lorentz —and space-inversion —invariant
expression for the decay amplitudes: f(VP&)(pv)
X (p„)prt„(V) rt„(y) e p„„,where p v, rt (V), and p~, rt(y) are
the momentum and polarization 4-vectors of the vector
meson and the photon, respectively. We then obtain
a kinematical correction factor proportional to

TABLE I. Photonic decay rates and branching ratios with
no kinematical correction (N.K.C.) and with the kinematical
correction (W.K.C.).

where b is another constant and 0„„is the or-y mixing
angle defined by

Iru)=
I p) sing + Ioi) cost)„„

I p) =
I P) cose„„—

I ru) sino„„, (5.3)

with
I iv), Ioi) and

I p), Ice) the physical &p-meson,

+-meson states, and the bare unitary octet, unitary
singlet states, respectively. Equations (5.3) and (5.2)
show that V3a/2= f(j7r'y), v3b/2= f(~z'y).

Under the assumption that or —& s.+s.+s is dominated
by ro~ p+n- followed by p —&s.+s-, one finds that
fs(cats.p)/4s. =3"; this, when combined with the fact
that the decay rate for y —+ p+s- is less than 1 MeV,
which implies that fs(yrrp)/4rr~0 03, y. ields f'(perp)/
f'(tss.p' &0.01. Furthermore, within the framework of a
model in which the amplitudes for y+s'~7 and
ce+ss~y are dominated by a p intermediate state
(the only vector-meson state allowed by isospin con-
servation), f'(err'y)/fs(oirrsv) = f'(itrprr)/f'(oitrp), and
therefore f'(q7r'y)/f'(oi7r'y)~0. 01. Thus, we can use
the condition f(array) 0 in Eq—. (5.2) to eliminate the
constant b and obtain

su—-y(~~'p)(sine„„)/v3. (5.4)

Combining Eqs. (5.4) and (5.1), we can now express the
p and E*photonic decay rates (F is proportional to f')
in terms of the experimentallyknown rate for co~ a +7
and the or-q mixing angle as

mvs(1 —mis/mvs)s to be applied to the decay rates
of Eq. (5.5); thus Eq. (5.5), applied to p+ ~ 7r++p and
corrected for kinematical factors, becomes

Z (,~ ~+&)=-', sinst)„, r(~ ~~o+~)

m, sL1—m s/m, 'js
X . (5.6)

m. 'I 1—m. '/m. ']'

In Table I we give the indicated photonic decay rates
and the branching ratios relative to the corresponding
total decay rates, e.g., F(p+ ~ s.++y)/1'„) for
g =38'» is and I'(~ ~ s'+y) =0.9 MeV.

We now turn to an estimate of the amplitudes P„
and P„in Eq. (4.2) for Mz. We first note that within the
context of the usual impulse approximation for a spin-
zero nucleus, space-rotation and space-inversion in-
variance require that these amplitudes be proportional
to (pvXrt) pv, where pv and rt are the momentum and
polarization 3-vectors of the V meson and y~ is the
3-momentum of the I' meson. Consequently, production
of helicity-zero vector-mesons is forbidden and the
production cross section behaves like 0' for small pro-
duction angles. This behavior can also be understood
if one looks at the kinematics of P+Z~ V+Z, where
Z is treated as a spin-zero particle and applies angular
momentum and parity conservation. The parity
of the initial state for total angular momentum J is'
r)zrtz( 1)~ zi B—z=t)i rtz( —1)~ Lthe rt; are intrinsic
parities and the 5; are spin quantum numbers with

Si =0, Sz=Oj, while the parity of the final state with
the V-meson in a helicity-zero eigenstate is rtvrtz( —1)~ ',
and since q& ——qI, the helicity-zero amplitude vanishes

by parity conservation. With the possibility of helicity-
zero removed and considering the case pv

——pi, one
then sees that conservation of the component of angular
momentum along pi is violated by one unit so that the
production amplitude must behave like d(J,M,M&1; ())

~8 Lsee Eq. (2.20)j.
On the basis of the above discussion we shall approxi-

mate the P+p —+ V+p nuclear-non-spin-flip amplitude

by
—1/2

~.(&.,()= — .() - ..(p.)- ().)
27r d(cosg)

x(p.).(p.+p.,;)„
s= —(Pr+P„,;)s=2Erm„+m s+mrs,

t= (pv pp)'—
Process

Rate (MeV) Branching ratio (%%uo)

N.K.C. W.K.C. N.K.C. W.K.C.
cosg= pv pr. — (5.7)

P + 7l +P
p0~ ~0+V

E*+—+ E++y
E'1~0 —+ E'10+y
E2*0~ E20+y

0.1
0.1
0.1
0.4
0.4

0.1
0.1
0.05
0.2
0.2

0.1
0.1
0.2
0.8
0.8

0.1
0.1
0.1
0.4
0.4

Furthermore, since the P+n +V+tt amplitude —is
experimentally unknown, we assume for the purpose of
an order of magnitude estimate that

(5.8)

"R. F.Dashen and D. H. Sharp, Phys. Rev. 133, B1585 (1964). "J.J.Sakurai, Phys. Rev. 132, 434 (1963).
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With the approximations of Eqs. (5.7) and (5.8), the
signal-to-noise ratio, Eq. (4.3), becomes

Z) ' (E„/mr) '
Z(E„)=24 —

I

A)
I

1—m '/mv'J

al'(V ~P+y)
X (5.9)

mr'm„'I g„(s) I
'/4n.

and to the extent that Eq. (5.2) is valid, the barycentric
P+P~ V+P proton-non-spin-flip, Xv/0 differential
cross section is given by

do(P+p-+ V+P:XrAO, X„,.;=X~,.s)/dQ,

,Ig.(s)l'
=Pc(, .', ")c(, ", .')j"'

64ms'

C (x,y,s)=—x2+y'+z' —2xy —2xs—2yz. (5.10)

In no (A,B)= (V,P) case is the above cross section
sufficiently well known to determine g~(s). However, for
E +P —&E*+p, th'e entire Xr/0, differential cross
section (including the nucleon. -spin-flip contribution)
has been determined with good precision by Friedman
and Ross'" for E laboratory momenta of 2.64 BeV/c.
Assuming that the nuclear-spin-Rip contribution does
not dominate the entire Xv/0 differential cross sec-
tion, we find from the data of Ref. 12 that

do(E +p-+ K*. +P:XrWO)

- (y~—)lab=2. 64BeV/c

—(0.8 mb)8, ', (5.11)

and therefore, comparing Eq. (5.10) and Eq. (5.11),

mx*'mn'I g~(sl (Px-) i,b= 2.64 BeV/c]) I
'/4'ir

=2X10 '. (5 12)

Combining Table I and Eqs. (5.9) and (5.12), we thus
have as an a priori estimate for the signal-noise ratio,
when (A,B)= (E*—,E—

) and Ex 2.60 BeV, ——

R(Ex 2.6 BeV) = (2Z/——A)'X10 ', (5.13)

8(Ez ——2.6 BeU) =0.04 rad.

Following Ref. 2 we consider two more or less extreme
possibilities for the energy dependence of P~(Ex ,8):-
(i) P„~8, and (ii) Ps, ~ (Ex )8. Situation (i) i-s reason-
able if X +p~E* +P proceeds via one-nucleon
intermediate states, and (ii) is realized by a vector-
meson exchange model. If P„~8, E(Ex—)=1 requires
Ex=5 BeV; and if P, ~ (Ex ')8, E(Eir-) =1 req—uires

Ez——8 BeV. As a consequence of the very rapid in-
crease of E(Eir—) with Err it should be noted that eve—n

~~ J. H. Friedman and R. R. Ross, Phys. Rev. Letters 16, 485
(1966).

if Eq. (5.13) is in error by as much as a factor of 10,
the estimates Ez—=5 and 8 BeV are in error by factors
of only (10)' and (10)' 4, respectively. It would there-
fore seem reasonable to conclude that E(Eir—)=1 re-
quires E~—in the range 3—15 BeV.

Estimates of E(E„)with (P, V) other than (IC,E* )—
can be made in a similar way with the expected require-
ments on EJ again in the range of several BeV.

IV. SUMMARY AND CONCLUSIONS

%e have shown, using essentially only electromagnetic
curreet cor/sereuti ON, that in the general coherent produc-
tion process B+Z~y'+Z~ A. +Z on a nucleus of
relatively large mass (Fig. 1), at small B-+A produc-
tion angles (8=8«1), transverse virtual photons (as
viewed in the rest frame of A) are predominant, and we
have inferred that the same is true when the single-
particle state A is replaced by the e-particle state X
(m~ ~gs,p~ ~ Px). As a consequence of this effective
transversality of p', we have obtained the selection rule
that the helicity of A (or X) differs from that of B by
~i; and this selection rule, when coupled with angular-
momentum conservation, implies that the nuclear-
Coulomb-field coherent production amplitude vanishes
like 0 in the forward direction. This explains the
"mysterious" vanishing in the forward direction of the
nuclear-Coulomb-field A.+Z-+ Z0+Z production ampli-
tude: As further examples of the helicity selection rule,
we would like to point out that the coherent photo-
production of the spin-two f meson in a nuclear
Coulomb field, y+Z~ y+y'+Z~ f+Z, gives rise to
fmesons with helicity 0 and +2, but not &1;similarly,
coherent production in a nuclear Coulomb Geld of the
conjectured spin-one boson 8' by an incident pion
m+Z-+ n-+p'+Z —+ W+Z gives rise to W with helicity
~1, but not 0. On the other hand, and as we have
mentioned in the Introduction, in the nuclear-Coulomb-
Geld x —+ p and E~E*coherent production processes,
~+Z~~+y'+Z —+ p+Z and E+Z +E+y'+Z +- —
E~+Z, the spin-one p and E* mesons are born with
helicity &1because of parity conservation, so that there
the helicity selection rule does not provide an addi-
tional restriction. The predominance of transverse 7'
coupled with the hermiticity of the electromagnetic
current operator allows us to establish the basic pro-
portionality between the cross section of nuclear-
Coulomb-field B+Z~ A(X)+Z coherent production
processes and the A ~B&y decay rate (B+y —+X
cross section) which, of course, involves only transverse
photons LEq. (2.25)j.

Particular attention is given to (A,B)=(K~,Z ),
and we estimate that a laboratory energy 8&—in the
range 3—I5 BeV is required to produce a coherent
Coulomb-6eld E +Z ~E* +Z amplitude of the
same order of magnitude as the strong-interaction-in-
duced IC +Z —+ E* +Z amplitude for production
angles in the neighborhood of the Coulomb peak.


