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The relationship between the A — B+~ photonic decay process and the “inverse” nuclear-Coulomb-field

coherent production process B+Z — B++'+Z — A+Z [Z=high-Z nucleus, v'=

exchanged virtual

Coulomb photon] is studied in some detail for arbitrary particles (4,B). A procedure is described for the de-
termination of the rate of 4 — B+~ from measurement of the differential cross section for A4-particle
coherent production by a B particle incident on a high-Z nucleus. A numerical application of the formulas
derived is worked out in the case K~+4Z — K* +Z, and it is estimated that a K~ energy in the range 3-15
BeVisrequired for a successful determination of the rate of K*~ — K—+.

I. INTRODUCTION

T has been suggested that the rate of photonic decay
A — B+, with (A7B)= (77077)) (7717)7 (EO)A) (Pd:ﬂri):
or (K*+ K=), can be determined by measurement of the
differential cross section for 4-particle coherent produc-
tion by a B particle incident upon a high-Z nucleus.*—8
This general conclusion follows because the coherent
production process B-+Z — A+Z is dominated by the
photon-exchange pole for sufficiently small momentum
transfer to the nucleus and because a type of micro-
scopic reversibility holds for electromagnetic processes
[see Eq. (2.3) below]. We shall denote the photon-
exchange process by B+Z— B++y'+Z — A+Z, where
v’ is the exchanged virtual photon associated with the
Coulomb field of the nucleus Z.

An essential feature possessed by all the processes
listed above is the common angular dependence of
the coherent production cross sections. With the ex-
ception of the A+Z— 2Z%4Z process, they behave,
apart from the factor associated with the photon propa-
gator, like 6% for small values of the production angle
6(6=cos™(p5-P4)), and even the A+Z — 294 Z process
has this behavior provided that (ma/Es)2<1. If the
nucleus Z is regarded as a charged spin-zero particle,
then, with the exception of the A+Z — 2°4-Z case, it
is possible to infer the 62 behavior without specification
of the detailed mechanism of virtual-photon exchange,

1 (a%y) : H. Primakoff, Phys. Rev. 81, 899 (1951); V. Glaser and
R. A. Ferell, ibid. 121, 886 (1961); C. Chiuperi and G. Morpurgo,
Nuovo Cimento 19, 497 (1961).

2 (9,7): C. M. Andersen A. Halprin, and H. Primakoff, Phys.
Rev. Letters 9, 512 (1962) G. Belletini, C. Bemporad, P. L.
Braccini, L. Foé. and M. Toller Phys. Letters3 170 (1963

193 6(22)0 A) J. Dreitlein and H. Prlmakoff Phys Rev. 125, 1671
( 4 (pt,r%): S. M. Berman and S. D. Drell, Phys Rev. 133,
B791 (1964) G. Morpurgo, sbid. 131, 2205 (1963) Morpurgo,
Nuovo Cimento 31, 569 (1964)

5 (K*+ K*): M. ‘A. B. Bég, P. C. DeCelles, and R. B. Marr,
Phys. Rev. 124, 622 (1961).

152

i.e., this behavior is a property of the conservation laws
characterizing the over-all reaction. In particular, for
y+Z—->m+Z or yv+Z— 9+Z, angular-momentum
conservation implies that the corresponding coherent
photoproduction amplitudes vanish in the forward, i.e.,
0=0, direction so that the 62 dependence is justified;
for p(K*) mesons, which cannot be produced with zero
helicity by 7(K) mesons incident on a spin-zero nucleus
because of parity conservation, an auxiliary argument,
very similar to that used for the case of y+Z — 7%4-Z,
justifies the 62 dependence. In contrast, for the A-Z —
2947 case, a general inference regarding the small 8
behavior cannot be made; in fact, without some ex-
amination of the mechanism of coherent production, one
would anticipate a behavior like 6° rather than 62

We shall develop and extend the Weizicker-Williams
approximation® in a manner which clearly shows that
it is a consequence of electromagnetic current conservation
alone that this 2 behavior holds for any B4+Z— A4-+Z
nuclear-Coulomb-field coherent-production process at
high incident energies and small production angles.
In particular, we shall see that in this limit only trans-
verse virtual photons (as viewed in the rest frame of 4)
are important, and that as a consequence the helicities
of A and B differ by one unit; this circumstance, to-
gether with angular-momentum conservation, is in fact
responsible for the 62 dependence.

Proceeding along similar lines, we shall also obtain a
relation between the cross section for B+vy — X and the
nuclear-Coulomb-field production cross section, B+Z—
B4++y'+Z— X+2Z, where X represents an arbitrary
set of particles. If one thinks of X as representing- the
decay products of particle 4, this relation is particularly

6 K. F. Weizsicker, Z. Physik 88, 612 (1934); E. J. Williams,
Phys. Rev. 45, 729 (1934) V. N. Grlbov V. A. Kolkunov L. B.
Okun and U. M. Shekhter Zh. Ekspenm i Teor. Fiz. 41 1839

(1961) [English transl.: Soviet Phys.—JETP 14, 1308 (1962)],
I. Pomeranchok and I. Shmushkev1ch Nucl. Phys 23,452 (1961).
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useful when discussing the production of extremely
short-lived particles 4.

In Sec. IV, we give a brief general discussion of
strong-interaction-induced B+4Z — 4+ Z coherent pro-
duction and define the relevant signal-to-noise ratio
to be considered in assessing the potential success of
any procedure to extract the 4 — B+y decay rate.
A priort estimates of the signal-to-noise ratios when A4
and B are, respectively, vector and pseudoscalar SU;
octet members are given in Sec. V; particular atten-
tion is given to (4,B)= (K*,K").

II. RELATIONSHIP BETWEEN THE PHOTONIC
DECAY RATE A— B+~ AND THE][CROSS
SECTION FOR B+Z— A+Z COHERENT
PRODUCTION IN THE COULOMB
FIELD OF A HIGH-Z NUCLEUS

We consider any two particles, 4 and B, having mass
my and mp, respectively, and spin values S4 and Sp.
The A — B+v and B++v— A vertex functions can
be written as

M\y)-TAsN5), €Ny)-T(Aa,\5);

T Y=XoVa=X"Y— %Yo , 2.1)

where, up to a proportionality factor, T(\4,A5) and
T(\a,\5) are the 4 — B and B— A electromagnetic
transition currents, A4, Ag, and A, are the helicity
quantum numbers of the three particles, and e(\,) is a
unit 4-vector describing the polarization of a photon
of helicity A,. In the language of an effective Lagragian,
Lom (%) = fom (%) - 4 (%),

T(\a\p)= (2E42E35)Y%(B; out| jem(0)| 4; in),
T(\a,\8)= 2E42E3)V*4; out| jem(0) | B; in),

whence, as a consequence of the Hermiticity of jem(0)
and of the equivalence of “in” and ‘“out” electro-
magnetic single-particle states, we obtain a type of
microscopic-reversibility relation

T’O\A,)\B) = T*()\A,XB) .

(2.2)

(2.3)
Helicity amplitudes a(As,\,) are defined by

*(\y) - T4, 8)=a(As-N\)d(Sa, A 5—Ny; T),  (24)
where, in the rest frame of 4, ¥ is the angle between
an arbitrary quantization direction along which the
spin of 4 is measured and the direction of motion of B,
and d(J\\N;¥) is an appropriate symmetric-top
eigenfunction.® Using Egs. (2.1) and (2.4), the photonic
decay rate I'(4 — B-+7) is given in the rest frame of 4

7 The factor of (2E42Eg) in Eq. (2.2) and below is appropriate
only if 4 and B are bosons and should be replaced by a factor of
[(Es/ma4)(Ep/mp)] if A and B are fermions. However, this re-
placement does not change the final result in Eq. (2.22).

8 M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7 404 (1959).
We consistently omit the factor exp{i[Aa— (7\3—)\7)}1)} multiply-
ing d(S44, Ae—Ny; ¥), where & is an azimuthal angle.

HALPRIN, ANDERSEN, AND PRIMAKOFF

152

by

1 [ dppdip, 1
/ ——(2m)*(p5+py)
(2m)?J 2Ep 2E, 2my

XS(Eg+E,—ma)nz Y. 2 |€*(\y)-T(Aa,\5)|?

AB Ay=zx%l

I'(4— B+r71)=

1 ma’—mp?

el i >

16mma a2 AB A=l

I a(}‘37>‘7) l 2

aQ
X/ —|d(Saha,Ap—Ay; ) |2
4

B ma2—mp? 1
16 (2S4+1)
XX X la@s )%

AB A=+l

mAz

li

1 if By,
3 if B=v,

B

(2.5)

where A,=-41, —1 correspond to the two states of
transverse (circular) polarization of the emitted photon.

We now turn to the B+Z — A+4Z coherent produc-
tion process in the Coulomb field of a high-Z nucleus,
B+Z— B4++y'+Z — A+Z. Since we shall ultimately
consider the case of relatively large nucleus mass, and
ignore any nucleus magnetic-moment interaction, the
nucleus can be treated as a Ze-charged spin-zero
particle characterized by a form factor F(¢%. The
Z — Z vertex function may then be written as

ZeF(q2)(PZ:1'+PZ;f) : f*()‘v)§
v =q*=(pz,;i— pz,7)*= (pa—p5)*

m_21/2 1 ma2+mp?

=2EAEB’1—‘[1"—_':| cosf—— —— ;
B’ 2 E4Ep

6=cos Y (pr-Pa). (2.6)
From the diagram of Fig. 1, the Z— Z4vy vertex
function of Eq. (2.6), and the y4-B — 4 vertex function
of Eq. (2.1), the total and differential cross section for
B+Z— A+Z coherent production in the nuclear

B: Pg " (DB,IEB) A Py = (%,iEA‘)

F1c. 1. Feynman
diagram for B+Z —

' q = (@ .igp)
© o vz atz

Pr 4= (7 piE7g)
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Coulomb field are given in the laboratory frame by

[o(B— 4)Joou= f d9=[lh(‘;—;Az]m= |p31| /Ep

1 [d%gydpa 1 1
/ —_— (2r)*
(27r)6 2Ez;/ 2E4 2Epg 2mz
|[F(@)|* ns
Xo(pp+pzi—pa—pz;5) 2%
(ppt+pz,i—pa—1pz;5) @ 2S5t1)

Xx%:s | (pziitp7:5) T(Na\5) | %

1]3'—=—1 If m3=0 y

=1(2Sp+1) if mp=0. 2.7)

We now exploit the fact that, on the basis of Egs.
(2.7) and (2.5) and the “microscopic reversibility” rela-
tion in Eq. (2.3), a definite connection exists between
[e(B— 4)Jcom and T'(4— B+v). To deduce this
connection we write
(pz:it02:5)- T ahe) = CI(Aa,Ap)+CEO (N g \5);

COOMNa )= X (pziitpzis) €(\y)
Ay=x1
X GO“Y) : TO‘AJ\B) )
CEONaNB)= (it pzis) - [ (De(l)
+e 01 TOsAs), (2.8)
where e(2=1), (), and €(¥) are an orthonormal set of

polarization unit 4-vectors which satisfy the complete-
ness relation

[)\ §;§;1 e*(N\y)es(N\y) ]
Flea*Des(t)+ea* () es(t) 1= das-

In order that e(==1), €(/), and (f) describe, in the rest
frame of A, transverse, longitudinal, and timelike
photons, respectively, in both the decay and the pro-
duction processes, we take as an explicit representation
€(£1)=FV2[(D)xie' (1) ],
€D=@X7,0), ¢I)=@0),
€D=q0, €O=(0y),
#'=¢'Xpz,i, «'=pzi—pz/=ps,

(2.9)

(2.10)

where, in this discussion and below, primed and un-
primed symbols will refer to quantities measured in
the rest frames of A4 and of Z (laboratory frame), re-
spectively. Then, obtaining e(=£1), €(?), e(¢) from €'(Z1),
(), €(t) by the Lorentz transformation connecting
the rest frames of 4 and Z, and noting that (pz,i+ pz;1)a
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=imzdsat (P2:7)a=22im 704, in the case of relatively
large nucleus mass, we have

P
CU(Ag,\5) g—\/ZmZI—A—I sinf’[e(+1)

ma

—e(—1)]-TOa,Ns), (2.11a)

Ea[ |pal
C“-”(M,M)gzmz——li cost’e(?)
mal E4

—f—e(t)] “T(A\=\5), (2.11b)

where
b5’ (pa'—pz) I
cosf =i —pp' bz
P4 —DPz;:
. (2.12)
P (Pa—Dpz:) .
cosf=——————=Pp-Pa.
|pa—pz;il

We now introduce the essential restriction of elec-

tromagnetic current conservation, viz.,
Q'T()\A,)\B)=O. (213)

This, when applied in the rest frame of 4, yields, using
Eq. (2.10),

0=¢"-T'O\u\8)+i(ge’/ | a]) T4 (a,\s)
=¢(1)-T'(\ahp)+(g0'/ 1]’ 1) - T(Na,\5)

=e(l)- TOaNp)+(qo'/ |al"e(®)- TOarp).  (2.14)
Hence, substituting Eq. (2.14) into (2.11b),
Ear  |pal g
C(l't)()\A,)\B)Esz_“[l—' — cosH’:I
ma 4 ||
Xe(t) - TAahp). (2.15)

For relatively large nucleus mass so that Egz;
~FEgz.;=mz, Es~ Ep, high incident energies (Eg>>m,
mp) and small production angles (§<1), the expression
for ¢% in Eq. (2.5) becomes

P2ER5°+6%]; d=5(ma’—ms")/Ep*, (2.16)

and, since (1/¢?)? appears in the B+Z — A+ Z coherent
production cross section [Eq. (2.7)], we shall only be
interested in values of =~ 4. Under these circumstances
we also have

0’%2E3m40/(m,12—m32)zmA/EB (217&)

and
!

do

Ez{—Ez; _|pal
la'| |pzi—pzs| Ea

) (2.17b)
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whence, substituting into Egs. (2.11a) and (2.15),
sz320
COIAa )= —2V2—— [ e(4+1)
ma?—mp?
—e(—1)]-T(\a,\5)
=—mzle(+1)—e(—1)]- T(As,\p), (2.18a)
Eprma® 1 4Egp%m420?
cwn O\A,)\B)EZMZ—[ + ]
malEg? 2 (ma—mp?)?
(t)- T()\A,)\B)
zmz(mA/EB)e(t) : T()\A,KB) . (218b)
As in the decay process 4 — B-+v [see Eq. (2.4)] we
write e(\,)-T'(A4,\p) in terms of helicity amplitudes
a(A,\y) as
) Tahp)=€(\y)- T'(\a,\5)
= dO‘BJ)“Y)d(SA:)‘A}kB_)“‘I 70/) ’
0'=cos (—pp' pz.{); (2.19)
note that €(f) corresponds to \,=0, and record the
following small-angle property of the symmetry-top
eigenfunctions?®;
dIMN; @)= PPN +an Dt - T;
ea=1, (2.20)
Thus, at small production angles §=cos™1(pz-p4), the
dominant terms in C%?(\4,\g) and (C%™(A\4,\5) cor-

respond to Ay =Ap=1 and A4 =\p, respectively, and the
quantity

d)\)\/(")%l.

Zaansl @zt pz.0)- TNa\s) |2
of Egs. (2.7) and (2.8) is given by
> | @zitpz.0 T(Aap)|?

A,B

= 2 [CU(Ag\5)+CEHO(Na\5)|?

A,AB

=3 {ICMs+105) [+ [CEO (A=~ 1A5) |
AB

+|CUO(Ap ) |2}, (2.21)

Furthermore, e(=1)- T'(\a,\5) is comparable in magni-
tude with e(#)-T(A\g,\5), since the transition currents
T(\s=1, \g) and T(\z,\p) differ only in the helicity
quantum number of 4; with this in mind, combining
Egs. (2.21) and (2.18), we obtain, up to corrections of
order (m4/Eg)?,

Mzm | (pz:i+02:5)- T(Aay\5)|?
=3 [IC(As+1,28) [ 24| CUI(\p—1,25] %]
AB
8mz2EB402 —
~—— 3 [le(—1)-T(\p+1,25) |2
(mA2__mB2)2 AB _
+le(+1)-Ts—125)|2]. (2.22)

9 A. R. Edmonds, Angular Momentum in Quantum M echanics
(Princeton University Press, Princeton, New Jersey, 1957).
Based on Eqg. 4.1.15,
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Equation (2.22) shows that the nuclear Coulomb
field is, so to speak, selective with respect to the helicity
states of 4 that are produced in it. As an example of
this “‘selection rule,” consider the process A+Z —
Ay +Z—324Z; if M=+43, then, according to
Eq. (2.22), M\se=—% (or As°=$%, which however is
ruled outsince Sz°o=1),1.e., the hyperon spin is “flipped”
by the nuclear Coulomb field, and, therefore, in the
approximation of Eq. (2.22), the nuclear-Coulomb-field
coherent production amplitude does not conserve
angular momentum in the forward, i.e., §=0, direction.
Thus, Eq. (2.22) provides the rationale for the “mys-
terious” vanishing of the high-energy, forward, nuclear-
Coulomb-field A — 29 coherent production amplitude
discussed in the Introduction.

The expression in Eq. (2.22) for

EXA_XBI (PZ;H"PZ;I) - T()\A;)\B) l 2

involves the exchange of iransverse virtual photons
only. Thus, using Eqgs. (2.19) and (2.20) we can write
Eq. (2.22) as

z l (?Z;i+17z;f) * T()\A,)\B) | 2=

LY :;

SmZ2E3402
mAZ__ mB2)2

XZ Z Id(}‘B)AY) [ 2,

AB Ay=z%1

(2.23)

and, in view of the “microscopic reversibility” relation
in Eq. (2.3), and of Egs. (2.4) and (2.19), make the
crucial substitution

a(\p,\y=£1)=a*(\p\,==%1).

Then, inserting Egs. (2.24), (2.23), and (2.16) into
Eq. (2.7), and comparing with Eq. (2.5), the high-
energy, small-angle form of the differential cross sec-
tion for B4 Z—A+Z coherent production in the nuclear
Coulomb field is given by

I:da(B - A):l NSZ2a[F(q2) |2T(4 — B+v)/ma
dQy Coul

maZ[1—mp®/ma®]
62

ABT
[62—1— 02:]2

(2.24)

XX
w=e?/dr1/137
n8 (2S54+1)
Xap=——"7}
78 (2S3+1)
1, By,

Il

nB

[

» B=v,
, mp#0,

51(25’3—}—1),
P=E[0246%), 6=%(ma*—mzp?)/Eg?.

We should also mention that in obtaining Eq. (2.25) we
have in addition neglected any deviation of the helicity

—- e

’

nB

I

m3=0;
(2.25)
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amplitudes from their ¢?=0 values since ¢%/m 42
~m4?/Ep*K1 according to Eq. (2.16).

Equation (2.25) is the basic relation which connects
the B4+Z — A+Z coherent production in a nuclear
Coulomb field with the 4 — B-++v photonic decay
rate. Special cases of Eq. (2.25) correspond to

™ —yty, a—->vty, S—ovtry~Xap=1,
fov+y ~X4p=3,
p—rty, K*—= K4y, W—orty~X45=3,
20— Aty ~X4p=1.

Finally, it is worth remarking that if F(g%)~F(0) for
?<28%Ep% 10 i.e., for 6262 then [do(B — A)/dQ4 Jcou
has a sharp maximum for §=34; this sharp maximum
constitutes one of the prime distinguishing features for
the B4Z— A+Z nuclear-Coulomb-field coherent
production process.

III. RELATIONSHIP BETWEEN THE CROSS SEC-
TIONS FOR B+~y— X AND B+Z— X+Z IN
THE COULOMB FIELD OF A HIGH-Z NU-
CLEUS (X=MANY-PARTICLE STATE)

In this section we generalize the previous discussion
by replacing the single-particle state 4 by an n-particle
state X with #>1. Our goal is to obtain a relation be-
tween the B4y — X total production cross section,
o(B+y— X), and the B+Z— B4+y'+Z—>X+2Z
nuclear-Coulomb-field coherent production differential
cross section, [do(B — X)/dQ]cour

In analogy with Eq. (2.1), we write the B4+y— X
vertex function as

6()\7) . T([)‘X:] ))‘A) ’ (31)

where [Ax] denotes the set of # helicity numbers as-
sociated with X. The cross section ¢(y+B — X) is then
given by

2r)nmns’
(B —> y4X)= (2m) nsms

4(253"‘ 1)(s—m32)

1 d'py d
)= f b P
@) ) 2E, 2E

X X X ley) T(x1As)|%

AB,[AX] Ay=x1

G(s);

29

pr é Pj, Px=(PX,iEX), p1=(pJ’$EJ))
1

s==—px*=—(ps+py)2, 3.2)

with 7z and 55’ defined in Eq. (2.25). We now transform
from the set of 3% integration variables, p1- - * pa, in the
above expression to the set px plus the remaining

10 The goodness of this approximation depends upon the size
of the nuclear radius R, i.e.,

QRIS 2 5 RI= 3 (m 4 —my?)?/ E5]R?
must be <1 for F(¢®)=2F(0).
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3n—4 variables internal to X,
@*py/2Ey: + - d*pn/2En=Jd*pxdpins, 3.3)

where J is the Lorentz-invariant Jacobian of the trans-
formation and dpiny need not be made any more ex-
plicit than to say that it is a Lorentz-invariant dif-
ferential. Combining Egs. (3.2) and (3.3), we have

4(253"}“1)(3—%32) 1
o(By—30=| - ] e
HE )“a“)* / dpime]
X X X |e)-T(xIAs)|2 (3.4)

AB,[AXx] Ay=x1

We now turn to the B4+Z — X+4Z coherent produc-
tion process in the Coulomb field of a high-Z nucleus:
B+Z — B++y'+Z — X+Z. Combining Egs. (2.6),
(2.9), and (3.1) with the analog of Fig. 1 (4 replaced
by X), and considering the case of relatively large
nucleus mass, the nuclear-Coulomb-field induced B—X
coherent cross section is given in the laboratory frame
by

20 /

1B
g(B— X Coul = DN )2H7
Lot ] |ps] (2SB+1)(
1 d’p1  dpa |F(gH)|*
= —_— Ep—Ex
7 (271-)3"./ 2E; 2E, (¢®? 3 )
><A % ] I{EXZ e*(A\De(\y)]

+leHDeD)+e* )T} T(DxIAB) |2,
pry*=q*=(pz;i— pz:9)*=(px—p5)*

§2E32{ 1—[(1—s/Eg®)(1—mg?/ Eg?) ]!/

1 s+m32
X cosf—~ ,
2 Eg?

6=cos (P px), 3.5)

where the (1), €(?), €(f) are obtained by an A4-rest-
frame— Z-rest-frame Lorentz transformation from the
€(£1), €(@), €(f) defined in Eq. (2.10). Again we make
the same change of variables as before [Eq. (3.3)] and
obtain

Z2ang' /‘
d(B— X) Jcoss=—(27?%) | d*px (Ep—E
Lo( ) Jcour= [pBI(ZSB+1)( ) | d*px (Es— Ex)
|F(gD]?
h
(g»?
h= ! /d e 2
__(271-)3” Pint AB,I\X]

XHL X e*(A)e()]
Ay=1

+Le*@e()+es*@)e®)]} - T((AxIA8) 2. (3.6)
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With the exclusion of es(),), the integrand of % is a
Lorentz invariant, and since es(\,) depends only upon
Px, factors of es(\,) can be taken outside of the integral
sign in % and the remaining invariant integral calculated
in the rest frame of X. In this frame let us take the z
axis along the 3-momentum of B. Then, for a given value
of A, different values of A, correspond to different
values of the z component of the angular momentum J,
and integration over the angles associated with dpins
demonstrates that there is no interference between
terms with different values of \,[e(!) and e(t) are
characterized by A,=0]. We note that in the case of
the production of a single-particle state 4 there is no
integration over any internal angles and we have to use
the property of symmetric top eigenfunctions given in
Eq. (2.20) in order to establish that there is no inter-
ference between terms with different \,.

In analogy with the single-particle case we apply the
current conservation condition [Eq. (2.13)] and con-
sider the case of high incident energies (Ep3>+/s,mp)
and small production angles (6<1). Then, bearing in
mind the absence of the interference terms discussed
above, we have, to order (v/s/Eg)?%, (mp/Eg)?,

1
e / Ipd T et

(27)3n AB,IAX] Ay=ct1

X |e\y)-T(AxIM)|2, (3.7)
with
| ea(£1) | 2222 ER02/ (s— mp?)?.

Equations (3.6), (3.7), and (3.8) yield

(3.8)

[e(B— X)Jcou= f dQXdS[M]coul

dQ XdS

Z2a2 ’
=——|F(g)| 2
Es (255+1)
8(Ep—Ex) 2Ep6?

@ Gmm

Z2 2 ’
i~ / d9x s{ — (2m)2 Y(Ep—s)12
Es (2Sp+1)

|F(g?)|* 2Ep'6

(¢»*

where g(s) is related to ¢(B+vy — X) by Eq. (3.4), and
where we have made the change of variables

d4px= dExdﬂxlpxl 2dlpil
= [4(EX2—s)]_”szXdQde(EX?— s).

(2o [ atpx

o, 69

(s—mz?)?

(3.10)

Equations (3.4) and (3.9) give the high-energy, small-
angle form of the differential cross section for B4+Z —
A+ X coherent production in the nuclear Coulomb field
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as
[d20(3—’X)] Z%|F(g)|*
dQxds  Jdooa  npr?

o(B+y— X) 92

(—mst)  [)+0T
PEE() 40,
(6 =4s—ms?)/ B,
ng=1, B#vy,
=1 B=vy, (3.11)

which constitutes the basic result of the present section.

With reference to subsequent discussions, we note
that g(s) and so ¢(B+v — X) and, within our approxi-
mations, [d20(B — X)/dQxds Jcou [see Eqgs. (3.4), (3.9),
(3.11)7, vanish unless the “helicity” of X, Ax=lim 5|0
X[Jx-px]is equal to Ap==1 [see Egs. (2.7) and (2.22)].
It should also be noted that Eq. (3.11) is an appropriate
generalization of Eq. (2.25); to show this, let us assume
that ¢(B4+vy — X) is dominated by a particular reso-
nance which we identify with the “single-particle” state
A.The Breit-Wigner resonance formula for ¢ (B+v — X)
is then given by

TR2(2S4+1)
o(B+7—> X)=m "
2(285+1)
I'(B+7r— A)T(4A—X
(B+7— A)T( )’ (3.12)
(Vs—ma)*+(T4/2)?
where I'y=total decay rate of 4, X~1=|pz|=|—p,|

= (s—mg?)/2¢/s, (254+1) is replaced by 2 if mp=0,
and the “microscopic, reversibility” condition

T'(B+y— A)=T(4 — B+7)

is deduced on the basis of considerations such as those
which justify Eq. (2.3). Thus, with 75’ as in Eq. (2.25),

v (25a+1)
o(B+7— X) ——17 f——
(255+1)
4s T(4d—B+y)TA4—X)
(Vs—ma)*+(T4/2)*
so that inserting Eq. (3.13) into Eq. (3.11) yields
20(B— X g (2S4+1
[d ( )] 47| F()| 277_( a+1)
dQxds  Jdcoul 78 (2S5+1)
sT(4 — B+v) T4 — X)
(s—m32)3 PX
1 Ta/2 ‘l 02
X| - . (314
L (V/s—ma)t+(Ta/2)2I[6(s)+ 07T (319

, (3.13)

(s—mp?)?
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If now I' yKm 4, we may use
1 T4/2
T (V/s—m4)*+(T4/2)?

=6(/s—ma)=2mad(s—m4?),

(3.15)
and integrating Eq. (3.14) over s we obtain

[do(B — X)] /d ,:d%(B — X)]
- =gl —
dQx Coul dQxds  dcoul

|F(g®)|*T(4 — B+v)/ma
7%
ma2(1—mp?/ma2)?
28 (2S4+1)  #  T(U—X)
ng (2Sp+1) [62+6%]7 T4

Equation (3.16) is in agreement with Eq. (2.25) in the
limit T'(4 — X)/T'4 — 1, so that Eq. (3.11) is indeed
an appropriate generalization of this last equation.

=8

(3.16)

IV. STRONG-INTERACTION-INDUCED
B+Z— A+Z PRODUCTION

We write the differential cross section for the coherent
production process B+Z — A-+Z as ‘
de(B— A)

Z IMO(E3105 )\A:AB)
A

A4,\B
+Ms(Eg,0; \ahs) |2, (4.1)

where M ¢ and M g are the Coulomb-field and the strong-
interaction contributions to the amplitude for B4+Z —
A+Z. Zya 8| M ¢(Ep,0;74,\8) |2 is the Coulomb-field
cross section, [do(B— A)/dQ4]cou, given by Eq.
(2.25). Within the context of the usual impulse approxi-
mation for a spin-zero nucleus,

M s(Eg,0; Na\s)=AF(¢>) {(Z/A)B(Ep,0;\a,\5)
+[(A—Z)/A0B(Es,0; A a,\B)}, (4.2)

where F(g?), ¢* are defined in Eq. (2.6), and B,[8.] is
the strong-interaction-induced non-spin-flip amplitude
for the process B+p— A+p [B+n— A+n]. Equa-
tions (4.1), (4.2), and (2.25) yield the following ex-
pression for the signal-to-noise ratio R(Eg):

R(Ep)={[ XZA | M c(EBg, 6574, \B)|%]
X[ X

MA,AB
ESXAB(E>2__<E_f’/m_")f_
A [1—mB2/mA2]5
% al'(A — B+7v)/ma
EXZX |(Z/4)B5+[(A—~2)/ATBn| 25 o—s

| M 5(E,8; Na,\) | 2]} =523

E(EB E%(m,12—m32)/E32. (43)
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The numerical value of R(Ep) is decisive in any
evaluation of the possibility of a successful determina-
tion of I'(4 — B-v) from a measurement of do(B— 4)/
dQ4. Unless the signal-to-noise ratio is at least of order
unity, it would be difficult to extract reliable information
about I'(4 — B+7) as has recently been accomplished
by Belletini ef al.!! in the case of I'(x®— y+47).

The above expression for the signal-to-noise ratio is
somewhat smaller than a detailed treatment including
the effects of “absorption” (i.e., B-Z initial-state and
A-Z final-state interaction) would yield. Such a treat-
ment has been given by Morpurgo!? and by Engel-
brecht!3 for the process y+Z— m°+Z. These authors
find that the Coulomb-field-induced amplitude is rela-
tively unaffected by absorption, but that the magnitude
of the strong-interaction-induced amplitude is reduced
by a factor ~2. Such an effect can be expected in
general because the absorption mechanism is short
range (strong interaction), and although for small mo-
mentum transfers the production takes place at rela-
tively large distances whether it is Coulomb-field or
strong-interaction-induced, the Coulomb-field effec-
tive-interaction region corresponds to much larger
values of separation than the range of the absorption
potential, and therefore M ¢ is essentially unaffected by
absorption. On the other hand, the largest separations
that can effectively contribute to the small-momentum-
transfer strong-interaction-induced amplitude are of the
same order of magnitude as the range of the absorption
potential, and therefore absorption has a pronounced
effect upon M .

V. A PRIORI ESTIMATES OF SIGNAL-TO-NOISE
RATIO WHEN (4,B)= (V,P)

In this section we shall make @ priori estimates for
the signal-to-noise ratio when (4,B)=(V,P), where V
and P are, respectively, vector and pseudoscalar SUs
octet members. In this case, any empirical information
that can be obtained would be of great interest in testing
SUs; at present only the value of I'(w— 7%+v)~1 MeV
is reliably known from experiment.

U-spin invariance predicts the following relations
among the coupling constants associated with photonic
decay modes of the type V — P44

3a= f(p*rty) = f(o"rl) = f(K*+K*y)
=—3f(K*K%)=—}fE*K%); (5.1)

in addition, the coupling constants associated with
photonic decays of the ¢ and w mesons are given by

flemy)=2%V3(a cosfu.,— b sinb.,) ,

flwr®y)=3V3(a sinf,,+b cosbo,) , (5.2)

11 G. Belletini, C. Bemporad, P. L. Braccini, and L. Foa, Nuovo
Cimento 40A, 1139 (1965).

12 G, Morpurgo, Nuovo Cimentio 31, 569 (1964).

13 C. A. Engelbrecht, Phys. Rev. 133, B988 (1964).

14 K. Tanaka, Phys. Rev. 133, B1509 (1964).
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where b is another constant and 6., is the w-¢ mixing
angle defined by

|w)=|&) sinfyp+ |@) cosbu,,
| o)=|@) cosbu,— | &) sinb,, (5.3)

with |¢), |w) and |@), |&) the physical ¢-meson,
w-meson states, and the bare unitary octet, unitary
singlet states, respectively. Equations (5.3) and (5.2)
show that V3e/2= f(en%), V3b/2= f(@r%).

Under the assumption that w — w7 is dominated
by w— p+n followed by p— -+, one finds that
fA(wmp)/4w=~315; this, when combined with the fact
that the decay rate for ¢— p+ is less than 1 MeV,
which implies that f2(emp)/4w<0.03, yields f2(¢mp)/
f*(wmp’ £0.01. Furthermore, within the framework of a
model in which the amplitudes for ¢+#°— vy and
w+m"— v are dominated by a p° intermediate state
(the only vector-meson state allowed by isospin con-
servation), f*(¢m%)/f*(wny)= f(enp)/ fwmp), and
therefore f2(em’)/f*(wr%)=<0.01. Thus, we can use
the condition f(em%)==0 in Eq. (5.2) to eliminate the
constant & and obtain

3022 f(wr%)(sinb,,,)/V3. (5.4)

Combining Egs. (5.4) and (5.1), we can now express the
p and K* photonic decay rates (I' is proportional to f?)
in terms of the experimentally known rate for w — 7%y
and the w-¢ mixing angle as

3 sin20,,,I'(w — 7%4-7)
=T (p* — 7 +y) =T (" = 7+7)
=T(K*t— K*+7)
= AT(K* — K0-9) =T (&* — Ro4)
=iT(K1* - K"+7)=1T(K:** > Kat7).  (5.5)

The preceding equations do not take into account the
actual mass differences among the particles within V
and within P. To do this in a very provisional way, we
identify the coupling constants with those appearing in
the most general Lorentz- and space-inversion-invariant
expression for the decay amplitudes: f(VPy)(pv)e
X (p1)enu(V)n(v) €, Where py, 9(V), and p,, 1(y) are
the momentum and polarization 4-vectors of the vector
meson and the photon, respectively. We then obtain
a kinematical correction factor proportional to

TaBLE I. Photonic decay rates and branching ratios with
no kinematical correction (N.K.C.) and with the kinematical
correction (W.K.C.).

Rate (MeV)  Branching ratio (%)
Process N.K.C. W.K.C. N.K.C. WK.C.
pr— w4y 0.1 0.1 0.1 0.1
p0— w04y 0.1 0.1 0.1 0.1
K*t — K+ 0.1 0.05 0.2 0.1
Ky ¥ — K04y 04 0.2 0.8 04
K2*0— K04~ 04 0.2 0.8 0.4
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my(1—mp?/mv?)? to be applied to the decay rates
of Eq. (5.5); thus Eq. (5.5), applied to p£ — x®--y and
corrected for kinematical factors, becomes

T(p — m+7v)=2} sin?0,,I'(w — 7°+7)
mp2[1 — mﬂZ/mp2:]3

me1— m,,z/mmz}“ )

(5.6)

In Table I we give the indicated photonic decay rates
and the branching ratios relative to the corresponding
total decay rates, eg., T(pt— 7"+v)/T,,) for
0up=38°1516and I'(w — 7°4v) =0.9 MeV.

We now turn to an estimate of the amplitudes 8,
and 8, in Eq. (4.2) for M 5. We first note that within the
context of the usual impulse approximation for a spin-
zero nucleus, space-rotation and space-inversion in-
variance require that these amplitudes be proportional
to (pyX1n)-py, where py and » are the momentum and
polarization 3-vectors of the V meson and pp is the
3-momentum of the P meson. Consequently, production
of helicity-zero vector-mesons is forbidden and the
production cross section behaves like 2 for small pro-
duction angles. This behavior can also be understood
if one looks at the kinematics of P+Z— V+Z, where
Z is treated as a spin-zero particle and applies angular
momentum and parity conservation. The parity
of the initial state for total angular momentum J is®
npnz(—1)T—8P=82=ypnz(—1)7 [the 7; are intrinsic
parities and the S; are spin quantum numbers with
Sp=0, Sz=0], while the parity of the final state with
the V-meson in a helicity-zero eigenstateis gynz(—1)77,
and since ny=17p, the helicity-zero amplitude vanishes
by parity conservation. With the possibility of helicity-
zero removed and considering the case py=pHp, one
then sees that conservation of the component of angular
momentum along pp is violated by one unit so that the
production amplitude must behave like d(J,M,M +1; 6)
o« g [see Eq. (2.20)].

On the basis of the above discussion we shall approxi-
mate the P4 p — V-4 nuclear-non-spin-flip amplitude
by

1 dt 1/2
ﬁp(Ep,0)=[— ———] £5(5) s (B7)ns (M)

27 d(cosh)

X (0)u(po D20,
=—(pptppi)?=2Epmytmy*+mp?,
=—(pv—2pr)?,

cosb=py-pp. (5.7)

Furthermore, since the P4#n— V+4»n amplitude is
experimentally unknown, we assume for the purpose of
an order of magnitude estimate that

Br=By. (5.8)

16 R. F. Dashen and D. H. Sharp, Phys. Rev. 133, B1585 (1964).

16 J, J. Sakurai, Phys. Rev. 132, 434 (1963).
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With the approximations of Egs. (5.7) and (5.8), the
signal-to-noise ratio, Eq. (4.3), becomes

Z\2  (Ey/my)?
R<Ep>~24(“) [FEy—_—

A
al'(V — P+7)
mVsmpzlgp(S) I Ve ’

and to the extent that Eq. (5.7) is valid, the barycentric
P+p— V+p proton-non-spin-flip, A\y#0 differential
cross section is given by

dO'(P",‘P i V‘*‘Pi)\V#O,)\p;;:)\p;f)/dﬂc,m_
lgx(s) |2

= [®(s,mp2mp2)®(s,my2my?) 312————0o.m 2,
64ms?

(5.9

®(x,y,2) = a2+ y2+52— 2xy—2xz—2yz.  (5.10)

In no (4,B)=(V,P) case is the above cross section
sufficiently well known to determine g,(s). However, for
K—+p— K* 45, the entire Ay5#20, differential cross
section (including the nucleon-spin-flip contribution)
has been determined with good precision by Friedman
and Ross!” for K~ laboratory momenta of 2.64 BeV/c.
Assuming that the nuclear-spin-flip contribution does
not dominate the entire A\v520 differential cross sec-
tion, we find from the data of Ref. 17 that

[da(K‘—l— p— K*Fp:hy=0)
dQc.m.

:I(px—)lab=2.64BeV/c

22(0.8 mb)fe.m.2, (5.11)

and therefore, comparing Eq. (5.10) and Eq. (5.11),

mK‘szzz‘ gp{S[(PK—)lab= 2.64 BeV/c]} l /4w

~2X1072. (5.12)

Combining Table I and Egs. (5.9) and (5.12), we thus

have as an @ priori estimate for the signal-noise ratio,

when (4,B)= (K*~,K~) and Ex—=2.60 BeV,
R(Ex—-=2.6 BeV)~ (2Z/4)*X1072,
(Exg—=2.6 BeV)=0.04 rad.

(5.13)

Following Ref. 2 we consider two more or less extreme
possibilities for the energy dependence of B,(Fx-,0):
(i) Bp= 6, and (ii) B,« (Ex-?)6. Situation (i) is reason-
able if K—+p— K*p proceeds via one-nucleon
intermediate states, and (ii) is realized by a vector-
meson exchange model. If 8,6, R(Ex—)=1 requires
Ex—==5 BeV; and if B, (Ex-?)0, R(Eg—)=1 requires
Ex-==8 BeV. As a consequence of the very rapid in-
crease of R(Ex-) with Ex— it should be noted that even

17 J. H. Friedman and R. R. Ross, Phys. Rev. Letters 16, 485
(1966).
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if Eq. (5.13) is in error by as much as a factor of 10,
the estimates Exg—=2>5 and 8 BeV are in error by factors
of only (10)/® and (10)'/4, respectively. It would there-
fore seem reasonable to conclude that R(Ex-)=1 re-
quires Ex— in the range 3-15 BeV.

Estimates of R(E,) with (P,V) other than (K—,K*-)
can be made in a similar way with the expected require-
ments on Ep again in the range of several BeV.

IV. SUMMARY AND CONCLUSIONS

We have shown, using essentially only electromagnetic
current conservation, that in the general coherent produc-
tion process B+Z —y'+Z— A4+Z on a nucleus of
relatively large mass (Fig. 1), at small B— 4 produc-
tion angles (~8<1), transverse virtual photons (as
viewed in the rest frame of 4) are predominant, and we
have inferred that the same is true when the single-
particle state A4 is replaced by the n-particle state X
(ma— +/s,pa— px). As a consequence of this effective
transversality of 4/, we have obtained the selection rule
that the helicity of 4 (or X) differs from that of B by
=1; and this selection rule, when coupled with angular-
momentum conservation, implies that the nuclear-
Coulomb-field coherent production amplitude vanishes
like 6 in the forward direction. This explains the
“mysterious” vanishing in the forward direction of the
nuclear-Coulomb-field A4-Z — Z°4-Z production ampli-
tude: As further examples of the helicity selection rule,
we would like to point out that the coberent photo-
production of the spin-two f meson in a nuclear
Coulomb field, y+Z—v+v'+Z— f+2Z, gives rise to
fmesons with helicity 0 and =2, but not ==1; similarly,
coherent production in a nuclear Coulomb field of the
conjectured spin-one boson W by an incident pion
7+Z— w4y'+Z — W+Z gives rise to W with helicity
41, but not 0. On the other hand, and as we have
mentioned in the Introduction, in the nuclear-Coulomb-
field # — p and K — K* coherent production processes,
m+Z—ort+y'+Z—p+Z and K+Z—K+y'+Z—
K*4Z, the spin-one p and K* mesons are born with
helicity ==1 because of parity conservation, so that there
the helicity selection rule does not provide an addi-
tional restriction. The predominance of transverse 3’
coupled with the hermiticity of the electromagnetic
current operator allows us to establish the basic pro-
portionality between the cross section of nuclear-
Coulomb-field B+4Z — A(X)+Z coherent production
processes and the A4 — By decay rate (B4+vy— X
cross section) which, of course, involves only transverse
photons [Eq. (2.25)].

Particular attention is given to (4,B)=(K*-,K-),
and we estimate that a laboratory energy Ex— in the
range 3-15 BeV is required to produce a coherent
Coulomb-field K—4Z— K*+Z amplitude of the
same order of magnitude as the strong-interaction-in-
duced K—4Z— K*4-Z amplitude for production
angles in the neighborhood of the Coulomb peak.



