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contains a term antisymmetric in both a and b, and X

and o, the low-energy theorem for f4(v) and the corre-
sponding sum rule (16) would have been modified. We
have shown that such is not the case if one starts from
the physical 5 ma-trix element and applies the reduction
formula to it, thereby having an explicit form (31) for
the seagull term.

(ii) As is shown in the text, all exact sum rules that
have been derived from the current commutation rela-
tions by making use of the method of the so-called
"current algebra at p -+co," can be derived from low-

energy limit theorems and the assumption of unsub-

tracted dispersion relations. However, the two ap-
proaches are equivalent only if we take the point of
view (a).
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The p-p elastic-scattering cross section can be explicitly calculated in quantum Geld theory endowed with
a fundamental length in the limit of very high energy and large momentum transfer, assuming that a simple
(vector-meson) interaction is dominant. Plots of X—=logioL(dc/do), ./(cP/41r) j are given for various lab
momenta P & 10 GeV/c and momentum transfers t& 10(GeV/c)—'. In this range X involves only a sfagte,
additive parameter. A strong energy dependence, which gives the observed great shrinking, enters through
the "kinematical form factors" attached to the external lines and is thus an immediate consequence of a
fundamental length. The 6t to the experimental points is excellent for a coupling constant of strong-inter-
action size if ) =0.5X10 '4 cm.

~ 'HE curves shown in Fig. 1 are theoretical curves
for p pelastic sca-ttering at very high energies

and momentum transfers obtained from quantum Beld
theory endowed with a universal fundamental length, or
high-momentum cuto8. To illustrate the typical be-
havior in this range of s and t caused by a fundamental
length, we chose the interaction to be mediated by a
single neutral vector meson for simplicity. The features
arising from a fundamental length are not very sensitive
to the details of a more realistic interaction. In this
range the cross section and thus X depend on only a
single mlltiplicatiwe Nnknowe parameter. &Thus in a
logarithmic plot one has only the freedom of displacing
all the curves rigidly up or down, without, of course,
changing their shapes of- relative orientation. In view
of this, the fit obtained to the "shrinking" (energy de-
pendence of the diffraction peak) seems good to us,
better than any theoretical fit we have yet seen. The
open circles show Serber's energy-independent theo-
retical curve, ' obtained from an optical model, for

' R. Serber, Rev. Mod. Phys. 36, 649 (1964).

comparison. Although the curves have been plotted
back to zero momentum transfer, the small

L
—t&10 (GeV/c)'j is not meant to be signi6cant.
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FIG. i. The normalized p-p elastic scattering cross section in the
very high energy and large-momentum-transfer range, computed
from Eq. (2.6) with X defined by Eq. (2.7). =—experimental
points from Ref. 12. o=—Serber's theoretical optical model
(Ref. 1). The curves correspond to p„/X'=1.46&&104 (GeV/c)'.
The behavior for —t &10 (GeV/c)' is not significant.
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The Kinematical Form Factor

All the corrections brought by stochastic field theory
to the predictions of conventional 6eld theory for scat-
tering and production experiments —i.e., as far as S-
matrix theory goes—are comprised in these kinematical
form factors g(k). g(k) is defined essentially as the
Fourier transform of the frequency function over its
support "with respect to the random space-time vari-
able. "That is,

g(k) —= ~~(k *)f(k x)— —

XexpLr'k (X($;x)—x)] Lings(x; 2)j. (1.1)

The reader is referred to Ref. 3 for the notation and a
complete discussion of the restrictions imposed on the
frequency function f, the random space-time variable X
with mean value x, and the support s with measure
element dp for an admissible Lorentz-invariant sto-
chastic space-time. (In particular those restrictions
guarantee that the integral is independent of x.)

' R. I.. Ingraham, Nuovo Cimento 32, 323 (1964).' R. L. Ingraham, Nuovo Cimento 34, 182 (1964).

1. SOME BACKGROUND

The general theory of very high energy scattering is
the same as that presented in a previous paper' (herein-
after referred to as I); therefore we here limit ourselves
to a few remarks. The basic idea is that, owing to the
high-momentum cutoff 1/X introduced by the funda-
mental length X, higher order graphs and radiative
corrections become negligible for large enough energies
and momentum transfers, so that the amplitude reduces
to the sum of a certain small number of low-order
Feynman graphs (the "surviving" graphs). Thus the
differential cross section can be explicitly calculated in
this range. Proton-proton elastic scattering has now
been done at energies and momentum transfers large
enough to satisfy this criterion. At the time paper I was
written, sufficiently large momentum transfers had not
been measured.

The cross section given here differs, however, from
that given in I in two signi6cant ways.

Recall 6rst that in the stochastic 6eld theory, the
S-matrix elements are formed by the usual Feynman
diagram rules with the sole change that an external line
of momentum k gets the extra factor g(k) if incoming,
g*(k) if outgoing, and an internal line of momentum k

gets the extra factor g(k)g*(k)—= Ig(k) I', where g(k) is
the kinematical form factor. Since the theory of the
general kinematical form factor, in particular that of the
form factor (1.6) we have used in later work, has not
been published elsewhere, we shall spend some time on
it here. The reader who is only interested in the predic-
tions of the theory for p-p scattering may skip to Sec. 2.

Given an inertial frame Z with 4-velocity rs(Z), ' we
have adopted in all applications the 3-dimensional
planes

s(x; Z): ((—x) N(Z) =O (1.2)

as the supports s(x; 2) and the usual Cartesian volume
element as the measure element. This corresponds to
making the random time variable X4 some function of
the random spatial variables X, or physically, to re-
ducing time measurements to spatial measurements.
Not only are there physical arguments for this "3-
dimensional case, " but other mathematical arguments
single it out as the only possible physical case—in
particular, there exist no stochastic space-times with
4-dimensional supports s(x; 2).s If now s(x; 2) is
chosen to be (1.2), then a few very general requirements,
principally Lorentz invariance, fix the frequency func-
tion as a 3-dimensional spatial Gaussian. '

The form factor then becomes

g(k) =
I

(2rr)'~ Q s "d'$ expI —(g—x) /2)t )

XexpLik. (X(P; x)—x)j ($4=x'), (1.3)

if x', x' are mean coordinates referred to frame 2,
since in these coordinates the support (1.2) becomes
simply all of 2's 3-space at time $4 =x'. The fundamental
length X is introduced as essentially the standard devia-
tion of the frequency function.

Thus g(k) is a functional of the random variable
X&($; x). What function is used here depends on the
physical clock adopted. In previous work, in particular
in I, a simple stylized dispersionless time was used,

namely,

dispersionless time: X($; x) = g, X'($; x) = x4

($4= x4) (1 4)

This leads to the (real) Gaussian form factor g(k)
= exp( —k,98/2). It now seems to us that a form corre-
sponding to measuring time in terms of spatial measure-
ments by using light signals which have constant
velocity c=1 by definition ("Einstein clock") is more
realistic. This can be shown' to lead to the random
variable

Einstein clock: X(&; x) = g,
X'(( x) =++2~»/v'~ —I(—«I ((4=x4) (1 5)

When c —&~, (1.5) in fact reduces to (1.4), so it is seen
that the idealization previously used corresponded to
infinite light velocity.

In any case, whether (1.4) or (1.5) or any other
admissible random variable X&((;x) defined on the

4 Geometrically, n(2) is the unit time-like vector pointing
toward the future along the time axis of the 4-dimensional frame
corresponding to the inertial frame 2, thus N(Z). e(g) = —1,
a'4(Z) &0 in any (primed) coordinates. Referred to 2's (unprimed)
coordinates, N&(2) = (000 1).' D. T. Bailey and R. L. Ingraham (to be published).
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plane (1.2) is substituted into (1.3), the form factor
will be a function of k only in the form of k&'X' and
k n(Z)X, where kis—=ks+[k ts(Z)]s. But since g(k)
enters only through the mean free fields of which the
stochastic S operator is built, ' for which k'= —p,

'
(p—=mass of the field), it can be shown that for a line of
a Feynman diagram of momentum k, whether describing
a real or virtual particle of mass p, (i.e., whether external
or internal), k n, (Z) in the attached form factor has the
value

k rs(Z) = —(k,s+ps)"' in g(k).

Thus, in any case g(k) will be a function of k only in the
form kg X .

When (1.5) is substituted into (1.3) and ii is specialized
to zero (which will be sufhcient for our purposes in this
paper), the integration yields

~g(k) ~s =exp( —4k sits)+Lz((2k sos)t/s)]s (1 6)

for the absolute square (all we need for the cross section).
Here

2
Z(x) —= e—*' dy e"'.

p

The first "significant way" (see above) in which the
cross section given here di6'ers from that given in I is
that the form factor (1.6) is used, rather than the previ-
ous simple Gaussian

~ g (k) ~

'= e si'".
Finally, we emphasize a crucial point. The 4-velocity

ts (Z) to be substituted into (1.6) is that of the measgrilg
frame 2=—inertial frame, in which the experiment is
actually performed, i.e., the frame in which the meas-
uring apparatus is Axed. This measuring frame for the
p-p scattering experiments of interest here is the so-
called "p-p laboratory system, " i.e., the frame in which
one proton (the "target proton") is at rest.

Lorentz Invariance

Although the question of the Lorentz invariance of
this theory has been gone into in detail elsewhere, ' we
give a short qualitative discussion here to make this
paper reasonably self-contained. Our aim is to convey
the basic physical idea and prevent some obvious
misunderstandings, rather than to present the mathe-
rnatical details.

Lorentz invariance is usually understood to include
the Lorentz formiewariarlce of the S operator: namely,
it should commute with the representation U(L) of the
inhomogeneous Lorentz group L+& on the state vector
space for all LgL+t, . Since our form factor and. thus our
S operator involve n(Z), the unit time-like normal as-
sociated with the measuring frame 2, our theory is
evidently not Lorentz invariant in this sense. However,
we have preferred to retain the term Lorentz invariant
for this theory in spite of the semantic danger involved,

'R. 1.. Ingraham, Nuovo Cimento 27, 303 (1963). See also
Ref. 3.

because it respects the principle of relativity, ~ which lies
at the base of special relativity. The following brief
remarks will attempt to elucidate this statement.

The relativity principle requires that if two observers
Zr and 2s (identified with their inertial frames together
with synchronized clocks) in relative motion "do the
same experiment, " they must get identical results. For
example, if the same types of particles collide with the
same initial velocities relative, respectively, to the two
frames, and they each measure the differential cross
section, they should get the same numbers. It seems to
us that it is essential to require that they "do the same
experiment" —that the initial conditions are the same
relative to each and that they perform the same opera-
tions, here measurin the particle cruxes —otherwise their
physical equivalence under the Lorentz group does not
guarantee this result. "Lorentz invariance" as we use it
means only this statement of the physical equivalence
of a class of frames, and implies nothing further.

The frame-dependent theory, as well as the current
theory, is Lorentz invariant in this sense, because,
essentially, only numerically the same components of
the two normals e(Zt) and e(Zs) are involved in the
matrix elements of the two S operators S(Zt) and
S(Zs) for the two experiments. Another way of seeing
this is to note that the set of all matrix elements of S(Z)
is the same as the set of all matrix elements of any other
S(g'), and all possible measuring frames ts(Z) enter the
theory. There is no preferred frame.

This situation is essentially diferent from the case in
which there is one preferred "rest" frame Zo, say, as in
ether theories, such that experiments performed in Zo
are distinguishable from the same experiment performed
in another "moving" frame Z. This latter would con-
stitute a real breach of Lorentz invariance.

According to the frame-dependent theory, the defer
ent operations of measuring do./dQ in the c.m. frame of
the particles and measuring do/dQ in the lab frame of
the particles and transforming it back mathematically
to the c.m. frame give (slightly) different results at high
energies. But this does not contradict Lorentz invari-
ance (—= the relativity principle), since the two observers
have performed different experiments. On the other
hand, the current frame-independent theory, while also

compatible with the relativity principle, goes beyond it
to predict the extra property that the results of these
two different experiments are the same: The cross
section, referred to the c.m. frame, say, is actually
independent of the frame in which it is measured.

This latter property of the usual S operator comes
down to the postulate that the number of particles
scattered into a given solid angle at some point per unit

7 The principle of relativity as it is usually stated says that
physical Geld equations are form-invariant under the group 1.+$,.
But note that this does not say that solutions of these equations
must be form invariant, i.e., frame-independent, and in fact this
possibility leads to the frame-dependent fields and S operator of
the stochastic field theory.
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time (measured by a clock at rest relative to it, say) is
an absolute, regardless of how it is measured. The
frame-dependent theory does not share this property;
the nonabsoluteness of particle Qux is presumably tied
up' with the existence of a minimal" or fundamental
length, though we have no physical explanation of this
predicted phenomenon. But note that there is no
contradiction with quantum mechanics: Probability is
conserved because each S(Z) is unitary. What happens,
therefore, is that at higher energies relative to the
measuring frame the effective coupling is weakened, the
particles become more mutually transparent, and more
particles pass through without being scattered.

The violation of this absoluteness of particle Aux in
the sense explained above is certainly bizarre from the
standpoint of macroscopic intuition. The only reasons
that its possibility is entertained here are theoretical:
If one grants that the introduction of a cutoff into 5 is
equivalent to treating space-time as slightly stochastic
("nonlocal"), as seems likely, then the theory of
stochastic space-time shows' that such a frame depend-
ence cannot be avoided. But since elementary particles
have many peculiar nonmacroscopic properties, we

suggest that it be considered an experimental question.

neutral vector meson B„s of mass tr and BoPP coupling
constant f„.One justification is the fact that surviving
pion-exchange graphs are negligible compared with the
surviving vector-meson exchange graphs in the very
high energy limit. ' In any case, the model should
illustrate the fundamental features imposed by a high-
momentum cutoff, which should carry over to a more
realistic interaction. It then turns out that the value of
the mass ~ is irrelevant for the high momentum transfers
of interest, while the value of the fundamental length X

dependS Very inSenSitiVely On P„=fo—s/4rr

The notation and formulas of Sec. 5 of I are carried
over intact except for the new form factor (1.6) and the
presence of the extra form factors from the external
lines. Thus the p-p differential cross section as measured
in the p-p laboratory system and transformed to the
p-p c.m. system is given by the general equation I(5.2)
with Mr, (2) the amplitude defined by (1.8), or

(«/«). .-.= (2P'/s) lg(pi)g(ps)g(pi')g(ps') I'

XLIg(q) I'A /( —t+")'+ lg(W I'
xA 2/( —u+K')'+

I g(v) g(&) I

'
X2A 2/( —t+tr2) ( u+—trs))

where

The De~~ition of the Differential Cross Section

The second and more important difference from I is
that we now form the cross section for the process

f &—2 in exactly the conventional way' in terms of the
S-operator S(Z), namely, in terms of the amplitude
Mf, (2) defined by

Sf '(~)=~f +ti(pf p')Mf '(~) '(18)

In the preliminary definition given in I, the amplitude
was defined by factoring out of this Mf;(2) all the form
factors carried by the external lines Lcf. Eq. I(5.1) and
Ref. 28 of I).The physical interpretation leading to this
tentative definition of the cross section in stochastic
field theory is now believed to be erroneous.

The practical consequence of using the amplitude
Mr;(2) of (1.8) is that a strong energy dependence is
introduced through the external line form factors Lcf.
Eq. (2.6) below), which is responsible for the great
shrinking in p-p scattering of the experimental order of
magnitude, as is seen from Fig. 1.In I the shrinking was
clearly inadequate (cf. Figs. 2 and 3 of I), even though,
strictly speaking, the values of —t were too small for
this theory to apply.

p„=f„s/4rr, —2,—=p-p laboratory system. (2.1)

Here pi and ps (pi' and ps') are the initial (final) 4-
momenta, w—=pi+ p, , q—=p, —p, ', q = p, —p, ',

~ ) t= —
g p

N= —
g ~

as usual.
The A; are expressions in s, t, and N which were given

in I(5.6). The values of ttrs for the various rnomenta
involved in the form factors are easily computed to be

plr Pi q p2r Oq pil gJ. y p2r t'ai y

q
'= —t(1—t/4M') g '= —u(1 —u/4M') (2.2)

2 =p-p laboratory system (ps=0),

where P—= lab 3-momentum and M=—proton mass.
In the very high energy and large momentum-

transfer regime, the following approximations are good:

A i= 2M'P'+M (M+P) t+ ', t', -
As= M'P(P —2M) —2M't+-,'t';
A 2 =M'P (P 2M), (M'((P'—tr'(( —t, —u); (2.3)

s=2M(M+P), —t+tr2= t;—
—u+trs = u= 2M (P M)+—t, —

—u(1 —u/4M') = (P+t/2M)',

2. THE THEORETICAL p-p CROSS SECTION

Our intention here, as in I, is to investigate a model
in which the p-p scattering is mediated by an unspecified

See A. March, Qgantmm Mechanics of Particles and 8'ave
Fields (John Wiley Bz Sons, Inc. , New York, 1951},especially
pp. 274-277.

'See for example J. Jauch and P. Rohrlich, The Theory of
Pttotorts awd Etectroms (Cambridge University Press, New York,
1955};Sec. 8—6.

Large-Momentum Approximation of g (tr)

For large values of the momentum k, (tery, 2»1) the
exponential term in the form factor (1.6) is negligible
compared to the last term, and for this term we can

'OSee I Sec
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use the asymptotic approximation"

Z(x) 1/s'~'x ((x(&&1).
Thus

(2.4)

momentum transfers t&—10 (GeV/c)s determined this
single parameter as

P„/X'=1.46X10' (GeV/c)'. (2.8)

~g(k) ~'=1/2~uP)' (uP)'»1). (2.5)

This approximation will be good for all the form factors
occurring in (2.1) for the lab 3-momenta of interest,
P~&11 GeV/c and for momentum transfers —t&10
(GeV/c)', with the exception of ~g(ps) ~', which =1
since ps/ =0. Thus, the dependence on the fundamental
length becomes multiplicative. In fact, the cross section
in the approximations (2.3) and (2.5) reads

(da P„' 1 1

kdQ, X' 2M (M+P) (2s.)'

X
P'(P+ t/2M)'( —t) (1—t/4M')

X ~1+ A2
t4(1 t/4M')' — (P+t/2M)4u'

2As, (2.6)
t'( —u) (1—t/4Ms) (P+ t/2M)'

where A~, A2, A3, and —I are to be replaced by the
approximations (2.3). Thus, as asserted before, the cross
section depends only on the single rnultiplicative
unknown parameter (P„/X')'.

We define the quantity X by

X=—logrsL(da/d Q), /(a p/4s. )'), (2.7)

where P=c.m. 3-momentum =)M(M+P)/2)t~s and
0.—=experimental total cross section =40 mb. This
quantity was plotted and compared with the experi-
rnental points" shown in Fig. 1. A best fit for large

"R.L. Ingraham and D. T. Bailey, Nuovo Cimento 33, 246
(1964), Eq. (6)."G. Cocconi et al , Phys. Rev. Lette. rs 11, 499 (1963); W.
Baker et al. , iNd. 12, 132 (1963).

Fortunately, this makes X a very insensitive function of
the strong coupling constant P„. Taking P„=15, for
example, we get

) =0.25 (GeV/c) '=0.49)(10 '4 cm, (2 9)

while taking P„as small as 1 reduces ) only by a factor
of (15) "'=0.6.

For small momentum transfers L
—t&10 (GeV/c)')

the form factor approximation (2.5) breaks down, while
for very small momentum transfers the approximation

t))K breaks down as well. In this range of —t the
curves shown in Fig. 1 were extrapolated back to their
intercepts with the axis t =0 determined from the formu-
las (2.1) and (1.6) with s: chosen as 750 MeV. However,
because we expect that the large-momentum-transfer
approximation leading to the simple formula (2.1)
(=—negligible radiative corrections) breaks down in this
region, we claim no significance for the very fair
agreement with the experimental points in the range
—t&10 (GeV/c)'

3. DISCUSSION

The strong energy dependence introduced by the
external line form fa,ctors (the second line of Eq. (2.6)
is seen clearly from the formula (2.6); these factors
are absent from the corresponding formula of I. They
split apart the curves for the various energies suK-
ciently to give the great observed shrinking. In addi-
tion, they also serve to depress all curves so that the
value of the fundamental length X now found from p-p
scattering is only of the order of tenths of 10 " cm,
rather than the value ) =1&(10 '4 cm found in I from
p-p scattering and also from low-order perturbation-
theoretic calculations of electromagnetic mass shifts in
isotopic multiplets. "

"R. Genolio, doctoral thesis, New Mexico State University,
1963 (unpublished).


