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Theory of Parametric Coupling in Plasmas
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Based on a simple Quid approach, the theory of the instability due to the nonlinear coupling of an electron
plasma oscillation and an ion acoustic oscillation to a driving transverse 6eld is worked out and extended to
the case in which the driving 6eld is a longitudinal Geld. It is shown that the eftects of transverse and longi-
tudinal driving Gelds on the instability are the same in the limit of long wavelength as one would expect
physically. In addition, the e8ect of an electron drift velocity on the nonlinearity-induced instability men-
tioned above is also examined. It is found that the electron plasma oscillation can be greatly enhanced when
the drift velocity approaches the ion wave velocity. Derivation of the above results by the Vlasov equation
is indicated in an Appendix.

I. INTRODUCTION

ECENTLY, there has been considerable interest in
the nonhnear interactions in plasmas. ' In par-

ticular, DuBois and Goldman' suggested the possibility
of an instability of electron plasma oscillations induced
by an external transverse electromagnetic wave. There,
they considered the nonlinear coupling of the external
transverse wave to the longitudinal electron plasma
oscillation and the ion acoustic oscillation, using
the diagrammatic approach of quantum statistical
mechanics.

Since this instability has received a great deal of
attention, it seems of interest to investigate it by
another approach. In Sec. II, on the basis of a simple
Quid approach, the results of DuBois and Goldman'
are rederived.

In a recent experiment, ' in which high-frequency,
large-amplitude electron-density Quctuations were gen-
erated in a plasma column, by a driving electric field, a
lovr-frequency ion-acoustic oscillation was observed as
the electric field exceeded a definite threshold. It has
been established4 that when a transverse field is incident
on a plasma column, a resonant longitudinal Geld may
be induced inside the plasma, the strength of which is
linearly proportional to the incident transverse Geld.
Therefore, the experiment mentioned above is thought
to be a manifestation of the nonlinear coupling of the
electron plasma oscillation and the ion acou, stic oscil-
lation to a driving longitudinal field instead of to a

' P. M. Platzman, S. J. Buchsbaum, and ¹ Tzoar, Phys. Rev.
Letters 12, 5D(1964); N. M. Kro'll, A. Ron, and N. Rostaicer,
ibid. 13, 83 (1964); H. Cheng and Y. C. Lee, Phys. Rev. 142, 104
(1966); D. F. DuBois and V. Gilinsky, ibid. 135, A995 (1964).' D. F. DuBois and M. V. Goldman, Phys. Rev. Letters 14,
544 (1965};M. V. Goldman, Research Report No, 342, Hugh
Research Laboratories, 1965 (unpublished).' R. A. Stern and N. Tsoar, Bull. Arn. Phys. Soc. 11,463 (1966).

4P. Weissglass, Phys. Rev. Letters 10, 206 (1963); Plasma
Phys. 6, 251 (1964);J. C. Nickel, J.V. Parker, and R, %'. Gould,
Phys. Rev. Letters 11, 183 (1963};Phys. Fluids 7, 1489 (1964);
F. C. Hoh, Phys. Rev. 133, A1016 (1964); P. E. Vandenplas and
R. %. Gould, Plasma Phys. 6, 449 (1964); P. E. Vandenplas and
A. M. Messiaen, ibid. 6, 459 (1964).

driving transverse Geld. This motivates our analysis of
such a coupling in Sec. III. In Sec. IV we examine the
very interesting situation when the plasma has its
electrons drifted relative to the ions in addition to being
under the inQuence of a strong driving Geld. %e Gnd,
in this case, that because of the usual linear ion-wave
instability, the threshold for attaining the nonlinear
instability of the electron plasma oscillation described
in Sec. II or III can be greatly reduced when the elec-
tron drift velocity approaches the ion acoustic wave
velocity. An experimental confirmation of this enhance-
ment should provide a striking evidence of the theory
of parametric couphng in a plasma. From here on,
we shall call the electron plasma oscillation the
l wave, and the ion acoustic oscillation the s wave for
convenience.

II. COUPLING OF EXTERNAL TRANSVERSE
WAVE TO ELECTRON PLASMA OSCIL-

LATION AND ION ACOUSTIC
OSCILLATION

For a two-component (electrons and ions) plasma
under the inQuence of a transverse wave of the form

E"=-'Es „"expels(ko r—coot)j+c.c.

where lto. Es„„,"——0 and coo is slightly above coo, the
electrons obey the equation of motion:

BV BV BV BV
nsno —+—v +nsln —+—v +kssT V8n

Bt Bx Bt Bx

anom"+ one~4, ehnmsr+egnVC, (1)

where s0 is the average electron density in equilibrium;
8n is the electron density perturbation. induced by the
external disturbance; C is the scalar potential satisfying
the Poisson equation; R" is the external transverse
Geld after it enters into the plasma, obeying the disper-
sion relation coos=coos+a'Icos. In Eq. (1), the quantities
v, 8e, 4 are assumed to be small, being induced by the
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external disturbance. For weak E", the linear theory where
applies and no mode coupling takes place. For strong
E", the ko, ooo mode will be coupled to other modes of
diferent wave vectors and frequencies.

kg/ +g
&th

A. The kp pop Component

When we take the kp alp Fourier component of Eq. (1)
the inhuence of the heavy ions can be neglected if ~p is
assumed to be close to (slightly above) the electron
plasma frequency. Also, we may linearize the equations
and obtain

The quantities k vk, „' and nk, „' are related by the
continuity equation

ro—lk„'+, npk vk„' ,
———p (k—k') vk, 22k k,

kl ~t

=+4k vk,

and

—ze
tr— R tr

Vkp, eo ~ko, a&0

2m% p

nkp, cppp 4'ko I(2)0

3. The k,~ Component

where the last step is in the spirit of our chosen mode
coupling scheme. When orp is slightly above co„, kp 0
from the dispersion relation oops =oo~2+csk p'. Substituting
(5) into (4) and again neglecting 4&p compared with G)p

we obtain

(ro2
—kps2hp)22k, „'

Similarly we take the k, ro Fourier component of
Eq. (1) where k,&o is now assumed to be the wave vector
and frequency of the l wave. However, we must now
retain the nonlinear terms which are responsible for
the mode coupling. Following Refs. 2 and 5, we shall
neglect all longitudinal fields propagating at frequencies
other than co and ~—~p, i.e., only the l wave and the
s wave (at the low frequency oo—pop) are assumed to
be important in the nonlinear mode-mode coupling.
Thus we have

ioo22222pvk, —„'+im22p[( 4k vk ,
„—o)vo.sk, s„'

+(ko' v—sk,—s )vk, 7
itrp~pvko, MI

—I Qk, s. +ik—k+T—ettk, .
=ie22ok@k ~' (e/2)—N sk, s„'Eko,»", (3)
Ace = orp —co, Ak= kp —k,

where the superscripts 1 and s are used to denote
quantities for the / wave and the s wave, respectively.
We can now estimate and compare the various non-
linear terms. On the left-hand side of Eq. (3), the
nonlinear term mnpLLk vkp 0 v pk p is of the same
order of magnitude as mnpvkp p

Jlkk V» Q which
can in turn be approximated by mdarvk, ,„,"n», z '
from the linearized equation of continuity. The term
mkp v—Qk —Q vkp 0 is also of the same order of mag-
nitude as long as kp is smaller than or close to lS. In
comparison with the term (e/2)22 sk, s„'Ek, ,,o" on the
right-hand side of (3), the two terms discussed above
can be neglected by noting Eq. (2) and i4rpi((top.
(The s-wave frequency is smaller by a factor of
4k/k&g(222/M) than the f-wave frequency, kD being
the Debye wave number, M being the ion mass. ) Upon
taking the scalar product of k with Eq. (3), one obtains

enp ie
pCk '— k Ek, „,"22 gk, s„'. (6)

m
'

2m

The electron density fluctuation n &k, &„' in the non-
linear term in Eq. (6) can be obtained from the linear-
ized electron equation of motion by neglecting the
inertial term

npe
n—d, k,—d, (o — ~—ilk, —d 60 ~

8~
m&th

Substituting (7), (8) into (6) we finally obtain

(ros ro 2 Pss hs)CIk l

ie kD'
(k Ek, , ,o')C gk, s„', (9)

2m k'
or, in another form

e(k, ro)C „„'=
where

ie k~' 1
(k Eko „o~')CI sk, s„ I (10)

2mk' ~'
M k 8

e(k,oo) =1-
M QP

is the usual dielectric constant for the plasma when co

is close to co„.

In the l waves, the heavy ions can hardly respond to
the high-frequency oscillations, and the Poisson
equation can be written as

k'

4xe

enpk'
ro22pk. vk 2 $2sth2Nk 2 @k, (4) C. The 4k, 4pp Component

' V. N. Oraevskii and R. Z. Sagdeev, Zh. Tekhn. Fiz. 32, 1291
(1962) LEnglish transl. : Soviet Phys. —Tech. Pbu s. 7, 955
(1963)g.

Now we consider the low-frequency component which
represents the s wave. Here, the dynamics of the ions
must be taken into account. The electron equation of
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motion (1) now takes the form

—ihCOmmpV~i, ~„'
+&@so)(—k'vg, ')v y, +(ko'v —v,— )vp, ']

im—arpvg, ,„,"I g, „'+ihkk~T, egg, g„'
=ieepake pgp„,' (—e/2)e g, „'Egp,~o"'.

Similarly, we can write down the corresponding equa-
tion of motion for the ions including all the nonlinear
terms. The nonlinear terms, typically like

Meo( —k Vg, ,„,")V g, „',
where we have used capital letters to denote quantities
pertaining to ions, represent the coupling of a low-

frequency ion motion to two high-frequency ion
motions. However, the heavy mass of the ion makes
it diKcult for the ions to participate in high frequency
motions. Therefore, quantities such as V' and E' are
negligibly small. Although one could be more precise,
the above argument should suffice to convince ourselves
that both the ion equation of motion and the ion
continuity equation can be linearized. These linearized
equations yield the result that

Egg, g„((Bop) —0 —(Ak) Vtg )= D„ng—go, , (1,2)

Also, askp-+0, Ak~ —k, epAk v p, „'—+ —con q, „'.
Therefore, in the limit of kp-+0, Eqs. (14), (7), (2)
and (16) combine to give

t.(~&) —~. jC'as a '

ie (hop)'
(k Eg, ,„,")C g, ', (17)

2m p
where

op& = (Ak)okgT, /M.

After some algebra, Eq. (17) can be written in another
form~

$8 k~ 1
p(k, (a)epg g„'——+ (k Egp „,")4 g, .', (18)

21S k M

where
kg)' 0 '

p(k, h(o) = 1+
k' (h~)'

is the usual longitudinal dielectric constant for h~
close to ~,

Following DuBois and Goldman, ' we may now

identify the nonlinear susceptibility by rewriting
Eqs. (10) and (18) as (when kp~ 0)

where
kgT;

Vg,'=, 0 '=
M

4m ape'
p(k, (o)Cg, ' ———X" (k, (oo. —ak —mop)C pg p

' (20)

and

From Eq. (12) we see that the ions do not feel the
external field directly. They respond linearly to the
inQuence of the electrons which react to external
disturbances. Together with the Poisson equation

(Ak) 4+k, g(y 47M(SQQ, Q(g 'Sgg, Q~ ) ~

Eq. (12) gives, upon neglecting (rQ)'V„h',

) 0„' (hk)'
+kkkco,

k (h(o)' 4pre
Q~'(hk)'

+DR,kco ~ (14)
4pre(hop)'

&n Eq. (14), the last step is justified by recalling that
the frequency of the s wave &p, Akp, qg(m/M) is
considerably less than 0„for Ak((k~.

Substituting the continuity equation

Aa)nag, p '+—soak vpg p„' (k vg, ,„,")——e „„' (1S)

into the scalar product of Lk with Eq. (11),one obtains

((hop)' —(LH)'et'')eq~, p„'+ep(k v~, ,„,")(Ak v ~, „')
—~o(ko v ~, ')(Ak vp. ,..")+op(Ak v„,,„,")e q, .'

esp ie
(ak)'C~„~ '— (Xk Ep ")m g '. (16)

m 2m

'We note that decays within the ion acoustic branch are
prohibited (see Ref. 5).

p(—Ak, —A(o)C'

= —X (—ko, —(ap, k)op)4g, „', (21)

where the nonlinear susceptibilities are given by

x~~(kop&o' —&k, —&(o)

ie kg)' 1
(k Eg, , p"), (22)

251 P Go&

&"~(—kp, —o)p., k,M)

ie kg)' 1
=+ (k E-.p.—.o") (23)

2m k' o)~'

These results are in complete agreement with those
in Ref. 2 provided we identify our p(k, M) and

p(—ckk, —Aa&) as the full dielectric constants, including
their imaginary parts. It is well known that in the self-
consistent-field approximation, the imaginary part of
p(k, co) for real k,&o gives rise to Landau damping which

the present Quid approach cannot adequately handle.
We could have gotten some damping by introducing a
phenomenological collision frequency in the beginning.
However, it seems intuitively clear that to take the
particle-wave interaction, or Landau damping into
account, all the modification that is required is just this
identification of e as the full dielectric constant. This
step is indeed justified in the Appendix where the
Vlasov equations are used instead of the Quid equations.
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In the next section, we shall continue to use the Auid

equations with the above understanding about the
dielectric constant e.

From Eqs. (22) and (23) we observe that

x"~(kp top —ak —hto) =x~~(—kp —top k pp)*. (24)

This relation is actually quite general and has been
proved in nonlinear optics. 7

A dispersion relation may now be derived from
Eqs. (20) and (21), and the nonlinear damping rate
may be obtained. However, we shall defer a discussion
of these until the next section.

III. COUPLING OF EXTERNAL LONGITUDINAL
FIELD TO ELECTRON PLASMA OSCILLATION

AND ION ACOUSTIC OSCILLATION

We now assume that there exists a longitudinal field
E" to= xpEao, „o expLi(kp. r—toot) $+c.c. inside the plasma
due to some external driving source, where kp)& Eg, , 0 0
and ~0 is close to co„. When the field strength of K""g is

suKciently weak. , the linear theory holds and the only
disturbances in the plasma are v&, , ,""g and n&p 0,

given by
ZG) p

npko' vko, ~o
p

(poncho. o= ko' Exo, ""p (25)
4me

We see that, in addition to a longitudinal velocity
vt, o,„,""', there is also a kp Cop Fourier component of the
perturbed electron density m~0, „0. This nonvanishing

n&, ,„, is the only essential difference between a trans-
verse driving field and a longitudinal driving field inside
the plasma.

As E""abecomes strong, oscillation modes other than
that of +ko ~o)0 will be excited via mode coupling.
Again, as in the preceding section, we shall consider the
/ wave and the s wave as the most prominant modes
which participate in the mode-mode coupling.

Replacing E" by E""a in Eq. (1) and taking its k&oo

Fourier component, which represents the wave vector
and frequency of the / wave, we obtain

ip&mnpvp ~ +ikkttT, n~, „' i—enokcp'' , [=imtppvtooopn , atop'+, imno(Lk v&, ,„o""p)v

8—[imnp(kp v qp q„o)vpo „o""p—improv qp, a„'npo, o]— nest, —n„oEt,o,„o""tt+ienpo, „oXkC nt, , a ', (26)
2

where
ak= kp —k, ho) = orp —co.

The nonlinear terms on the right-hand side of (26)
can be examined by using the linearized relations as in
the preceding section. It is not difBcult to show that in
each square bracket on the right-hand side of (26), the
second term is negligibly small compared to the first
term if we assume kp' k'«kn', and ~htp~&&pep. If we

take the scalar product of the vector (i/m)k and Eq.
(26) and neglect those small nonlinear terms, we obtain

NZO

psnok vt, ,„t k'p, g'np, „'+ k—'Ca, „t
m

oop(k' vtoo, (go )n—QQ,—Q(y

+no(ko v ~~. a.')(k vpo, -o""*)

Substituting (28) into (27) one obtains

@SO
(tp' —k'p h')np '+

m

ie
(k. E„ long)n „o

2m

+no(ko v ga, a„')(k vt„,„,'"')
—Ate(k vxo, „o""p)n gt, , a~o. (29)

Ily observing that on the right-hand side of (29), the
last two terms can be neglected compared with the
first term, Eq. (29) yields

eno
(too koeoho)nt, t+ kog&p t

m

ie
(k Epo,.o""')n ak, —t ru (30)

2m

ie
(k Et,o,.o"" )n gp, a.'.

2m

The equation of continuity Bn/Bt+V (nv) =0 gives

y
ie kD' 1

(28) x (k ce —kk —hoo) = — (k. Ep ""a)
2m k M&

=x"~(—kp, —top, k,oo)*.

npk' vto oo =tpnto (g
—k' vpo, ~o "pn

k' v-ak, —acu nko, &uo '

o See for example, N. Bloembergen, Sorttoroear OPtoes (W. A.
Benjamin, Inc., ¹wYork, 1965), Chap, i,

(27) We note that Eq. (30) is exactly the same as Eq. (6)
except that E&,,„,"is now replaced by E&,,„,' "g. With-
out repeating the subsequent steps and by the use of
(24) it is clear that for the present case, Eqs. (20)—(23)
are also valid, except for the replacement of E&p p"

b Ego, „o"nto, i.e.,
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We can therefore conclude as one would expect physi-
cally that the effect of a longitudinal driving field is just
the same as that of a transverse driving Geld as long as
both their wavelengths are long compared with the
Debye length and the wavelengths of the plasma oscilla-
tions which take part in the mode coupling. However,
we should emphasize here that in Eqs. (22) and (23) as
well as in Eq. (31), Ek, ,„,"or Ek, ,„,""P represents the
driving field when it gets Asside the plasma. Now we
come to the discussion of the threshold. From Eqs. (20),
(21), one can obtain the dispersion relation governing
the nonlinear coupling. In terms of the nonlinear di-
electric constant, this dispersion relation takes the
form' (when l'lp ~ 0)

linear two-stream instability occurs as the drift velocity
approaches or exceeds the ion acoustic wave velocity.
It is interesting to investigate the effect of this two-
stream instability on the nonlinear instability con-
sidered in Sec. II or III. In other words, we want to
analyze the following situation: What will happen to a
two-component plasma in which the electrons are
drifted with respect to the ions with a net velocity v&
when the plasma is at the same time driven by a high-
frequency (pip slightly above pi„) intense field (trans-
verse, longitudinal, or mixed). For definiteness, we
consider the case of a transverse driving Geld.

Similar to Sec. II, when the transverse driving field
is suKciently weak, the linearized theory gives

)G) = 6 )6)

—ix (kp, ppp, k, M —pip) i'Lp(k, pp —pip) j-'=0. (32)

If we consider real frequencies, co, only the real part
of Pz(k, lp) must vanish, thereby determining the
resonant frequency. The imaginary part gives the
effective damping rate

~NL
=Imp" (k pp)

= Imp(k, pl)

—~&" (ko, plo, k M —pio)i'Imp '(k, pp —pp) (33)

for ~y~zj&&ppl, . When (y~z/pp~)(0, the oscillations be-
come unstable. Thus, the threshold condition for the
onset of instability of both the i wave (electron plasma
oscillation) and. the s wave (ion acoustic oscillation) is
given by

—ie
tr X' tr

vxo, ~o R~ot&0 )
2m(pip kp' vB)

(35)

+ko, &0
—@ko,~o —0 (36)

i(pl -k vB—)m.npvk' im, n—p(hk vkp, „p")v kk, q„'

implpvk, ~,'—n ilk l,~'+ikkBT.nk, ~'

e
=ienpkck, „'—-n kk, g 'Ek, ,", (37)

2

As the driving field Epp p gets stronger, it can couple
to the /-wave and the s-wave. Analogous to Eqs. (3)
and (11), the electron equations of motion are now
given by (as kp —& 0)

Im p"z(k, pp) =0. (34) and

It has been shown in Ref. 2 that for a plasma of density
np=10" electrons/nn' and kBT=1 eV, Imp(k, pp) =10 ',
the condition (34) can be met by a driving transverse
field of 600 V/cm. With our present understanding of
the eGect of a longitudinal driving Geld, we can re-
interpret the 600 V/cm as the threshold value for the
driving field inside the plasma, may it be transverse,
longitudinal or mixed. It is known that' when an
external transverse field is incident on a bounded
plasma, a longitudinal field which may become resonant
is induced inside the plasma. The ratio of this field
inside the plasma to the incident transverse Geld may
become considerably greater than unity. Although this
ratio is not precisely known in the experiment of Stern
and Tzoar' described in Sec. I, a value of 10—20 for
this ratio would be suQicient to bring the theoreti-
cal threshold into agreement with the expermiental
threshold.

IV. PARAMETMC COUPLING WHEN
ELECTRONS ARE DMFTED

It is well known that in a two-component plasma,
when the electrons are drifted relative to the ions, a

—i(ap& —ak vB)mnpvgk, g„'—imnp(k vk, ,„,')v k, .'
im(dPvkp, &up n k, cu +P7kkkB'T~nkk, ku

e
=ien peak ekkii„' n,k„—'E-k, „,," (3,8).

2

The continuity equations are given by

npk vk„' (pp —k, ——vB)nk, „'
+ak vk, „,"n kk, k„',, (39)

a11d

np(Lk vkk, k„')= (~pp —ak. vB)nkk, k„'
+(k vk, ,„,")n k, „'. (40)

Following the same procedures as in Sec. II, Eqs.
(37)—(40), together with Eqs. (7) and (14) yield, for
k vg)«co~)

pB(k,pl)ck, „'———x" (kp pip, —ak, —happ)C kk, k„* (41)
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My Q„'
pI1(k,oI) =1-

((g k. v )2 $2v 2 ~2

However, as discussed in Sec. II, we shall identify the
pII in Eqs. (41), (42) as the full dielectric constant,
including the imaginary part (see Appendix).

Comparing Eqs. (41), (42) with Eqs. (20), (21), we
observe that the only modification due to the drift
velocityp is to change p into pI2. Analogous to Eq. (32),
(33), the resonant frequency pp is determined by

Re on "z(k,(a) =0,

and the effective damping rate given by

~NL
= ImpII~z(k, pp), (45)

pI1 = p&(kq(d)
—

~
g"z(ko, coo; k, co —~o) ~'L pD(k, ~—&op)] '. (46)

We do not expect the resonant frequency cv to shift
much from ~~ for the high-frequency plasma oscillation.
More interesting is the effect of the drift velocity on.

the damping rate of the plasma oscillation given by
Eq. (45). We see from Eq. (A16) in the Appendix that
as &o=~+kva, (m/M)I", the real part of the modifIed
dielectric constant RepD(k, ~—ppo) =0, which is in-

sensitive to vD as long as v~&&v&i, . The imaginary part,

ImpI&(k, pp —41o}= Imp(k, M —(oo—k' VD)

being proportional to the variable (pp
—(r)o—k' vII) tsee

Eq. (A14)j, remains negative (or positive) as long as
~—~o—k vI&&0 (or &0), provided the ion temperature
can be neglected compared to the electron temperature.
Therefore, the quantity

Im1/211 (k, oI—Cop)

—Impa(k, ~—
ohio)

(4&)
(RepII (k, oI—(oo))'+(ImpII (k, pp —pop))'

remains positive and approaches ininity as
(~—ppo —k vI2) approaches zero from below, provided &vp

is so chosen that cop= oI+ kvpI, (m/M)1". This is of course
the origin of the ion wave instability. From Eqs. (45)
and (46), we see that the nonlinear damping rate has a

' For a discussion of this, see Y. C. Lee and N. Tzoar, Phys.
Rev. 140, A396 (1965}.Also see M. N. Rosenbluth and N.
Rostoker, Phys. Fluids 5, 776 (1962}.

pD ( 4k, ko))4
= —X" (—kp, —ppo, k,oI)C2 „' (42)

where eD is the modi6ed dielectric constant given by

negative damping contribution from the nonlinear

coupling

—~x+z(ko, &o' k pp —&o) ~2 Im1/pn(k pI —&o)

which becomes very large and negative when the ion
wave instability is approached. We should remark that
as ~yN~~ becomes comparable to ~p the result based on

Eq. (45) is not valid. Although a more careful analysis
of the dispersion relation, Eq. (32), is needed then to
obtain the correct nonlinear growth rate, the indication
that the drift velocity would enhance the electron
plasma oscillation is clear. Experimentally, this shouM

result in a great reduction of the threshold in inducing
the nonlinear instability of the electron plasma
oscillation.

V. CONCLUSION

We have shown that the nonlinear instability of
electron plasma oscillation and the ion acoustic oscil-
lation arising from their nonlinear coupling to a driving
transverse or longitudinal 6eld can be derived by a
simple Quid approach. As long as the wavelength of the
driving field inside the plasma is long compared to the
Debye length and the wavelengths of the participating
coupled oscillations in the plasma, it is demonstrated
explicitly that it does not make any difference whether
the driving field ~nside the plasma is transverse or
longitudinal, or mixed. However, since a longitudinal
field inside the plasma may become large at resonance,
less power at the external source is needed to drive the
instability, provided the external source can be coupled
linearly and resonantly to the longitudinal 6eld inside

the plasma. In the case when the electrons are imparted
a drift velocity relative to the ions, the usual low-fre-

quency ion wave instability can have a large effect on

the nonlinear instability via the nonlinear coupling, re-

sulting in an enhancement of the high-frequency plasma
oscillation. This is physically reasonable since as the ion
wave instability is approached, the large ion wave

amplitude increases its coupling with the external field,

which, in turn, induces a stronger electron plasma
oscillation.
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APPENMX

In this Appendix we shall indicate the steps in de-

riving Eqs. (41), (42) by using the nonlinear Vlasov

equation. When the drift velocity is set to zero, Kqs.
(41) and (42) reduce to Eqs. (20) and. (21).
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nent collisionless plasma under theFor a two-compo
transverse 6e, eId K" the Vlasov equations can e
as

Bf——'E ( t)—VC(,t)j —=0, (A1)
85 Bx 5$
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and the Poisson equation takeakes the form
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x v t and F(x,v, t) denote the electron distribu-
d

' ' t 'bution function, respec-tion function and
tive y.1 Analogous to Eqs. 35, , e 0, 0

ponent of the above equations yie d
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ne ma then so ve qs.1 E s. (A6) and (A7), approximating
b the use of Iinearized relationsthe nonlinear terms y e

takin the limit of A~((~, ko —+ 0 to obtain Kq.
) (A9) and (A10) lead to Eq. (42).Similarly, Eqs. (A8, , an

~ ~However, the mo i ed 6 d dielectric constant is given by

oi, k,og) =—1—go,Qr)'(k, cu) —oogQ'(k, co) (A11)
where
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Mazwell distributionwhere for( )
'
is

s. The k,co component ofunction for the electrons. e,co

Eqs. (A1), (A3) gives
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It is well known that
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The yak, Dog components of Eqs. (A1, ,A2), (A3) yield
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ImoogQ', oo -+ as0 the ion temperature T;~ 0.

When k vD«kook&«o,

gg& 3ooz k 'vtk2 22~ 2Q2
Re op) (k,(o)~1—

when oo«kook, k v~&&kgok,

m Bv

kg) Q~
Regi) (k,go)~1+ (A16)


