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Based on a simple fluid approach, the theory of the instability due to the nonlinear coupling of an electron
plasma oscillation and an ion acoustic oscillation to a driving transverse field is worked out and extended to
the case in which the driving field is a longitudinal field. It is shown that the effects of transverse and longi-
tudinal driving fields on the instability are the same in the limit of long wavelength as one would expect
physically. In addition, the effect of an electron drift velocity on the nonlinearity-induced instability men-
tioned above is also examined. It is found that the electron plasma oscillation can be greatly enhanced when
the drift velocity approaches the ion wave velocity. Derivation of the above results by the Vlasov equation

is indicated in an Appendix.

I. INTRODUCTION

ECENTLY, there has been considerable interest in
the nonlinear interactions in plasmas.! In par-
ticular, DuBois and Goldman? suggested the possibility
of an instability of electron plasma oscillations induced
by an external transverse electromagnetic wave. There,
they considered the nonlinear coupling of the external
transverse wave to the longitudinal electron plasma
oscillation and the ion acoustic oscillation, using
the diagrammatic approach of quantum statistical
mechanics.

Since this instability has received a great deal of
attention, it seems of interest to investigate it by
another approach. In Sec. II, on the basis of a simple
fluid approach, the results of DuBois and Goldman?
are rederived.

In a recent experiment,® in which high-frequency,
large-amplitude electron-density fluctuations were gen-
erated in a plasma column by a driving electric field, a
low-frequency ion-acoustic oscillation was observed as
the electric field exceeded a definite threshold. It has
been established? that when a transverse field is incident
on a plasma column, a resonant longitudinal field may
be induced inside the plasma, the strength of which is
linearly proportional to the incident transverse field.
Therefore, the experiment mentioned above is thought
to be a manifestation of the nonlinear coupling of the
electron plasma oscillation and the ion acoustic oscil-
lation to a driving longitudinal field instead of to a

1P. M. Platzman, S. J. Buchsbaum, and N. Tzoar, Phys. Rev.
Letters 12, 573 (1964); N. M. Kroll, A. Ron, and N. Rostaker,
ibid. 13, 83 (1964); H. Cheng and V. C. Lee, Phys. Rev. 142, 104
(1966); D. F. DuBois and V. Gilinsky, ibid. 135, A995 (1964).

2D. F. DuBois and M. V. Goldman, Phys. Rev. Letters 14,
544 (1965); M. V. Goldman, Research Report No. 342, Hugh
Research Laboratories, 1965 (unpublished).

3R. A. Stern and N. Tzoar, Bull. Am. Phys. Soc. 11, 463 (1966).

4P. Weissglass, Phys. Rev. Letters 10, 206 (1963); Plasma
Phys. 6, 251 (1964); J. C. Nickel, J. V. Parker, and R. W. Gould,
Phys. Rev. Letters 11, 183 (1963); Phys. Fluids 7, 1489 (1964);
F. C. Hoh, Phys. Rev. 133, A1016 (1964); P. E. Vandenplas and
R. W. Gould, Plasma Phys. 6, 449 (1964); P. E. Vandenplas and
A. M. Messiaen, ibid. 6, 459 (1964).
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driving transverse field. This motivates our analysis of
such a coupling in Sec. IIIL. In Sec. IV we examine the
very interesting situation when the plasma has its
electrons drifted relative to the ions in addition to being
under the influence of a strong driving field. We find,
in this case, that because of the usual linear ion-wave
instability, the threshold for attaining the nonlinear
instability of the electron plasma oscillation described
in Sec. IT or III can be greatly reduced when the elec-
tron drift velocity approaches the ion acoustic wave
velocity. An experimental confirmation of this enhance-
ment should provide a striking evidence of the theory
of parametric coupling in a plasma. From here on,
we shall call the electron plasma oscillation the
I wave, and the ion acoustic oscillation the s wave for
convenience.

II. COUPLING OF EXTERNAL TRANSVERSE
WAVE TO ELECTRON PLASMA OSCIL-
LATION AND ION ACOUSTIC
OSCILLATION

For a two-component (electrons and ions) plasma
under the influence of a transverse wave of the form

Etr= %Eko,wott exp[z (ko . r—wot)]+c.c.

where ko Eg,,0*=0 and w, is slightly above w,, the
electrons obey the equation of motion:

adv dv av  av
mno[——-—{——' . V:|+ m&nl:——-l——* . V] +ksT . Von
o 9x Jat 9x

= —eno Bt +engVO— ednEr+4-ednvd, (1)

where 7, is the average electron density in equilibrium;
on is the electron density perturbation induced by the
external disturbance; ® is the scalar potential satisfying
the Poisson equation; Et is the external transverse
field after it enters into the plasma, obeying the disper-
sion relation w@®=w,*+c%. In Eq. (1), the quantities
v, on, ® are assumed to be small, being induced by the
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external disturbance. For weak E*, the linear theory
applies and no mode coupling takes place. For strong
Et, the ko,wo mode will be coupled to other modes of
different wave vectors and frequencies.

A. The ko,»p Component

When we take the ko,wo Fourier component of Eq. (1)
the influence of the heavy ions can be neglected if wp is
assumed to be close to (slightly above) the electron
plasma frequency. Also, we may linearize the equations
and obtain

—ie

Vieg, o™ = Exo, w0,
2mw0

and (2

icg,00=Pig,00=0.

B. The k,» Component

Similarly we take the k,w Fourier component of
Eq. (1) where k,w is now assumed to be the wave vector
and frequency of the ! wave. However, we must now
retain the nonlinear terms which are responsible for
the mode coupling. Following Refs. 2 and 5, we shall
neglect all longitudinal fields propagating at frequencies
other than w and w—wy, i.e., only the ! wave and the
s wave (at the low frequency w—wo) are assumed to
be important in the nonlinear mode-mode coupling.
Thus we have

— dwmno Vi, o' Fimne (— AK- Vi, o) Voax,—a0®
4 (ko* V_ax,—a4") Vicg, 00 ]
— IM6Vicg, 0 et —26* - TKEB T oM !
=ienok®y, ' — (6/2)n—ax,—20°Bigr0g™,  (3)
Ak=k,—k,

where the superscripts / and s are used to denote
quantities for the ! wave and the s wave, respectively.
We can now estimate and compare the various non-
linear terms. On the left-hand side of Eq. (3), the
nonlinear term mmoAk: Vi), V_ax,—a0" is of the same
order of magnitude as mnoViy,w,*Ak: V_ak,—a,® which
can in turn be approximated by mAwVig,we™—ak,—a0°
from the linearized equation of continuity. The term
mKo V_ak,—a0"Vig, 0" 15 also of the same order of mag-
nitude as long as ko is smaller than or close to Ak. In
comparison with the term (/2)#—ak,—a0’Eiq 0, on the
right-hand side of (3), the two terms discussed above
can be neglected by noting Eq. (2) and |Aw|<Zwo.
(The s-wave frequency is smaller by a factor of
Ak/kpy/(m/M) than the I-wave frequency, kp being
the Debye wave number, M being the ion mass.) Upon
taking the scalar product of k with Eq. (3), one obtains

Aw=wi—w),

enok?
wnok- vk,wl"" o, o' = ———‘I’k,ml ’ (4)
m

5V. N. Oraevskii and R. Z. Sagdeev, Zh. Tekhn. Fiz. 32, 1291
832%] [English transl.: Soviet Phys.—Tech. Phys. 7, 955
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where
ksT,

vl =
m

The quantities k- vy’ and #ny,! are related by the
continuity equation

—wnk.wl-l-%ok' Vol =— Z (k—k') * Vi o k—Kk! ,w—o’

kl 'w’
= + Ak' vko,o.:om""L—Ak.—Ac.:8 ) (5)

where the last step is in the spirit of our chosen mode
coupling scheme. When wy is slightly above wp, ko~0
from the dispersion relation we®=w,24c*k¢?. Substituting
(5) into (4) and again neglecting Aw compared with wo
we obtain

(@ — Foa)ng !

eng ie
= _—_kzq)k,wl_ —k- Eko.wotrn—Ak,—Aws . (6)
m 2m

In the I waves, the heavy ions can hardly respond to
the high-frequency oscillations, and the Poisson
equation can be written as

B2
”k,wl—’\—'-_"—@k,wl- (7)
4me

The electron density fluctuation #_ax,—a.® in the non-
linear term in Eq. (6) can be obtained from the linear-
ized electron equation of motion by neglecting the
inertial term

o€
N Ak~ A0 —_Ak,—Ao’ - @®)
mo’

Substituting (7), (8) into (6) we finally obtain

(w2_wp2_ kzvth2)@k.wl

1:6 k 1)2
= "_(k Eko,motr)q’—Ak,—Aws ) (9)
2m k2
or, in another form
ie kp? 1
e(k:w)ék.wl=_ — —(k- Eko,wotr)q)—Ak,—Aws, (10)
2m K w,?
where
pr k2vth2
e(kw)=1———
w w?

is the usual dielectric constant for the plasma when w
is close to wy.

C. The Ak,Aw Component

Now we consider the low-frequency component which
represents the s wave. Here, the dynamics of the ions
must be taken into account. The electron equation of
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motion (1) now takes the form

— 1AWMNOV Ak, Aw®
Fimno (— K- Vieg,0,t) Ve —o' 4 (Ko Voie,—o") Vig,w0™ ]
—imwovk,,,,.,o“n_k,_‘.,’+iAkkBTenAk,Aw"

= ienoAl@Ak,Aw’— (G/Z)n_k,_leko,wotr.

(11)

Similarly, we can write down the corresponding equa-
tion of motion for the ions including all the nonlinear
terms. The nonlinear terms, typically like

Mno(—k- Vig,0o") Vo —o

where we have used capital letters to denote quantities
pertaining to ions, represent the coupling of a low-
frequency ion motion to two high-frequency ion
motions.S However, the heavy mass of the ion makes
it difficult for the ions to participate in high frequency
motions. Therefore, quantities such as V! and N! are
negligibly small. Although one could be more precise,
the above argument should suffice to convince ourselves
that both the ion equation of motion and the ion
continuity equation can be linearized. These linearized
equations yield the result that

N ax,80((Aw)* — Q2 — (AR V ?) = —Qp*ak, a0

where

(12)

41rn062

M

kBTi
V 2

th" = u , &=

From Eq. (12) we see that the ions do not feel the
external field directly. They respond linearly to the
influence of the electrons which react to external
disturbances. Together with the Poisson equation

(AR) Ak, a0° = 4me(N ax, a0’ —Nak,a0%) (13)
Eq. (12) gives, upon neglecting (Ak)?Vin?,
% (Ak)?
Ak, A0’ = ( — 1)‘——¢Ak.Aw“
(Aw)? 4re
Q.7 (Ak)?
A ak,aa®. (14)
4re(Aw)?

In Eq. (14), the last step is justified by recalling that
the frequency of the s wave ws~Akvan/(m/M) is
considerably less than Q, for Ak<Kkp.

Substituting the continuity equation

— Awnak, a0’ +10AK Vag, au®= (K- Vig,up )k, —'  (15)
into the scalar product of Ak with Eq. (11), one obtains
((Aw)>— (AR, nak, a0’ +10(K - Vig,00'™) (AK- V_g, %)

—n0(Ko* Vo, —o") (AK- Vieg,00") 0 (AR Vieg, 06" 7,

eno e
= ——(Ak)*Ppx,a0"— —(AK: By o) _x,—o'
m 2m

(16)

6 We note that decays within the ion acoustic branch are
prohibited (see Ref. 5).
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Also, as kg— 0, Ak — —k, noAk: vy o} = —wn_x, o
Therefore, in the limit of ko— 0, Eqgs. (14), (7), (2)
and (16) combine to give

[(Aw)*— w2 [Pak,a0"

ie (Aw)?
=+— (k Eko.wotr)q)—k,—wl )

2
2m o,

an

where
wl=(AR)kpT./M .

After some algebra, Eq. (17) can be written in another
form,

ie kp2
e(k,w)Pax, a0 = +— — — (k- Exg,0o")®x,o", (18)
2m k? wy?
where
kDZ p2
ek, Aw) = 14— (19)

P (Aw)?

is the usual longitudinal dielectric constant for Aw
close to w;.

Following DuBois and Goldman,> we may now
identify the nonlinear susceptibility by rewriting
Egs. (10) and (18) as (when ky— 0)

e(k’w)(‘bk’wlz —XNL (ko,wo; - Ak, - Aw)d)_Ak ,_A‘.,‘g B (20)
and

€ (— Ak, — Aw)fb_Ak,_Aws

= ——-XNL(_k(), '—'(J)O; k,w)q)k.wly (21)
where the nonlinear susceptibilities are given by
XNL(ko,wo; — Ak, — Aw)

'ie sz 1
=—— "‘-(k Eko,wotr) ) (22)
2m K wy?
and
XVE(— ko, —wo; k,w)
ie kp? 1
b (k- Boga®). (23)
2m B wp?

These results are in complete agreement with those
in Ref. 2 provided we identify our e(kw) and
e(— Ak, — Aw) as the full dielectric constants, including
their imaginary parts. It is well known that in the self-
consistent-field approximation, the imaginary part of
e(k,w) for real k,w gives rise to Landau damping which
the present fluid approach cannot adequately handle.
We could have gotten some damping by introducing a
phenomenological collision frequency in the beginning.
However, it seems intuitively clear that to take the
particle-wave interaction, or Landau damping into
account, all the modification that is required is just this
identification of e as the full dielectric constant. This
step is indeed justified in the Appendix where the
Vlasov equations are used instead of the fluid equations,
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In the next section, we shall continue to use the fluid
equations with the above understanding about the

dielectric constant e.
From Egs. (22) and (23) we observe that

XNL (ko,wo ;= Ak, - Aw) = XNL(—'ko, —wo; k,w)* . (24)

This relation is actually quite general and has been
proved in nonlinear optics.”

A dispersion relation may now be derived from
Egs. (20) and (21), and the nonlinear damping rate
may be obtained. However, we shall defer a discussion
of these until the next section.

III. COUPLING OF EXTERNAL LONGITUDINAL
FIELD TO ELECTRON PLASMA OSCILLATION
AND ION ACOUSTIC OSCILLATION

We now assume that there exists a longitudinal field
Elone=1E, ., exp[i(ko: r—wot) J4-c.c. inside the plasma
due to some external driving source, where koX Ex,,,=0
and wo is close to w,. When the field strength of Elore is
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sufficiently weak, the linear theory holds and the only
disturbances in the plasma are vi).,°"% and nggw,
given by

0
noko- Vi, w0 OE = Wi, 00 = _Z_kﬂ *Eio,00. (25)
e

We see that, in addition to a longitudinal velocity
Vio,0o°", there is also a ko,wo Fourier component of the
perturbed electron density #i,,q, This nonvanishing
g0 15 the only essential difference between a trans-
verse driving field and a longitudinal driving field inside
the plasma.

As E'ene becomes strong, oscillation modes other than
that of +ko, 4w will be excited via mode coupling.
Again, as in the preceding section, we shall consider the
! wave and the s wave as the most prominant modes
which participate in the mode-mode coupling.

Replacing Et* by Elm¢ in Eq. (1) and taking its ke
Fourier component, which represents the wave vector
and frequency of the I wave, we obtain

— twmmnoVy, o'+ kb T o, o' — ienock®y, o' = [1mW0 Vg, w081k, —a0’ - 1M100 (AK - Vig,00!°"8) V_ak,—au’]

[4

— [imno(Ko+ V_ax,—a6®) Vo, w08 — $MA®V_Ak,— A6 ko w00 ]— [En—Ak,—Aw“Eko,wo“"“'l-ienko.woAk‘I’—Ak.—Aw{I , (26)

where
Ak=ki—k, Av=wi—w.

The nonlinear terms on the right-hand side of (26)
can be examined by using the linearized relations as in
the preceding section. It is not difficult to show that in
each square bracket on the right-hand side of (26), the
second term is negligibly small compared to the first
term if we assume k@~k*Kkp?, and |Aw|<Kwo. If we
take the scalar product of the vector (i/m)k and Eq.
(26) and neglect those small nonlinear terms, we obtain

eny
wnok - Vi, ot — RPoni, o —F Py o
m

= —wo(k* Vicg,00°"8)—ak —a0®

Fn0(Ko V_ar,—a6®) (K* Vicg,o1°"8)

ie
——(k- Exp,00"®)_ak,—aa'-  (27)
2m

The equation of continuity dn/dt+ V- (nv)=0 gives

nok- Vk.o.vl =y, ol — k- Vkorcuu,\hmg”’—Ak,—Aws

(28)

7See for example, N. Bloembergen, Nonlinear Optics (W. A.
Benjamin, Inc., New York, 1965), Chap. 1.

— K- Vo Ak, 80" Mg, 00

Substituting (28) into (27) one obtains

eny
(w2 - kzvth2) N, wl+_‘—k2q)k ,wl
m

€
= — _(k . Eko,wolong)n—-Ak,—Awa
2m

+n0 (kO *VoAk,—A wa) (k ° vko,wolong)
— Ao (K- Vicg, w01 "E) 0 pk, A0 -

(29)

By observing that on the right-hand side of (29), the
last two terms can be neglected compared with the
first term, Eq. (29) yields

eng
(= Bow?) i, o +—F Py, !
m

1€
= _‘(k * Bio,00"8)1_ak, 0"
2m

(30)

We note that Eq. (30) is exactly the same as Eq. (6)
except that Ey,, ., is now replaced by Ey,,'°"e. With-
out repeating the subsequent steps and by the use of
(24) it is clear that for the present case, Egs. (20)-(23)
are also valid, except for the replacement of Ei ™
by Eigw°", i€,
¥y 0 — Ak — A= — 2 L ey )
X Wo! — —Aw)=——n — — (k- wolon
0,%0, ) om B wp2 ko, w0

=XVL(—Ky, —wo; kw)*.

(31)
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We can therefore conclude as one would expect physi-
cally that the effect of a longitudinal driving field is just
the same as that of a transverse driving field as long as
both their wavelengths are long compared with the
Debye length and the wavelengths of the plasma oscilla-
tions which take part in the mode coupling. However,
we should emphasize here that in Eqgs. (22) and (23) as
well as in Eq. (31), Exyw,t™ or Exg e "¢ represents the
driving field when it gets inside the plasma. Now we
come to the discussion of the threshold. From Egs. (20),
(21), one can obtain the dispersion relation governing
the nonlinear coupling. In terms of the nonlinear di-
electric constant, this dispersion relation takes the
form? (when ko — 0)

V2 (kyw) = e(k,w)
— | XNE (ko,wo; k, w—wo) |2[e(k, w—wo) T 1=0.

If we consider real frequencies, w, only the real part
of e¥I(k,w) must vanish, thereby determining the
resonant frequency. The imaginary part gives the
effective damping rate

(32)

NL
—=Ime"=(k,w)
Wp

=Ime(k,w)
— | XV L (ko w05 ky w—wp) |2 Ime (k, w—wp)  (33)

for |yNL|<Kwp. When (yNL/w,) <0, the oscillations be-
come unstable. Thus, the threshold condition for the
onset of instability of both the / wave (electron plasma
oscillation) and the s wave (ion acoustic oscillation) is
given by

ImeVL(k,w)=0. (34)

It has been shown in Ref. 2 that for a plasma of density
no=10" electrons/cm?® and kpT'=1 eV, Ime(k,w)~ 1073,
the condition (34) can be met by a driving #ransverse
field of 600 V/cm. With our present understanding of
the effect of a longitudinal driving field, we can re-
interpret the 600 V/cm as the threshold value for the
driving field inside the plasma, may it be transverse,
longitudinal or mixed. It is known that* when an
external transverse field is incident on a bounded
plasma, a longitudinal field which may become resonant
is induced inside the plasma. The ratio of this field
inside the plasma to the incident transverse field may
become considerably greater than unity. Although this
ratio is not precisely known in the experiment of Stern
and Tzoar® described in Sec. I, a value of 10-20 for
this ratio would be sufficient to bring the theoreti-
cal threshold into agreement with the expermiental
threshold.

IV. PARAMETRIC COUPLING WHEN
ELECTRONS ARE DRIFTED

It is well known that in a two-component plasma,
when the electrons are drifted relative to the ions, a
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linear two-stream instability occurs as the drift velocity
approaches or exceeds the ion acoustic wave velocity.
It is interesting to investigate the effect of this two-
stream instability on the nonlinear instability con-
sidered in Sec. II or III. In other words, we want to
analyze the following situation: What will happen to a
two-component plasma in which the electrons are
drifted with respect to the ions with a net velocity vp
when the plasma is at the same time driven by a high-
frequency (wo slightly above w,) intense field (trans-
verse, longitudinal, or mixed). For definiteness, we
consider the case of a transverse driving field.

Similar to Sec. II, when the transverse driving field
is sufficiently weak, the linearized theory gives

—ie
Vi, a0t = ———————Ei 00" (35)
k0,0 2m (wo—ko- Vo) 0,00
Mg, 00 = Pro,00= 0. (36)

As the driving field Ey,,.** gets stronger, it can couple
to the l-wave and the s-wave. Analogous to Egs. (3)
and (11), the electron equations of motion are now
given by (as ko— 0)

—i(w—K- vp)mngvi,ot—imno(AK- Vig,uot) Vork,—au®

- imwovko.wotrn—Ak ,—Aws+ikk3 Tenk,wl

(37)

[4
= ie%okQDk,wl— En—Ak,-AwsEko,wo“ ’

and
—1(Aw— AK- Vp)mnoVak,aut— im0 (K- Vi, wo'®) Voie,—o?

— UMW Vicg, 0o Mk ,_.a,l‘l'?:AkkB T nak,a0°

e
=ienoAk'@Ak,Aw“—‘z‘n—k,—leko,wo"- (38)
The continuity equations are given by
mok- Vk,o,l= (w-—k VD)”k.wl
+ AK- Vieg, 0 Hax,—aa®,  (39)
and
'}’Lo(Ak' VAk,Aw’) = (Aw— Ak VD)”Ak,AwB
+ (k * Vko,wo")”—k ,——wl . (4'0)

Following the same procedures as in Sec. II, Egs.
(37)-(40), together with Eqgs. (7) and (14) yield, for
k'VD<<wp,

ep (K,w)®y,ot= —XNE(ko,wo; — Ak, — Aw)P_ak,—a,* (41)
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and

en(— Ak, —Aw)P_ax —ao*
= —"XNL(—‘ ko, —wo, k,w)@k,w’ y (42)
where ep is the modified dielectric constant given by

2 2
Wp Qy

(0—k-vp)—Rwn?

ep(kw)=1— (43)

However, as discussed in Sec. II, we shall identify the
ep in Eqs. (41), (42) as the full dielectric constant,
including the imaginary part (see Appendix).

Comparing Eqgs. (41), (42) with Egs. (20), (21), we
observe that the only modification due to the drift
velocity® is to change € into ep. Analogous to Eq. (32),
(33), the resonant frequency w is determined by

ReepVE(kw)=0, (44)
and the effective damping rate given by
NL
=ImepVi(kw), (45)
Wp

where
EDNL= ED(k,w)

— | x (ko, wo; k, w—wo)|?[ en (k, w—wo) .  (46)

We do not expect the resonant frequency w to shift
much from w,, for the high-frequency plasma oscillation.
More interesting is the effect of the drift velocity on
the damping rate of the plasma oscillation given by
Eq. (45). We see from Eq. (A16) in the Appendix that
as wo=w-ko (m/M)*?, the real part of the modified
dielectric constant Reep(k,w—w¢)~0, which is in-
sensitive to vp as long as vp<Kvw. The imaginary part,

Imep (k, w—wo)=Ime(k, v—wo—k- vp)

being proportional to the variable (w—wo—k-vp) [see
Eq. (A14)7], remains negative (or positive) as long as
w—wo—k-vp<0 (or >0), provided the ion temperature
can be neglected compared to the electron temperature.
Therefore, the quantity

Iml/ep (k, O)"—wo)
—Imep(k, w—wp)

" (Reep (K, w—wo))+ (Tmep (K, 0—wo))?

(47)

remains positive and approaches infinity as
(w—wo—k-vp) approaches zero from below, provided wo
is so chosen that wo= w+ kv, (m/M)'2. This is of course
the origin of the ion wave instability. From Egs. (45)
and (46), we see that the nonlinear damping rate has a

8 For a discussion of this, see Y. C. Lee and N. Tzoar, Phys.
Rev. 140, A396 (1965). Also see M. N. Rosenbluth and N.
Rostoker, Phys. Fluids 5, 776 (1962).
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negative damping contribution from the nonlinear
coupling

— | xVE(ko, wo; k, w—wo) |2 Im1/ep (k, w—wo) ,

which becomes very large and negative when the ion
wave instability is approached. We should remark that
as |y¥L| becomes comparable to w, the result based on
Eq. (45) is not valid. Although a more careful analysis
of the dispersion relation, Eq. (32), is needed then to
obtain the correct nonlinear growth rate, the indication
that the drift velocity would enhance the electron
plasma oscillation is clear. Experimentally, this should
result in a great reduction of the threshold in inducing
the nonlinear instability of the electron plasma
oscillation.

V. CONCLUSION

We have shown that the nonlinear instability of
electron plasma oscillation and the ion acoustic oscil-
lation arising from their nonlinear coupling to a driving
transverse or longitudinal field can be derived by a
simple fluid approach. As long as the wavelength of the
driving field inside the plasma is long compared to the
Debye length and the wavelengths of the participating
coupled oscillations in the plasma, it is demonstrated
explicitly that it does not make any difference whether
the driving field nside the plasma is transverse or
longitudinal, or mixed. However, since a longitudinal
field inside the plasma may become large at resonance,
less power at the external source is needed to drive the
instability, provided the external source can be coupled
linearly and resonantly to the longitudinal field inside
the plasma. In the case when the electrons are imparted
a drift velocity relative to the ions, the usual low-fre-
quency ion wave instability can have a large effect on
the nonlinear instability via the nonlinear coupling, re-
sulting in an enhancement of the high-frequency plasma
oscillation. This is physically reasonable since as the ion
wave instability is approached, the large ion wave
amplitude increases its coupling with the external field,
which, in turn, induces a stronger electron plasma
oscillation.
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APPENDIX

In this Appendix we shall indicate the steps in de-
riving Egs. (41), (42) by using the nonlinear Vlasov
equation. When the drift velocity is set to zero, Egs.
(41) and (42) reduce to Egs. (20) and (21).
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For a two-component collisionless plasma under the
transverse field Etr, the Vlasov equations can be written
as

af of e af
—xv,)+v-———[E"(x,)— V&(x,)]-—=0, (A1)
at X m av

oF OF ¢ dF

——(X, V,If)+ V'——+_[E"(X,1) - V‘I’(X,t)] =Y, (AZ)
ot x M v

and the Poisson equation takes the form
V2<I>(x,t)=47renol: / f&x,v,H)dv— f F (x,v,t)dv] , (A3)

where f(x,v,t) and F (x,v,t) denote the electron distribu-
tion function and the ion distribution function, respec-
tively. Analogous to Egs. (35), (36), the kowo com-
ponent of the above equations yields

v
fko wo(v)“‘ Eku wo : fﬂ( )/wo_ko‘V""ia
av
ie Afyu(v—v
= ko.wotr'_fﬁ( D)/wo—ko-v+i6 (A4)
2m v
and

Pry,00=0, (AS)
where far(v) is the equilibrium Maxwell distribution
function for the electrons. The kw component of
Eqgs. (A1), (A3) gives

— i i (V) +ik- vfk.wur—k 5{@ .
0 fio,a0 (V)
+"‘¢’—Ak —ao’(—Ak)- e
av
e 0f—ax—a.°(V)
=—Ey,u" - —————, (A6)
2m v
and
—k2<I>k,wl=41reno/fk,w’(v)dv
(ions neglected here). (A7)

The Ak,Aw components of Egs. (A1), (A2), (A3) yield
—1AwF A, a* (V) FiAK: VF px 00
1e aFM (V)

——Ak—— By a4=0,
m av

(A8)
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— Ao fax,a0°(V)F1Ak: ¥ fag,a0°
ie dfo(v)
+—Ak-———P4x a0
m av
ie 0 [ wo(V
43, M~k o)
m av
€ 0fx—a'(2)
=—Ex,u" , (A9)
2m
and
— (Ak)*®pk, a0’

=41reﬂo[/fAk,Aw’(V)dV—/FAk,Aw’(V)dV:'. (A10)

One may then solve Egs. (A6) and (A7), approximating
the nonlinear terms by the use of linearized relations
and taking the limit of Aw<w, 29— 0 to obtain Eq. (41).
Similarly, Egs. (A8), (A9), and (A10) lead to Eq. (42).
However, the modified dielectric constant is given by

ep(kw)=1—0i0p*(kw) — 0 Qi(kw)  (Al1)

¢ane(kw)___ k-ofo(v)/ov
w—k-v+i5
= @’ k-3 fx(v)/dv
=—— (w—k-vp)—k-v4id v
= 0:0°(k, o—k-vp),
Q7 (k-0Fy(v)/dv

o (kw)=—-— [ ———qv.
w—k-v418

where

Al12
and (a12)

(A13)

It is well known that

mkp? w w?
ImeQ(kw)=—_ [— — — exp(— ) , (A14)
2 k2 k‘l)th 2k2v¢h2

ImerQ?(k,w) — 0 as the ion temperature 7'; — 0.
When k- vp<KkomnZo,

and

Q
Reep(k,w)_’\_{l—————-———-——-—-—l-;—-; (AIS)

when w<kvn, k- vp<<hog,

bt Q7
Reep (k, w)~1+—2—~—— )

w?

(A16)



