
PHYSICAL REVIEW VOLUME IS&, NUMBER 4 23 DECEM BER I 966

Exact Sum Rules as Consequences of Low-Energy Theorems and
Unsubtracted Dispersion Relations*
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Working with the equal-time commutation relations of vector current densities including the Schwinger
term, the low-energy theorems for the Compton scattering of isovector photons by nucleons have been
obtained. Assuming unsubtracted dispersion relations, sum rules which have been previously obtained by
several authors have been reproduced and the relations between the previous derivations and the present
work are discussed.

I. INTRODUCTION
' 'T has been suggested by Drell and Hearn' that. an
~ ~ interesting sum rule for nucleon magnetic moments
follows from the low-energy theorem and the assump-
tion of an unsubtracted dispersion relation for the spin-
dependent part of the forward Compton scattering
amplitude. Recently, Kawarabayashi and Suzuki' have
shown that the same sum rule can be derived from the
commutation relations between vector charge densities,
and thus have made it clear that as far as this sum rule is
concerned, the two approaches are entirely equivalent.

The purpose of this paper is to extend these argu-
ments and to show that not only the sum rule mentioned
above, but also other exact sum rules, derived from
commutation relati. ons between vector current densities
such as the Cabibbo-Radicati sum rule' and the one
proposed in Ref. 2, are consequences of combinations of
low-energy theorems and unsubtracted dispersion rela-
tions for the isovector photon Compton scattering
amplitude. 4 Moreover, in the course of the proof of the
theorems, we show how the theorems depend on the
local commutation relations Ljp (x,0),jps(0,0)j and

Ljp (x,0),jets(0,0)j, and thus how the two approa, ches—
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' S.D. Drell and A. C. Hearn, Phys. Rev. Letters 1fi, 908 (1966).' K. Kawarabayashi and M. Suzuki, Phys. Rev. 150, 11g1 (1966};
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High Fnergy (W. H. Freeman and Company, San Francisco,
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4 During the course of this study, one of us (KK) was informed
through Dr. Y. Dothan that Dr. M. A. B. Beg derived the low-
energy theorem for f3(I). After completing the essential part of
this work, we had an opportunity to see his paper L'Phys. Rev. 150,
1276 (1966)g in which he derived the low-energy theorems not only
for fs(v) but also for f4(„).However, some of our conclusions are
difterent from those of his paper.

the current algebra at infinite momentum and the one
presented her- are equivalent in deriving the sum
rules.
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The isospin indices a and b run 1, 2, and 3, and X and 0-

stand for the polarization indices, and v the laboratory
energy, of the photons.

The amplitudes fi(v) and f4(v) are even functions of
v, while fs(v) and fs(v) are odd, as consequences of the
crossing symmetry.

Ke can then prove the following low-energy theoremsv:

fi(v): 1j2M—S, (3)
~0

f () '- ( .'/2~)',
v~0

(4)

' C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).
6 For the connection to the true forward-scattering amplitude,

see Sec. IV.' For the real Compton scattering, (3) and (4) are equivalent to
the Thomson limit /see W. Thirring, Phil. Mag. 41, 1193 (1950)
and N. Kroll and M. R. Ruderman, Phys. Rev. 93, 233 (1954)j
and the Low—Gell-Mann —Goldberger limit Lsee Ref. 10 and M.
Gell-Mann and M. L. Goldberger, Phys. Rev. 96, 1433 (1954)g,
respectively. The constant S is absorbed in the amplitude f& (v) in
this case (see Ref. 15 and Sec. IV of this paper).

128(7

II. LOW-ENERGY THEOREMS AND SUM RULES

Let us define the time ordered prodm-ct part of the
forward scattering amplitude of isovector photons
Lrepresented, for instance, by the Yang-Mills fi.elds'
with SU(2) indices7 with nucleons in the labora, tory
system by

~."()=5.(l l '}f()+~.Ll l 'jf ()
+i cog„{-',r, —',r') f (s)v+ i,e.i„oL-,'r;,'r'jfe(v), (1)

where'



LO% —ENERGY THEOREMS 1287

fs(v) - vp ~s(r') g"+ (jury/2M)s7 (5)

f4(v) -pr v/2M, (6)

where the parameters are contained in the matrix
element of the vector current

&P'I j~'(0)lp)
~2 1/2

t (P') I:sv~Ft'(v')
Po Po —s~~ v Fs'(c')7lr'l(P), (7)

Drell and Hearn' and can be derived also from the
commutation relation of the vector charge densities. '
We note in passing that the sum rule (14) is also
satisfied when the isoscalar part of the anomalous mag-
netic moment p, s and the total cross sections o.v s(v) and
ops(v) in the absorption of an isoscalar photon are
appropriately substituted. The relation (15) is the
Cabibbo-Radicati sum rule, ' while (16)has already been
proposed in Ref. 2.4

If one further assumes that fr(v) satisfies the unsub-
tracted dispersion relation, one formally gets, from (3)
and (10), a sum rule expressing the Schwinger constant
in terms of the total cross section':

with the normalizations

Ftv(0) = 1, Fsv(0) =p, v/2M,
1 1

S= +2' m n p

os (v)dv. (17)

v —1+~ v

The quantity (r')~v is the mean square of the isovector
electric charge radius of the nucleon. 5 is the so-called
Schwinger constant, and is defined below LEqs. (21)
and (22)7.

Now, with the aid of the optical theorem, we have
(v&0)

III. DERIVATION OF THE THEOREMS

For the proof of the low-energy theorems, we make
use of the following identities:

d'~'y e "'"*'"(P'I&(i o (*) jo'(y)) IP)

Imfi(v)= —
vt oi' (v)+op (v)7,

= —2vo rv(v),

Imfs(v)=vLov (v) —og (v)7,

Imfs(v)=vLos)s (v) —2(ri(s (v)7)

Imfo(v) = —-', v(Los(s"(v) —2ot)s (v)7v
—

L '()—2 "()7 )

(9)

(10)

(11)

(12)
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"~v"(v) —2~v"(v)
dv, (15)

ppV —1
(L~ws'(v) 2~tis" (v)—7p

235 4x'n p

—L~o(sv(v) —2o t(sv(v)7g)dv. (16)

The relation (14) is the analog of the one suggested by

where ov (v) (o ~"(v)) is the total cross section for the
absorption of a circularly polarized isovector photon by
a proton polarized with its spin parallel (antiparallel) to
the photon spin, while o.t~s (v) (oo~s (v)) is the total
cross section for the absorption of an unpolarized
isovector photon in the I= ', (I= s) channe-l.

The sum rules are immediately obtained by intro-
ducing (3) through (6) into (9) through (13),under the
assumption that the amplitudes fs(v)/v, fo(v)/v, and
f4(v) satisfy unsubtracted dispersion relations:

—iqq d4xd4ye '~ +'~~

&&&P'I&(*o-yo)I jo'(~),jx'(y)7IP), (19)

where X and o run 1, 2, and 3. Equations (18) and (19)
are easily derived by t,he current-conservation law and
repeated integrations by parts. The relationship be-
tween (18) and (19) is a generalization of Low's formula
for the scattering of photons by spin-2 systems, " and
has been extensively used by Adler, for the special case
of q'= q, in connection with the derivation of the sum
rules for high-energy neutrino reactions. "

83y choosing a=b=3 in Ref. 2, and repeating the same
calculation, one can easily get (14).' If the integral over the cross section is divergent, the sum rule
(17) of course would not make any sense. On the other hand,
obviously, we are not allowed, for the real Compton scattering, to
assume the unsubtracted dispersion relation for the true amplitude

fi(v), since this is inconsistent with the Thomson limit. It is
amusing to note that if 8=1/M is set, one obtains a sum rule
which is essentially the Thomas-Reiche-Kuhn sum rule."F. E. Low, Phys. Rev. 96, 1428 (1954)."S. L. Adler, Phys. Rev. 148, B1144 (1966).
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Let us now assume

U ( 0) o'(o0)j= "~ 'o'( 0)3( ), (20)

I'0
(PI&'(0) I p&=3.&—,

N
it will contribute only to the amplitude fr

From (18) and (19), we get

(22)

—qx Tx; q, = qo qoTo—o' i(2rr) 3—( q P+—q+—P)
X I

iqo'e. o.(P'I jo'(0) I P)
+ i....(p'I jx (0)l p)qx

+q~qx(p'I~"(0)I p)j (23)

By invoking Low's argument, we can evaluate Too ~

correctly to terms linear in the momenta of the photons
by considering only the single-nucleon intermediate
states.

Let us write

Tx. ' ——{-',r;,'ro) Tg."+L:',r, r'jTx, &~&, (24)
and

Ljo (x,0),jx'(0,0)j= ie,o,jx'(x,O)b(x)
i—r)gb(x)S" (x,O), (21)

where S"(x,0) is a scalar operator whose nature we do
not specify here. Note that we have not assumed that
5 is either symmetric or antisymmetric with respect to
u and b Wi.th the assumption (21), however, one can
show from (18) and (19) that the matrix element

(p IS o(0)
I p) is in fact symmetric in a and b by virtue of

the crossing symmetry. Thus, writing
A &'& = —-', (r')s vv

a&'&=I, v/2M
(28)

Retaining only the terms proportional to 8z, and ez „a.„
in the forward amplitude Tq, & ~, we obtain

Tx."= i(2~)'3—'( q' p'+—q+—P) (M/Po')"
XL3x.{pd(q)" '—s(r')~"v}

+icy.„o,

harv/2M.

5 (29)

The low-energy forward-scattering amplitudes (5) and

(6) follow immediately from (29).

IV. DISCUSSION AND SUMMARY

We wish to discuss brieQy the relations between the
forward-scattering amplitudes ft, , f4 obtained in the
previous sections and the corresponding true fortcard
scattering anip/itudes f.. . f4.

As is well known, the true forward-scattering ampli-
tude is given by"

We next obtain

Tx.&ol&'l = i—(2ir)434( q—' P—'+q+P)
X (M/po')'"I —(4M') '(q 'q.—q q.—q 'q.')

+ ip, , (2M)-'{ (—q'+q)xLeX q).
+I Xa'& (—tl+a'). )+(P ')'
X{3x.(q'. q) —qxq. '+ ie...q, '(q ~)

-iI:q'Xv)~(~).) jv '. (27)

Substituting (25), (26), and (27) into (23), we then get
to linear in w,

T„(~,~) —T„(o)l~,~)+3„A(~,N)+i pi~, ~) (25) Px."(v)=Fx,"(v)+Cx."(v), (3o)

where T),.('~('& and Tz "'( & are the single-particle T-
product matrix element symmetric and antisymmetric
in a and b, respectively. The terms A~' & and 8&' ')
contain all contributions from the excited intermediate
states, and are determined from (23) to order linear in q.
The calculation of T), &' proceeds exactly in the same
way as that discussed by Low, "and the result, together
with the Schwinger constant in (23), leads to the low-

energy forward amplitudes (3) and (4).
Proceeding to the antisymmetric case, we erst obtain"

Too& & = —i (2ir)43'( —q' —p'+q+ p) (M/po')'~'{1 ——,'(r')~
XL(e')'+(~)'j& —. (26)

The target nucleon is taken to be standing still. The
term proportional to v ' in (26) cancels in (23) with the
term qo'( —q'+ g I go'(0) I

0). Unlike Too'l, the spin-
dependent part of Too('~ is quadratic in q, and hence can
be disregarded.

"It is very essential at this point to allow Grst the photons to
be time-like, retain the lowest order terms in ( q ~2 in (26), and then
take the limit ~q ~' ~ 0, followed by v=qo ~ 0. 1f we keep ~q['
Quite and take a limit v —+ 0, from (18) and (t9), we get a sum rule
for arbitrary q2&0. The Cabibbo-Radicati sum rule is then
obtained by the differentiation with respect to q . See Ref. 11.

where Fx, o(v) is deGned by (2), and Cx, '(v), the so-
called "seagull" term, is given by

Cx."(q)= i d4x—e
—"*8(xo)

X(p ILAx'(*),j.'(0)PIP) (31)

In this expression, Ax'(x) is the vector Geld satisfying
the following equation of motion and the subsidiary
condition:

and

—C]sA& (x)= j& (x),

c)Q„(x)I)=0.

(32)

(33)

First, it can easily be shown, under the assumption of
invariance under time reversal and parity conjugation,

"We have assumed throughout the rest of this paper that the
current j), does not contain the time derivative of the vector Geld
A),~. Although in the Yang-Mills theory, the current jz' contains
the vector strength f„„a explicitly, the term proportional to Ax' can
be eliminated by the subsidiary condition (33), since we are taking
the matrix element like (31). Moreover, it can be shown that even
if j), contains the time derivative of the vector Geld Aq~, (36}still
holds and therefore (37) and (39) are still valid. Consistency
problems of the Lorentz subsidiary condition and the canonical
quantization for the non-Abelian gauge Geld has been discussed
by J. Schwinger )Phys. Rev. 130, 482 (1963)g.
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that
Cx."(q)=C.x"(—q) (34)

The crossing symmetry, on the other hand, states

Cx.'(q) =C.i,"(—q) . (35)

Combining (34) and (35), we get

Cx."(q)=C),."(q) . (36)

Thus, the seagull terms vanish for the amplitudes
antisymmetric in the isospins, and we obtain

P = 3 P (37)

4 P = 4 P (»)
Next, it can be shown from (31) that, by virtue of

(32) and (33), the following identity exists'p:

Cx."+qv(f)/Bqx)Cv. " $3, pb——x. . (39)

J.()=S.()+~,
V = 2 V p

(40)

Thus, it is evident that the low-energy theorem (3)
corresponds exactly to the Thomson limit of the true
forward-scattering amplitude.

In this manner, we find that the low-energy theorems
for fi, fp, and fp, i.e., (3), (5), and (6), can be replaced
by those for the corresponding true scattering ampli-
tudes fi, fp, and f4. In addition, if Cx. ' is constant, the
low-energy theorem for fs, i.e. (4), can be replaced by
that for fs "In thi.s case, the low-energy theorems for

'4 Although we have used the equation of motion and the sub-
sidiary condition for A ie(x) to prove (39), this identity can also be
proved by the following argument. Multiply q„ to the true forward
amplitude deaned by (30). Then, by integration by parts, one
obtains

q„F„,~~= — d x f! '&'8 xo) P j0~(x,jP 0 P +q„C„„'~

=p"p (PI i:(0)IP)
This relation was first derived by R. P. Feynman (California Insti-
tute of Technology seminar, November 1965; see also S. L. Adler
and Y. Dothan, Phys. Rev. 150, 000 (1966). The identity (39) is
easily obtained by diRerentiating the above with respect to q), .

Since C„„P(q)=C„„P'(q), the higher order gradient terms of the
3-function that might possibly exist in (21) in addition to the one
given should also be symmetric in u and b. This gives support to
the conjecture by Adler and Callan (unpublished CERN report)
with regard to the isospin symmetry of the Schwinger term.

'5 On the other hand, if Cq, "~ depends on v, since it arises from
the equal-time commutator, it must be a polynomial in v in
general, in which case it would be necessary to assume higher
order gradient terms of the 8-function in the commutation rela-
tion (21) because of the equation stated in Ref. 14. However, we
still have

fi(0) =f, (0)+S,
and

lim„p fp(v)/v=lim p fp(v)/v.
"In Low's derivation of the low-energy theorem, f&(v) = fp(v)

was shown explicitly on the basis of a model Geld theory.

where 5 is the Schwinger constant defined by (22). In
obtaining (39), the usual assumption that j&, does not
contain the time derivative of the vector field has been
made. '3

If C~. ~ is independent of q, then we obtain im-
mediately"

the real Compton scattering amplitudes f, and fs are
also reproduced. "

Summarizing our principal result, the low-energy
theorems for the forward amplitudes in the Compton
scattering of isovector photons by nucleons have been
obtained. Assuming that each of these amplitudes
satisfies unsubtracted dispersion relations, we have
obtained sum rules that can possibly be tested ex-
perimentally.

Although it is evident that the low-energy theorems
for these amplitudes can always be obtained, the precise
forms of the theorems would naturally depend upon the
commutation relations of vector current densities ex-
pressed in (20) and (21) through identities (18) and
(19). For instance, if we modify the relation (20) by
introducing nonminimal current, the sum rules of
Cabibbo and Radicati, as well as the rest, get corre-
spondingly modified. '

Thus, within the assumption of unsubtracted dis-
persion relations, these sum rules may provide a pos-
sible test of the current commutation relations (20)
and (21).

1Vote added irl, proof. After our paper was submitted
for publication, we came across the paper by M. A. B.
Beg, [Phys. Rev. Letters 17, 333 (1966)j in which he
has derived the low-energy theorems for fi, f4 and
the sum rules which correspond to (14), (15), and (16)
of the present work. Kith regard to the main difference
between his results and ours, we wish to make the
following remarks:

(i) There are in general two diferent points of view
with respect to the assumption of unsubtracted dis-
persion relations, namely: (a) assume unsubtracted
dispersion relations for the amplitudes corresponding to
the time-ordered product part fi(v), f4(v) of the true
scattering amplitudes; or (b) assume the same for the
true scattering amplitudes fi(v), fp(v). In the present
paper, we have restricted ourselves to the point of view
(a) and assumed unsubtracted dispersion relations for
fi(v), ~ f4(v), while it would seem that the point of
view (b) is taken by the above author. The difference
between these two points of view is by no means trivial.

The crucial point is that from the point of view (a),
the low-energy theorems for fi(v) and f4(v) and there-
fore the resulting sum rules (16) and (17) depend upon
Schwinger terms (or seagull terms), while from the
point of view (b), they do not. This situation is ex-
plicitly stated in the text in connection with the differ-
ence of the low-energy forms for fi(v) and fi(v). For
instance, if we were allowed to assume that the C~,"

"Since we are working with the isovector photons, there is a
factor 2 difference between our formula (3) and (4) and the
Thomson and Low—Gell-Mann —Goldberger limits. However, it is
easy to apply our method to real Compton scattering. For the
amplitudes symmetric in e and b we then reproduce the usual low-
energy theorems."K. Kawarabayashi and M. Suzuki, this issue, Phys. Rev. 152,
1383 (1966).
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contains a term antisymmetric in both a and b, and X

and o, the low-energy theorem for f4(v) and the corre-
sponding sum rule (16) would have been modified. We
have shown that such is not the case if one starts from
the physical 5 ma-trix element and applies the reduction
formula to it, thereby having an explicit form (31) for
the seagull term.

(ii) As is shown in the text, all exact sum rules that
have been derived from the current commutation rela-
tions by making use of the method of the so-called
"current algebra at p -+co," can be derived from low-

energy limit theorems and the assumption of unsub-

tracted dispersion relations. However, the two ap-
proaches are equivalent only if we take the point of
view (a).
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The p-p elastic-scattering cross section can be explicitly calculated in quantum Geld theory endowed with
a fundamental length in the limit of very high energy and large momentum transfer, assuming that a simple
(vector-meson) interaction is dominant. Plots of X—=logioL(dc/do), ./(cP/41r) j are given for various lab
momenta P & 10 GeV/c and momentum transfers t& 10(GeV/c)—'. In this range X involves only a sfagte,
additive parameter. A strong energy dependence, which gives the observed great shrinking, enters through
the "kinematical form factors" attached to the external lines and is thus an immediate consequence of a
fundamental length. The 6t to the experimental points is excellent for a coupling constant of strong-inter-
action size if ) =0.5X10 '4 cm.

~ 'HE curves shown in Fig. 1 are theoretical curves
for p pelastic sca-ttering at very high energies

and momentum transfers obtained from quantum Beld
theory endowed with a universal fundamental length, or
high-momentum cuto8. To illustrate the typical be-
havior in this range of s and t caused by a fundamental
length, we chose the interaction to be mediated by a
single neutral vector meson for simplicity. The features
arising from a fundamental length are not very sensitive
to the details of a more realistic interaction. In this
range the cross section and thus X depend on only a
single mlltiplicatiwe Nnknowe parameter. &Thus in a
logarithmic plot one has only the freedom of displacing
all the curves rigidly up or down, without, of course,
changing their shapes of- relative orientation. In view
of this, the fit obtained to the "shrinking" (energy de-
pendence of the diffraction peak) seems good to us,
better than any theoretical fit we have yet seen. The
open circles show Serber's energy-independent theo-
retical curve, ' obtained from an optical model, for

' R. Serber, Rev. Mod. Phys. 36, 649 (1964).

comparison. Although the curves have been plotted
back to zero momentum transfer, the small

L
—t&10 (GeV/c)'j is not meant to be signi6cant.
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I. I I I I I I I I

0 "5 -.6 —9 -12 -15 -
I 8 -21 -24 -27

t = (4 —momentum transfer}~ (GeV/c)~

FIG. i. The normalized p-p elastic scattering cross section in the
very high energy and large-momentum-transfer range, computed
from Eq. (2.6) with X defined by Eq. (2.7). =—experimental
points from Ref. 12. o=—Serber's theoretical optical model
(Ref. 1). The curves correspond to p„/X'=1.46&&104 (GeV/c)'.
The behavior for —t &10 (GeV/c)' is not significant.


