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Vertex Symmetry and the Reciprocal Bootstrap*

M. L. WHIPPMAN

DepartvMat of Physics, Uaiversity of Peansylvartia, Philadelphia, Peamsylvalia

(Received 6 July 1966)

We formulate a vertex-symmetric, time-reversal invariant bootstrap in a multichannel version of the
static model. The results are applied to the coupled ~N and m¹channels, and to the in6nite baryon tower of
states with I=J.The coupled-channel problem is shown to be equivalent to the uncoupled problem, and the
implications for approximate calculations are discussed briefly.

I. INTRODUCTION

'N recent years there has been a revival of interest
- in the static model, which we may hope is qualita-

tively correct in describing the low-energy behavior of
mesons and baryons. In the context of the E/D method,
the term "static model" has come to be used for the
scheme' in which only the baryon-exchange pseudopoles
are used for the left-hand cut, the D function is approxi-
mated by a straight line, and everything is taken to
lowest order in the inverse baryon mass. This model
was used by Chew' to introduce the idea of a reciprocal
bootstrap for the S and the E* and has since4 been
extended to SU(3). A somewhat different approach to
the model has been adopted by Cook, Goebel, and
Sakita' and by Singh and Udgaonkar, ' who have
studied the group-theoretic aspects of the strong-
coupling limit. The present work. overlaps the last
reference to a certain extent, though our approach is
rather diferent.

Our interest in the static model is mainly in the
reciprocal bootstrap, and in particular in the problem
of vertex symmetry. The bootstrap hypothesis treats
all particles on the same footing as bound states of
each other, and hence it is highly desirable to make
approximations in such a way as to maintain this
symmetry. Speci6cally, we should like the md/* cou-
pling constant derived from the residue of the X*pole
in xE scattering to be the same as the coupling constant
derived from the residue of the X pole in xE* scatter-
ing. ~ This attitude has been particularly emphasized

by Cutkosky. '
Such symmetry is obviously dificult to maintain in

a theory that treats the E and the N* differently. Our
purpose is therefore to consider the two-channel prob-
lem of coupled mX and xÃ* channels and to formulate
the reciprocal bootstrap for this case. A related problem

*Supported by the U. S. Atomic Energy Commission.
' G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).' D. Amati and S. Fubini, Ann. Rev. Nucl. Sci. 12, 359 (1962).' G. F. Chew, Phys. Rev. Letters 9, 233 (1962).
4 I. Gerstein and K. T. Mahanthappa, Nuovo Cimento 32, 239

(1964);R. Dashen, Phys. Letters, 11, 89 (1964).' T. Cook, C. J. Goebel, and B. Sakita, Phys. Rev. Letters 15,
35 (1965).' V. Singh and B. Udgaonkar, Phys. Rev. 149, 1164 (1966).

7 We should, ideally, also get the coupling constant from the
pion pole in XE+ scattering, but such an approach is beyond
present techniques.

s K. Y. Lin and R. E. Cutkosky, Phys. Rev. 140, B205 (1965).
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has been considered by Abers, H aiazs, and Hara (ABH), s

but these authors treat each channel separately, and
include only mÃ intermediate states in the unitarity
equation for mX scattering and in xE~ ~E*, and only
~S* intermediate states in xX* elastic scattering. Such
a procedure obviously needs further justi6cation; our
aim is to provide it. We therefore consider the mS-m.E*
system as a coupled two-channel problem and include
both mX and xS* intermediate states in all processes.
Rather surprisingly, the extra intermediate states make
no difference to the 6nal answer, and the ABH pro-
cedure turns out to be equivalent to solving the coupled
problem.

The advantage (or the disadvantage, depending on
one's a, ttitude) of the static model is that it reduces
dynamics to group theory. That is, all dependence on
masses, cutoffs, and density of states cancels out of the
final equations, and we are left with relations between
crossing matrix elements and coupling constants only.
In this sense our conclusions are mainly about prop-
erties of Clebsch-Gordan coefficients, and it is a valid
question whether they have any physical relevance.
While we do not believe that a more realistic calculation
will necessarily agree with this one in detail, it is prob-
ably true, however, that a fair part of our "intuition"
about how a bootstrap calculation works is based on
the results of the static model, and from this point of
view our conclusions are of some relevance, even if
their interest is mainly negative. The fact that the
coupled-channel and the uncoupled-channel calcula-
tions agree is encouraging, though it comes about in a
rather artificial way. Had they disagreed, however, it
wouM have been a strong argument for believing
neither.

A further reason for continuing to study the static
model is just that any more realistic model is so dificult
to handle. As emphasized by Ernst, Warnock, and
Wali, "almost any approximate calculation that main-
tains vertex symmetry is likely to lead to a violation of
time-reversal invariance.

A coupled-channel problem has vertex symmetry
"built in,"and if the X/D equations are solved exactly,
time-reversal invariance of the solution will follow from

E. S. Abers, L. A. P. Balazs, and Y. Hara, Phys. Rev. 136,
B1382 (1964). We shall refer to this paper as ABH.

F. J. Ernst, R. L. Warnock, and K. C. Wali, Phys. Rev. 141,
1354 (1966).
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time-reversal invariance of the input. "In any approxi-
mate calculation, however, it is dificult to maintain
symmetry of the T znatrix (which reflects the time-
reversal invariance). We suggest a new approximation
below PEq. (7)g which guarantees the symmetry of the
T matrix in the static model"

We start by formulating a general theory of multi-
channel scattering in the static model. It turns out that
the equivalence of the coupled and uncoupled versions
of the model is most transparent for the in6nite "baryon
tower" of ASH, and we discuss this first. We then turn
to a restriction of the tower to the E-E~ system, and
finally discuss the results.

II. FORMULATION OF THE MULTICHANNEL
BOOTSTRAP

In this section we would like to give a rather general
discussion of a multichannel bootstrap in the static
model. As is well known, spin and orbital angular mo-
mentum are completdy decoupled in the model, and
spin may be treated as an internal symmetry. We
therefore take a model of m heavy spinless baryons X;
and consider the coupled mlV; channels.

We shall neglect differences in the masses of the S;
in external lines, though not in internal lines or in
density-of-states factors. This assumption, though
slightly inconsistent, avoids a lot of purely kinematic
complications; and as pointed out by Ernst, Warnock,
and Wali, " the most sensitive dependence on mass
differences is in the density of states. As usual, we take
the meson laboratory energy co as our variable. The
E-wave scattering amplitude may then be written"

with

In the one-channel approach, the cutoff necessary is
usually~ introduced by assuming D is a linear function
of or,' that is, by taking A. to be constant. A similar
approach in the multichannel case would be to regard
the e' elements of A. as constant parameters, and in
fact as arbitrary apart from the constraints of time-
reversal invariance. Ke should like to suggest that it is
reasonable to constrain A. further. We ignore the de-
pendence of A. on ~; the form of the factor in curly
brackets in Eq. (6) then suggests that it is consistent
to assume that this factor is also independent of ~„and
to write

A.=P Pr„D(—ce„)

(7)
=(I—P co Pr )-'Pr

where P is a constant diagonal matrix, and

r=P r, .

We have used Eq. (5) in deriving the second line of (7).
The e diagonal elements of P are now the free param-
eters in the model, and represent the cutoffs. As we
shall see, the form (7) for A. mainta, ins the symmetry
of the T matrix.

If now T has a direct-channel pole at co=ceo with
residue R, we have

det(I —cod) =0,
T=ND ' (]) and

where T, N, and D are e&&N matrices with rows and
columns labelled by the channel xX;. Then

R= —N(cep)PD'(cdp) j '
= —1 A adj(I —ceps)/(d/dce)Ldet(I —ceA) j = „(&0)

N=
n(co') D (ce')

dM
I

where "adj" denotes the adjugate, dehned for any
matrix A by

A adjA=detA I.
By choosing the representation in which A. is triangular,
it is easy to prove that

where y is the density of states and 0. is the left-hand
discontinuity of T. We replace the left-hand cut by a
series of poles at ~= —co„with residues I'„, so that

N=Z j'.D(—~.)/(~+~.),

D = I—A.co, (~)
~I J. D. Bjorken and M. Nauenberj„Phys. Rev. 121, 1250

(1961).
"A more realistic model has been studied by R. C. Brunet and

R. %. Childers, Phys. Rev. (to be published). Their calculation is
not a complete bootstrap, however, and does not preserve sym-
metry of the T' matrix.

's J. D. Bjorken, Phys. Rev. Letters 4, 473 (1960). See also
J.B.Hartle and J.R. Taylor, Princeton University (unpublished
report), 1966.

TrA. adj (I—co~)= (d/dce) t'det(I —ceA)j„„„(12)
and hence that"

Tr L R adj F]=detF,

where we write the equation this way since there is no
a priori reason for 1 to be nonsingular. This equation
involves only coupling constants and is completely in-

dependent of any Inasses or cutoffs. It is also inde-
pendent of the specific form (7) we have taken for A.
and is the basic equation of our model. It is, however,
only a necessary condition, and we must sti11 verify
that it is possible to choose masses to satisfy the full

'4 Compare the paper by Dashen quoted in Ref. 4.
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R= ir)(r[
for some vector

~
r)

The last three equations then imply

I P~r)= (re*+res) tr). (17)

A similar equation has been obtained by Ernst, War-
nock, and Wali." Though Eq. (17) is very simple, it
holds only because we have taken all crossed poles at
the same point. As we shall discuss later, this equation
has certain disadvantages, and we shall not use it in
the following.

Returning to the case of general masses, an important
question is the symmetry of the right-hand side of Eq.
(10) since this is necessary if our approximations do
not violate time-reversal invariance. In the Appendix
we show that

(18)
where S is a complicated matrix involving the oi Mp,

and P. S is symmetric, and the identify (12) ensures
that T SI = 1. (19)
The symmetry of R. is. then manifest.

set of equations (10) with the values of the coup-
ling constants given by (13).

In order to make contact with the work of other
authors, "we consider the special case of these equations
that occurs when all the co„are taken equal to some ~*.
Then using (7), after some manipulation we find

R~ I'Pl adj[I —(re*+re) PI'j, (14)

where the omitted factors are all scalars (i.e., not
matrices) and where Eq. (9) implies

detLI —(co*+res) PI'] =0. (15)
Since the elements of R are residues of one-particle
poles, they factorize into the product of two coupling
constants, one for each vertex. In fact, R is a, rank-one
matrix" and can be written

Up till now our discussion has been perfectly general.
The bootstrap hypothesis now relates the coupling con-
stants that appear in R to these that appear in I' via
crossing matrices and identiles coo with one of the or„.
Equation (13) now becomes a consistency condition on
the coupling constant; whether or not it can be satis6ed
cannot be answered in general and depends on the
particular crossing matrices and on the number of
channels. Assuming that it can, it is an interesting
question whether the full Eq. (10) implies any further
conditions. This is impossible to answer in general;
depending on the specific values of the coupling con-
stants, Eq. (10) may be satisfied identically if (13) is,
it may give an equation constraining the various co„,
or it may merely determine the cutoff in terms of the co„.
We shall give examples of these possibilities below.

To proceed further, it is necessary to choose speci6c
forms I' and R. We therefore turn to a study of various
examples.

III. EQUIVALENCE OF THE UNCOUPLED AND
COUPLED CHANNEL BOOTSTRAPS

As already mentioned, the mechanism at work can
be understood more clearly by a study of the infinite
baryon "tower" of states with equal spin and isospin"
introduced by ASH than by looking at the coupled
S-E* case. We therefore introduce a series of baryons
X& with t=2I=2J=1, 3, 5, .~, and define the xS&N~
coupling constant'~ g«by requiring that the residue of
the 1V, pole in sN; ~ sXr scattering be g~r g~~"/(t+1)
Suppose we now follow ASH in looking at mX& scattering
and keeping only xX& intermediate states in the uni-
tarity equation. There are then three equations of the
type of Eq. (13) giving the residues of the E~ s, iV~,
and %&+2 direct poles in terms of the corresponding
crossed residues. As is well known, these can be written
as an eigenvalue equation.

gr g s /(t 1)—
ts(t+1)'

ft+3)s
g~, r-s'/(t —1)'

4+ 1)

g, ,'/(t+1)'
4(t—1)' (ts+2t 4)'—
ts(t+1)' ts(t+2)'

4(t+3)'

(t+1)'(t+2)'
gr, '/(t+ 1)' (2o)

pt 1—
gi, ~ss/(t+3)'

(t+2)'
g~, i+s'/(t+3)'

(t+1)s(t+2)s

where the matrix is the mX~ —+ xS& crossing matrix. '
Equation (20) has a solution for all t, namely,

g« = L(t+1)(t'+ 1)]"'a (21)
"J.M. Charap and K. Squires, Phys. Rev. 127, 1387 (1962).
"We do not consider the problems of which states can occur

in the. model, but merely assume a consistent set. We also do not
investigate whether the solution we 6nd is unique, but merely
show that a solution with the desired properties exists; Compare
the discussion in Ref. 9.

"There is some problem in notation due to the fact that the

where g is arbitrary. The fact that a solution exists at
all is a reflection of the very high symmetry of the

residue of, say, the E* pole in 7IS —+mX and the S pole in
mE+~7i-X+ are not the same, but difter by kinematic factors.
Unlike other authors, we prefer to follow common practice in
introducing only one coupling constant at each vertex, so that
g«. ——gt t. This has the unaesthetic feature of introducing various
numerical factors into the residues, but avoids defining diQerent
coupling constants with extra relations between the~."For the "internal" syrnrnetry SU(2)QxSU(2),
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model5; and it is this fact that makes the uncoupled-
and coupled-channel problems equivalent.

Equation (20) was the condition for a reciprocal
bootstrap in the xN& channel. It has another interpreta-
tion, however. For suppose we now look at the full
coupled-channel problem using the formalism of Sec.
II. Everything now becomes a 3)&3 matrix with rows
and columns labelled by ~N& &, mN&, and xN&+2. The
rows of the vector on the left side of (20) are residues
of direct poles, and hence are elements of R; those of
the vector on the right are sums of residues at crossed
poles, and are elements of F. Equation (20) then states
the equality of diagonal elements of R and I'. For the
off-diagonal elements we need the xN~ ~ ~N~+~ and the
mN& ~ ~ xN&+~ crossing matrices; they are

and

(l+ 2)'

t(t+ 1.) (~+4)

.(&+3)(&+2)'

t(t+ 3) (t+4)-

(~+ 1)(t+2)s

(t+2)'

respectively. It is then straightforward to show that
the solution (21) implies

(22)

Thus for a.ny values of the masses and cutoffs, Eq. (22)
provides a solution of the coupled-channel Eq. (18)
and a fortiori of Eqs. (13) and (17); which shows the
equivalence of the coupled and uncoupled problems. "
It is perhaps worth emphasizing the difference between
the uncoupled and coupled cases. In the former, Kq.
(22) is a necessary condition, and can always be satis-
Ged for any one value of t, though not necessarily for

r' It is amusing to note that Eq. (22) is exactly the condition
that if the T matrix is approximated by the sum of all direct-
and crossed-channel poles, then unitarity is satisfied at high en-
ergies. (See Ref. 2). The solution of a one-channel bootstrap

always has this property; for a multichannel bootstrap, Kq. (22)
overconstIp, &ps the problem in general and is impossible to satisfy.

This equation was derived using values of the coupling
constants which were a solution to the uncoupled-
channel problem. We would now like to verify that
these coupling constants also provide a solution to the
coup]ed-channel problem; that is, that it is possible to
choose the masses and cutoffs so that Eq. (22) furnishes
a solution of the bootstrap Eq. (10), or equivalently, of
Eq. (18). In fact, an even stronger result is true, for
if we use the explicit form (16) of R, and Eq. (22),
then the right-hand side of Eq. (18) becomes

rSr= )r)(r[ S(r)(r[,

while Eq. (19) implies the identity

all. In the latter, (22) is certainly sufhcient, but it is
by no means necessary, and whether it can even be
satis6ed for one value of t depends on the particular
crossing matrices. That it can, in fact, be satisfied for
all t is a consequence of all the relevant crossing matrices
having an eigenvalue one.

The ininite baryon tower, though elegant mathe-
matically, may not be very relevant physically in this
context. Even if the higher resonances do exist, we
would not expect them in a range of energies where the
static model was reasonable. We therefore turn to the
more direct problem of the two lowest members of the
tower —the 1V and the N*. Treating the xN-xX* system
as a coupled-channel problem, the two equations (13)
(one for each value of t) provide two nonlinear condi-
tions on the two unknown ratios of the three relevant
coupling constants gyp, g&3, and g33. These may be solved,
and rather surprisingly yield

gal:g1.3 .g33 =1:2:4, (23)

which is exactly the value given by (21). As already
mentioned, it is still necessary to verify the equations
of Eq. (10); with these values for the coupling con-
stants, each of equations (10) yields a value for the
ratio of co~ and a3 independent of any cutoffs, but the
two values obtained from t= 1 and t=3 are inconsistent.
Hence, although the coupled-channel problem repro-
duces the coupling-constant ratios of the uncoupled
problem, it fails to be reciprocal.

The difhculty here is just that it is impossible to
treat the N and N* symmetrically. While the xlV
system can only have 3=1 or 3, the xN* system can
also have t= 5, and in fact it is only by introducing the
inhnite tower that all baryons are treated on the same
footing. The effect of the higher resonances is small,
however, —only the mN* —+ zN* channel gets any con-
tribution from N5, and N7, S9, ~, do not contribute
to the t = 1 or 3 states at all. Hence, we may regard the
contribution of the N5 exchange as a simple way of
parametrizing the effect of higher states, and take g35
as a cutoff whose value is Axed not by a bootstrap in
the t =5 channel, but by requiring that the N-N* boot-
strap be reciprocal. Notice that this procedure is quite
reasonable —the values (23) of the coupling constants
are independent of g», and only the ratio of co& to co3

(which we do not expect the static model to predict
reliably anyway) is affected. . It is interesting that the
coupling-constant ratios do not depend on g35,

' this fact
is a reQection of the high degree of redundancy in
eigenvalue equations. (That is, Eq. (20) provides three
equations for any value of t, while the off-diagonal ele-
ments of (22) provide another two. Only two of these
Gve equations are necessary to Gx the g's, and hence
it is not surprising that a subset of Eq. (22) should
yield the same value as the full set). From this point of
view the equivalence is rather a Quke; it does, however,
suggest that Eq. (13) is a useful bootstrap condition,
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because it is insensitive to the exact nature of the
higher states.

stimulating discussions, and Dr. I. Gerstein for reading
the manuscript and for several helpful suggestions.

Iv. DISCUSSION

We have succeeded in formulating a time-reversal-
invariant, vertex-symmetric bootstrap in the static
model for the infinite baryon tower, though not for the
E-S* case. We pointed out, however, that the lack of
reciprocity in the latter case was in an equation for
the masses and could easily be removed by assuming
some contribution of higher states to AS* —+ xE* scat-
tering. The moral of the calculation is the perhaps not
unsurprising one that in the static model, equations
involving only coupling constants are more believable
(or less sensitive to the effects ignored) than those
involving masses. This remark is not completely idle;
although Eq. (17) predicts the same coupling con-
stants as Eq. (13) when the full bootstrap solution (22)
exists, the solutions of the former are changed radically
when the contribution of 1=5 states is ignored, while
those of the latter are not changed at all. This may
explain the large deviations from vertex symmetry
found by Ernst, Warnock, and Wali, ' who use an
equation very similar to Eq. (17).To what extent these
features persist in a more realistic model is, of course,
an open question. As already remarked, the problem of
maintaining both vertex and time-reversal symmetry
makes the answer difFicult to 6nd.
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APPENDIX

K=A. adj(I —~pA)/(d/dpp) fdet(I —copA)$„= p. (A1)

Equation (12) gives

TrK=1, (A2)

by Eq. (7). Thus

K~ adjLr —'{P-' —p(cu„+a)p) r„$
~adjLP '—Q(o),+(up)r„f r.

Hence,

with
K=Sr,

Tr[SF$=1.
Since P and I'„are symmetric, so is S. The above
proof assumed that F was nonsingular. Since the Anal
answer (A3) does not involve F ', and holds as an
algebraic identity, the result is true even when F is
singular.

so that in the following calculation we may drop all
scalar factors, and use (A2) to normalize the final
answer. Then

K~A. adj(I —(vpA)

~ ad]A. ' ad] (I—pppA. )
= a,dj (A.

—'—orp)

=adK(P&) '(1—2 (&.+») P&.)j


