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For the sake of argument, let us suppose that G pp+ and

G«z& are still related by the nonet ansatz. Then, for
example,

Gop-'/G:-'= «n(fl P'),— (3S)

mass differences, this degeneracy implies SV(3)-inde-
pendent quark forces in the idealized limit of equal-mass
quarks. Suppose that in this idealized limit the quark
forces were not completely SU(3)-independent so that
the singlet had a mass Mo slightly diferent from the
octet mass M with M/Me ——I. From Ref. 1 we see that
Eqs. (15) become

where the effective mixing angle p' is given by

P'=P+ (~&/3) (I 1—) (39)

We see that we only need I=1.02 to halve the p ~ 3rr

partial width and I=1.08 would completely suppress

g —+ 3rr in the model considered. The predictions of the
renormalized theory that are least sensitive to slight
deviations from nonet degeneracy will be decays in-
volving real or virtual photons and thus unfortunately
are susceptible to the merits of the models used to
describe these decays.
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It is proved within the framework of axiomatic 6eld theory that the scattering amplitude must have a
Regge behavior in the unphysical region 0 (t &4m' in the sense that the logarithmic derivative of the ab-
sorptive part is bounded by C lns for very large s.

' 'T can be shown in axiomatic field theory that the
~ - absorptive part A (s,t) of the elastic scattering ampli-
tude is positive and monotonically increasing in the
interval 0&k&4m' and that the rate of increase is
restricted by the upper bound' '

(s l) & Csl+(tlems)»i+a ey 0 (1)

This suggests strongly that A(s, t) has a Regge-type be-
havior in this interval. However, since the inequality
(1) does not tell much about the actual l dependence of
A(s, t), it is necessary to examine the behavior of
A(s, t) more closely in order to settle this question. The
purpose of this paper is to show that A(s, t) has in fact
a Regge behavior in the interval 0& t(4m' in the sense
that t dependence stronger than that of the Regge
type is ruled out. At present, it is not known whether or

*Work supported in part by the U. S. OfFice of Naval Research.
' For simplicity, we treat only the elastic scattering of spinless

particles with equal mass m. As usual, s and t are the square of the
total energy and the momentum transfer in the center-of-mass
system. We also use the center-of-mass momentum k, related to
s by s=4(m2+k').

'The inequality (1) was first derived by K. Bardakci /Phys.
Rev. 127, 1832 (1962)j starting from the Mandelstam representa-
tion. A more general derivation was given by A. Martin (Ref. 4}.
We have put N =2 in their formulas, taking account of the recent
result of Martin (Ref. 3).

A (s,l) = (Qs/2k) g (2l+1)at(s)Pi(1+t/2k'), (2)
L=O

where ai(s) is the absorptive part of the lth partial-
wave amplitude satisfying the unitarity restriction

0&ai(s)&1, /=0, 1, 2, (3)

as well as the analyticity requirement'

ai(s) &Cs' exp[ —2l(4m'/s) ' '] (4)

As is well known, for s)4rrt', A(s, t) and all deriva-
tives of A(s, t) with respect to t are positive in the inter-

'A. Martin, Nuovo Cimento 42A, 930 (1966); 44A, 1219
(1966).

4A. Martin, in Strong Interactions and High L&'nergy Physics
(Oliver snd Boyd, London, 1964), p. 105,

not this result can be extended to the physical region
1&0.

We start from the result of axiomatic Geld theory'
that the absorptive pa, rt A(s, t) for a fixed physical
value of s is analytic in an ellipse in the ] plane with foci
t=0, —4k' and semimajor axis 4rtt'+2k'. Thus A(s, t)
can be expanded in this ellipse into partial waves:
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val 0(t&4zzt'. ' This follows from (3) and the fact that
Pt(s) and its derivatives are non-negative at s=1. At
t=0 the contribution to the infinite series (2) from the
terms with l greater than Cps lns is less than s ~,
where X can be made as large as we wish by choosing a
large enough C.' It is easy to see that the same remark
applies to any t in the interval 0(t&4m' —5, where 5

is some fixed positive number. Next, we note that
A(s, t) is bounded from below by s ' in the interval
0&5&4m'. ~ Thus, if we choose a fixed value of X
larger than 5 and determine the corresponding value of
C, we can approximate (2) by the finite sum

L
A (s,t) = (gs/2k) P (2l+1)at(s)

L=O

&&Pi(1+t/2k')+o(s ') (5)

for any t in 0&t&4zzt' —8, where I.=C/s (lns).
In order to extend this to a complex region, we note

that for any Pt(1+t/z2k') there is a certain neighbor-
hood of the positive real axis t&0 defined by the condi-
tion that the real part of Pt(1+t/2k') is positive-
definite. As is shown in the Appendix, the boundary
curve of such a domain is given approximately by

zr(Qs) (QN)
for l)+s, (6)

ReA(s, t) is bounded from above and below as

1—r 1+r
A(s, tp) &ReA(s, t) &—A(s, tp).

1+t 1—r

Q P (t)Szzn(t) (10)

Of course we have not proved that A (s,t) can in fact be
written in the form (10). But our result shows that
A(s, t) cannot behave more wildly than is expected of
the Regge-pole terms at least in the interval 0(t&4m'.
Applying Cauchy's inequality in the disk (8), we can
also show that

—lnA(s, t) &C' lns
lA

for 0&t&4m' —8, which is another way of confirming
the Regge behavior.

Unfortunately, the above argument does not give us

any exciting result at t= 0. The only thing we can prove
is that ReA (s, t) is positive in a much smaller disk

Since the radius of the circle is of order 1/lns, this
inequality means that ReA(s, t) cannot increase by
more than a finite factor when t increases by 1/lns. This
is just what we expect if A (s,t) is of the Regge form

where t= I+itz and I)0. Thus, if we define the domain
D as the intersection of the ellipse (foci t=0 and —4k',
sernimajor axis 4zzt'+2k' —ll) and the parabolic domain
determined by

which means that
I tI &C/(lns)',

zr(Qs)(Qu) zrgzt

2Ci(+s) lns 2Ci lns

It—tpI &, 0&r&1,
2Cg Ins

z Y. S. Jin and A. Martin, Phys. Rev. 135, B13'I3 (1964). See
also T. Kinoshita, Lectures zzz T1zeoreticat Physics (University of
Colorado Press, Boulder, Colorado, 1965), Vol. VIIB, p. 144.' A. Martin, Nuovo Cimento 29, 993 (1963).

~ Y. S. Jin and A. Martin, Phys. Rev. 135, 81369 (1964).
8 C. Caratheodory, Theory of Functions (Chelsea Publishing

Company, New York, 1954), p. 153.

where Ci can be chosen as 16(zzt/zz), the dominance of
the first term in (5) holds also in the extended domain
D since the real parts of the Pi in the sum (5) are all
positive in D. Consequently, Re A(s, t) is also positive
in D. It is important to note that the "height" of the
domain D is of order 1/lns for any finite I in the interval
0&I&4m2.

We have thus seen that ReA(s, t) is harmonic and
positive in the domain D. This leads us to some useful
information about the high-energy behavior of A(s, t).
Let us choose to satisfying 0(to(4'' —5 and consider
the disk defined by It tpI &zr(gtp)/2C—i lns, which is
contained in the domain D. Then, according to Har-
nack s theorem'' «r»y ~ in the sm»le«isk

xr
()

—lnA (s,t) I z=p& C"(lns)',
dt

as is easily seen by making use of (A8).' This result is
closely related to that of Bessis, ' in which he shows that
A(s, t) has no zero at t=0 inside the circle of radius
(lns) '. Obviously, if one could prove that ReA (s,t) is
positive in a larger circle, for instance

I tI &C/lns, one
would immediately improve the Froissart bound;
bounds on the slope of A (s,t) at t=0, etc.

Finally, we note that the domain D constructed above
is not the largest connected domain with the property
that ReA(s, t) is positive. It is quite possible that there
exists a domain D which is larger than D. However, if
the "height" of D' is larger than (lns) '+', e)0, in
0&t&4m', then A(s, t) has to grow more slowly than
s ~'& according to Harnack's theorem. This would be
embarrassing if A(s, t) should have a genuine Regge
behavior.

I should like to thank Professor B. A. Jacobsohn
and Professor K. M. Henley for their kind hospitality
at the 1966 Summer Institute of Theoretical Physics
at the University of Washington, Seattle.

9 T. Kinoshita (Ref. 5)."J.D. Bessis, Nuovo Citnento (to be published).
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APPENDIX. DERIVATION OF THE FORMULA (6) follows:

In order to derive (6), we will express the Legendre
polynomial P&(z) in the product form

(1+o—coo8)

P ()= II(( -')/(1- )),
v=1

(A1) lb

1+a—cos8
where s„=cos8„are the zeros of Pg(s). As is well known,
all zeros of P&(s) lie between —1 and 1. More precisely,
they satisfy the inequality"

(~——',)-&8„&.~/(/+1), ~=1, 2, , t:,'/j, (A2)'l

2lb

(8g 2+a) s-
—tan '( —

i )
. (AS)

&2 a i)

( 2 tr2+a) i
s (2a+a')'~' ( 8g E a

where $—,/j=2/ if / is even and=s(/ —1) if / is odd. 8„From (A4) and (AS) the b~u~da~y ~~~~e of
for v) Ls/j is determined by 8„=~—8~q „.Let p be the doma;n ~he~e Rep (s))p is given by
phase of P~(s) for s= 1+a+ib Then .we have

argP)(s—)

= P arg(s —s.)
v=1

(A3)

2lb

p8& 2+a~ ~—
/ I

=s~, (A6)
E2 a)&

f 2 f2+a) )tan-']-
a.(2a+a')'r' ( 8g k a ) )

t b
=+tan '

1+o—coo6„)

We are interested in the boundary curve of the con-
nected neighborhood of the semiaxis 2&1 in which
ReP~(s) is positive. As s moves away from the semi-
axis s)1, ReP~(s) vanishes for the first time when
cp=-,'x. Thus this curve can be defined by

where 8~ satisfies the inequality s/2/(8&(vr/(/+1).
This formula can be simplified in the region of interest
where a and b are of order 1/k'. Putting a=I/2k' and
b=~/2k' and considering the case of very large k, we

find that
1' 2

(V's) h/&)/cot '(-'8 V'(s/&)) ~

l 2

L b

g tan —' =-,'vr.
1+a—cos8„

(A4)
This reduces to

e s (gs) (QN)/2/ (A7)

This curve crosses the real axis vertically at a= —1

+cos8,=0(/ '). It is easy to see from (A4) that it
crosses the vertical line s=1+ib at the height b=/ '.

Next we consider the region of positive a. For very
large a the curve determined by (A4) behaves as
tan '(b/a)~m/2/, as is seen from the fact that P~(s)
~ s' for large ~st. Since we are primarily interested in
large l, it will be sufhcient for our purpose to assume
that b((a. Then p can be estimated accurately as

"G. Szego, Orthogonal Polyno7n7'als (American Mathematical
Society, New York, 1939), p. 118.

when /»g(s/u). For smaller values of /, the right-
hand side of (A7) is multiplied by a factor greater than
one. The formula (A7) becomes inaccurate in the
neighborhood of N=O. This can be corrected approxi-
mately by shifting I by the amount 2k'(1 —cos8&). Thus
we have

e~(7r/2/) (su+ $s'//') ' ' for /&&g(s/u) (A8)

where $ is of order 1. The formula (AS) gives the
boundary curve located in the upper half plane. The
part of the boundary curve in the lower half plane
is the mirror image of (A8) with respect to the real axis.


