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Radius of the Nucleon in a Bound-State Model
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We estimate the nucleon radius from the pion-nucleon phase shifts, assuming that the nucleon is a bound
state of the pion and the nucleon. The calculation is based on the one-pole approximation of the Gelfand-
Levitan formalism on the inverse scattering problem. The numerical result of 0.15-0.50 F is obtained for
the radius. In this connection, we discuss the properties of the phase shift and also of the D function for

the appropriate channel.

I. INTRODUCTION

N previous papers’? we have studied bound-state
problems in the S-matrix theory and have pointed
out that it is essential to maintain the locality (normal-
izability) of the bound-state wave function. Further-
more, we have discussed a method (based on the
Gelfand-Levitan formalism) of constructing an approxi-
mate bound-state wave function from the S-matrix
parameters. It was indicated that crude one-pole ap-
proximation will give a reasonably accurate wave
function.

In this paper we use this method to estimate the
nucleon radius, assuming that the nucleon is a p-wave
bound state of the pion and the nucleon in the sense of
the Schrédinger theory. We first construct a localized
(normalizable) bound-state wave function and then
obtain the expectation value of the radius. We realize
that this nonrelativistic picture is not adequate for the
pion-nucleon problem. However,? being the only method
available in this direction, the present treatment will
certainly give an insight into the structure of the
“bound-state’ nucleon.

In order to handle the p-wave problem, we first
generalize the s-wave formalism of Ref. 2 to the general
partial-wave case. It is shown that, in this general case
also, an approximate wave function can be constructed
from the three bound-state parameters, namely, the
binding energy, the residue of the bound-state pole,
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3In fact it has been recently shown in the framework of rela-
tivistic dispersion relations that because of the large amount of
inelasticity in the I=%, J=3% p wave of the pion-nucleon system,
it is rather unlikely that the pion-nucleon two-body channel by
ilself can support the nucleon bound state, and it seems that other
channels should play an important role in binding the nucleon
[P. Nath and K. V. Vasavada, Phys. Rev. 152, 1254 (1966).]
However, as a crude first approximation we have considered here
a single-channel bound-state model with only the elastic con-
tribution.
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and the first derivative of the D function at the binding
energy.

The residue and the binding energy in the pion-
nucleon system are well-known parameters. However,
in order to determine the derivative of the D function
which is normalized to be unity at infinite energy, it is
necessary to know the phase shift for all energies. In
this paper, we use the known phase shifts up to the
highest energy where experimental data are available.
Beyond this energy we use various extrapolations. It
is shown that the expectation value of the radius is not
too sensitive to the type of extrapolations and the
present method gives an acceptable numerical value for
the nucleon radius.

II. FORMULATION OF THE PROBLEM

In one of the previous papers? we have discussed an
approximation method of constructing a bound-state
wave function for the s-wave case. Although the
generalization to higher partial waves is straightforward,
we discuss this problem here for completeness. For the
higher partial-wave case, one has to be careful about
the phase factors of wave functions and other quan-
tities associated with the normalization condition

M

We then discuss the evaluation of the parameters in the
approximate wave function from the experimental data.

Let us first write the /th partial-wave radial wave
function as

1 r
810)= i)+ / Kl jur)ar

'hlm Dl(x)= 1.

)

where the spherical Bessel function j;(kr) is defined in
Ref. 1 and differs from that of the conventional defini-
tion by a factor of (k7). Then according to the general-
ization of the Gelfand-Levitan theorem, the K;(r,’)
function is obtained from the integral equation

Kl(r;rl)+gl(r:rl)+/ Kz(?’,t)gz(r,t)dt=0,
0
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F1c. 1. Possible behaviors of the phase shift §(k). For curve A
the parameter b is positive; for B, b can be negative. The I=3,
J=% (l=1) pion-nucleon phase shift behaves (qualitatively) like
curve 4.

where the gi(r,7") function is constructed from the
spectral function

dpi(x)/dx=Ci5(x+x0),

k
=L Di(x)[—1],

x<0
€
x>0

in the following way:
* (5u(ks)\ (71(kt)
o= [ (25 (-
8 . b b 3

We are using x and % for the energy and momentum
variables, respectively. Here again it is assumed that
there is only one bound state at = —x,. The constant
Cy is related to the bound-state wave function by

( [ 16100

Then, in the plane-wave approximation for the con-
tinuous spectrum we have the approximate solution

= xo/Cz . (4)

T=—z0

¢z(”)=jt(ia7)/[1+%for|jl(iat)lZdl:l )

for the bound-state momentum k= ia. This approximate
solution satisfies the normalization condition of Eq. (4).

By taking the expectation value using the above
wave function, we obtain the following expression for
the radius:

(= /dr[1+— 1Jz(m¢)l2d¢:]_l- ©)

We conjecture here that a more accurate expression
would be one wherein the spherical Bessel function
7i(iat) is replaced by a more complicated function
having similar properties at both small and large ¢. The
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presence of this Bessel function is certainly a char-
acteristic of the plane-wave approximation for the
continuous spectrum.

The constant C; can be determined by a trivial
generalization of the s-wave case outlined in Ref. 2.
But, since there is a complication in introducing phase
factors associated with the normalization condition of
Eq. (1), we have discussed this problem in considerable
detail in the Appendix. According to Eq. (A8),

1/Cr=—(—1)'RL D/ (—x0) T, (M

where R; is the residue of the bound-state pole.

Let us now return to the expression for {r) in Eq.
(6). The radius {r) is completely determined by the
constant C;. In the limit C;— 0, we obtain a large
value for (). In the other limit, C;— «, we obtain a
very small value. According to Eq. (7), the constant C,
is determined from the derivative of the D; function
while the residue R; and the binding energy xo are
regarded as the well-known input parameters. In order
to evaluate this derivative we use the following form
for the D; function:

kB+a? © §,(k)dk"
o LT
E2—Fk2—ie
where the phase shift 6;(k) satisfies the boundary
conditions

Dk =

8;(O)=7r, 81(00)=07

which are consistent with Levinson’s theorem and the
normalization condition

,,}%E.‘w Dy(&)=1.

The above D;(k?) vanishes at the binding energy
k= —a?

In actual calculations it is more convenient to regard
the radius as a function of the parameter b; defined as

1 (= 5,(k)dR?
b=—
l 1r,/; Bta? 9)
=—In[—a?D'(—a?)].

This quantity of course depends on the behavior of the
phase shift. If the phase shift behaves (qualitatively)
like curve 4 of Fig. 1, then b; will be positive. If, on
the other hand, it behaves like curve B, then b; will be
negative. In either case, b; is assumed to be finite. We
shall discuss this and other numerical points for the
pion-nucleon problem and estimate the nucleon radius
in the following section.

III. APPLICATION TO THE PION-
NUCLEON SYSTEM

In this section we use the formalism of Sec. II to
estimate the nucleon radius, assuming that the nucleon
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is a bound state in the I=3%, J=% (I=1) channel of
pion-nucleon scattering. We first plot the curve for the
radius (r) as a function of the parameter b and then
estimate the numerical value of {r) by evaluating this
parameter from the known phase shifts.

Since we are concerned here only with the p-wave
amplitude, we drop the partial-wave index I. Let us
first determine the residue. By retaining only the pole
term in the p-wave amplitude, we have

A= (1/k)e® sind=R/ (k2+a?)+ - - -,

and by retaining only the amplitude corresponding to
the direct one-nucleon diagram,

A= (1/k)e? sind
= @//m1/(E+e)+- -,
where f2=0.08. Here m is the nucleon mass, and % is
the center-of-mass momentum for the =N system. o?

in this case is p? where u is the pion mass. By comparing
Egs. (10) and (11) we obtain

R=3f*/m. (12)

Using the numerical value of R, one can now calcu-
late {r) for various values of the parameter 5. We have
plotted (r) against this parameter in Fig. 2. According
to Egs. (6), (7), and (9), and as is indicated in Fig. 2,

(10)

(11)

lim(r)=0, 13)
Jim (=

It is assumed that the parameter b is finite and
therefore that the radius {r) is a nonzero finite number.
In order to determine this parameter, one has to know
the phase shifts for all energies. We use here the known
phase shifts up to the pion lab energy 700 MeV, where
experimental data are available.? Beyond this energy we
use the following three different extrapolations:

5(k)=A./R2,
3(k)=Ay/k, (14)
5(k)=Age 2,

where the constants 41, 45, and 43 are adjusted in such
a way that §(k) will join the experimental curve
smoothly. We realize that the phase shift takes on
complex values above the production threshold. For
this region, only the real part is used. The phase shift
then behaves qualitatively like curve 4 of Fig. 1.

For all three of the above extrapolations we obtain

{r)=0.15-0.50 F.
The above numerical result is an acceptable value for

4 L. D. Roper and R. M. Wright, Phys. Rev. 138, B921 (1965);
L. D. Roper, R. M. Wright, and B. T. Feld, Phys. Rev. 138,
B190 (1965); P. Auvil, A. Donnachie, A. Lea, and C. Lovelace,
Phys. Letters 12, 76 (1964).
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Fic. 2. The radius (r) (measured in fermis) as a function of the
parameter b. According to the present phase-shift analysis, b is
such that the radius (r) ranges over 0.15 to 0.50 F.

the nucleon radius. Although the present analysis was
based on a crude one-pole approximation, this result is
quite encouraging and may perhaps be the key to a
more satisfactory treatment.

We have noted earlier that the radius is determined
by D'(—ea?) [or equivalently by &]. Conversely, the
radius (r) determines the absolute value of D’(—u?). If
the radius {r) is to be in the range of the above accept-
able values, then |u?D’(—u?)| must be in the range
0.003-0.05.

IV. CONCLUDING REMARKS

The bound-state model for the nucleon is not new.
Probably the most fruitful subject in this school of
thought has been the bootstrap. However, the boot-
strap theory primarily deals with the location and the
residue of the bound-state poles but not directly with
the structure of the bound-state particle. In this paper
we have attempted to discuss the spatial extension of
this bound-state particle and estimated its size purely
in the framework of the two-body scattering formalism.
It should be noted that the present method does not
involve any arbitrary parameters. Our numerical result
is encouraging, and the present analysis gives a good
insight into the bound-state nature of the nucleon.

For the historical development of the Gelfand-Levitan
formalism, it is quite fortunate that the residue R is
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now being regarded as a known input parameter,
whereas it was an undeterminable quantity in the early
stage of application (thus generating phase-equivalent
potentials).® It is also gratifying that the computational
facilities are available today for practical applications,
such as the one discussed here. These important factors
may reshape the role of the Gelfand-Levitan formalism
in scattering theory.
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APPENDIX

In order to determine the constant C; consistent with
the normalization condition of Eq. (1), we start with
the following form of the regular solution:

1 r
¢z(7)=]'l(k7)+‘};/ [y (kr)jo(kr") — ju(Rr)na (k') ]
XV ()i (r)ar',

where the spherical Bessel functions 7;(kr) and n,(kr)
are defined in Ref. 1. This solution can be written as a
linear combination of the Jost solutions.

(A1)

1

¢>z(r)=;e""”2[fz(k)fz(—k, nN—fi(=Rfikn)]. (A2)
7

The phase factor e?™¥? is introduced to guarantee the

desired normalization condition for the Jost functions

fi(k) and fi(—Fk). The Jost solutions f;(Fk, r) satisfy

the following boundary conditions

lim f,(5Fk, 7)=lim e=ir D20, @) (k) = ik | (A3)

where the spherical Hankel functions are defined as

h D@ (kr)=[ji(kr)Eini(kr)] (+ for 2V, — for A®).

The partial-wave .S matrix is constructed from the Jost
5 For historical development of the Gelfand-Levitan theory, see

L. D. Faddeev (translated by B. Seckler), New York University
Report No. EM-165, 1960 (unpublished).
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functions fi(£k) by
Su(k)=Lfi(k)/ fu —k) Je*™". (A4)

Now by taking the Wronskians of ¢:(r) of Eq. (A1)
with respect to #;® (kr) and 7, (kr), we obtain

f=R=1== [ 1@y O,
(49

1 00
AlR)et=14— / 1u® () V () (i

Then it is clear that the above Jost functions satisfy
the normalization conditions

lim fi(=F)=1, (A6)

llol_'n; SiR)eimt =1,
Next, by following the steps outlined by De Alfaro

and Regge,® and by using the expression of Eq. (A2)
for the regular solution, we derive

i)

(A7)

/ oer=tie] 1l

k=ia

From the behavior near the origin of ¢:(7),

[ 1e@rir= =10 [ sear,
0 0
and from Eq. (A4) for the S matrix,

fz(ia) =— ZaRle/(—'aQ)e_i"l,

e

where

k=ie

From the preceding three equations, we obtain

1/Cz=:x1—2[ /0 wl¢z(r)l2df]k=ia

=—(—1)'RLD/ (—x0) F.

6V. De Alfaro and T. Regge, Poieniial Scatiering (North-
Holland Publishing Company, Amsterdam, 1965).
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