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Radius of the Nucleon in a Bound-State Model
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Vile estimate the nucleon radius from the pion-nucleon phase shifts, assuming that the nucleon is a bound
state of the pion and the nucleon. The calculation is based on the one-pole approximation of the Gelfand-
Levitan formalism on the inverse scattering problem. The numerical result of 0.15-0.50 I is obtained for
the radius. In this connection, we discuss the properties of the phase shift and also of the D function for
the appropriate channel.

I. INTRODUCTIOH
' 'N previous papers'~ we have studied bound. -state
- - problems in the S-matrix theory and have pointed
out that it is essential to maintain the locality (normal-
izability) of the bound-state wave function. Further-
more, we have discussed a method (based on the
Gelfand-Levitan formalism) of constructing an approxi-
mate bound-state wave function from the S-matrix
parameters. It was indicated that crude one-pole ap-
proximation wi11 give a reasonably accurate wave
function.

In this paper we use this method to estimate the
nucleon radius, assuming that the nucleon is a p-wave
bound state of the pion and the nucleon in the sense of
the Schrodinger theory. We first construct a localized
(normalizable) bound-state wave function and then
obtain the expectation value of the radius. Ke realize
that this nonrelativistic picture is not adequate for the
pion-nucleon problem. However, ' being the only method
available in this direction, the present treatment will
certainly give an insight into the structure of the
"bound-state" nucleon.

In order to handle the p-wave problem, we first
generalize the s-wave formalism of Ref. 2 to the general
partial-wave case. It is shown that, in this general case
also, an approximate wave function can be constructed
from the three bound-state parameters, namely, the
binding energy, the residue of the bound-state pole,
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and the 6rst derivative of the D function at the binding
energy.

The residue and the binding energy in the pion-
nucleon system are well-known parameters. However,
in order to determine the derivative of the D function
which is normalized to be unity at in6nite energy, it is
necessary to know the phase shift for all energies. In
this paper, we use the known phase shifts up to the
highest energy where experimental data, are available.
Beyond this energy we use various extrapolations. It
is shown that the expectation value of the radius is not
too sensitive to the type of extrapolations and the
present method gives an acceptable numerical value for
the nucleon radius.

II. FORMULATION OF THE PROBLEM

In one of the previous papers' we have discussed an
approximation method of constructing a bound-state
wave function for the s-wave case. Although the
generalization to higher partial waves is straightforward,
we discuss this problem here for completeness. For the
higher partial-wave case, one has to be careful about
the phase factors of wave functions and other quan-
tities associated with the normalization condition

lim Dt(x)=1.
f ~[-woo

We then discuss the evaluation of the parameters in the
approximate wave function from the experimental data.

Let us erst write the 1th partial-wave radial wave
function as

rtst(r) =j t(kr)+ Kt(r, r')j t(k-r')dr', (2)
& o

where the spherical Bessel function j t(kr) is deGned in
Ref. 1 and differs from that of the conventional de6ni-
tion by a factor of (kr). Then according to the general-
ization of the Genand-Levitan theorem, the Kt(r, r')
function is obtained from the integral equation
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is a bound state in the I= ts, j= ts(t=1) channel of
pion-nucleon scattering. We erst plot the curve for the
radius (r) as a function of the parameter b and then
estimate the numerical value of (r) by evaluating this
parameter from the known phase shifts.

Since we are concerned here only with the p-wave
amplitude, we drop the partial-wave index l. Let us
erst determine the residue. By retaining only the pole
term in the p-wave amplitude, we have

A = (1/k) e" sinb= R/(k'+n')+ (10)

and by retaining only the amplitude corresponding to
the direct one-nucleon diagram,

A = (1/k)e" sinb

= (3f'/m) 1/(k'+u')+

where ps=0.08. Here m is the nucleon mass, and k is
the center-of-mass momentum for the m-Ã system. cP

in this case is p, where p, is the pion mass. By comparing
Eqs. (10) and (11) we obtain

2= 3f'/ns (12)

Using the numerical value of g, one can now calcu-
late (r) for various values of the parameter b We ha.ve
plotted (r) against this parameter in Fig. 2. According
to Eqs. (6), (7), and (9), a,nd as is indicated in. Fig.
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lim(r) =0,
Fto. 2. The radius (r) (measured in fermis) as a function of the

parameter b. According to the present phase-shift analysis, b is
such that the radius (r) ranges over 0.15 to 0.50 F.

(13)
lim (r)= ~.
~-oo

It is assumed that the parameter b is finite and
therefore that the radius (r) is a nonzero finite number.
In order to determine this parameter, one has to know
the phase shifts for all energies. We use here the known
phase shifts up to the pion lab energy 700 MeV, where
experimental data are available. ' Beyond this energy we
use the following three different extrapolations:

5(k) =A,/k',

8(k) =As/k,

5(k)=Ase "',
(14)

where the constants A ~, A2, and Aa are adjusted in such
a way that 5(k) will join the experimental curve
smoothly. We realize that the phase shift takes on
complex values above the production threshold. For
this region, only the real part is used. The phase shift
then behaves qualitatively like curve 2 of Fig. 1.

For all three of the above extrapolations we obtain

(r) =0.15-0.50 F

The above numerical result is an acceptable value for

4 L. D. Roper and R. M. Wright, Phys. Rev. 138,3921 (1965);
L. D. Roper, R. M. Wright, and S. T. Feld, Phys. Rev. 138,
$190 (1965); P. Auvil, A. Donnachie, A. Lea, and C. Lovelace,
Phys. Letters 12, 76 (1964).

the nucleon radius. Although the present analysis was
based on a crude one-pole approximation, this result is
quite encouraging and may perhaps be the key to a
more satisfactory treatment.

We have noted earlier that the radius is determined
by D'( —a')

I
or equivalently by b]. Conversely, the

radius (r) determines the absolute value of D'( —p'). If
the radius (r) is to be in the range of the above accept-
able values, then

~
p,'D'( —Ijs)

~
must be in the range

0.003—0.05.

IV. CONCLUDING REMARKS

The bound-state model for the nucleon is not new.
Probably the most fruitful subject in this school of
thought has been the bootstrap. However, the boot-
strap theory primarily deals with the location and the
residue of the bound-state poles but not directly with
the structure of the bound-state particle. In this paper
we have attempted to discuss the spatial extension of
this bound-state particle and estimated its size purely
in the framework of the two-body scattering formalism.
It should be noted that the present method does not
involve any arbitrary parameters. Our numerical result
is encouraging, and the present analysis gives a good
insight into the bound-state nature of the nucleon.

For the historical development of the Gelfand-Levitan
formalism, it is quite fortunate that the residue R is
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now being regarded as a known input parameter,
whereas it was an undeterminable quantity in the early
stage of applies, tion (thus generating phase-equivalent
potentials). ' It is also gratifying that the computational
facilities are available today for practical applications,
such as the one discussed here. These important factors
may reshape the role of the Gelfand-Levitan formalism
in scattering theory.
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APPENDIX

In order to determine the constant C~ consistent with
the normalization condition of Eq. (1), we start with
the following form of the regular solution:

4t(r) =jt(kr)+- Lttt(kr) jt(kr')- jt(kr)rtt(kr )j
k p

&& V (r')Pt (r')dr', (A1)

functions ft(+k) by

S (k)=Lf (k)ff (-k)] '- (A4)

Now by taking the Wronskians of tt t(r) of Eq. (A1)
with respect to ht&'&(kr) and ht&'&(kr), we obtain

00

ft( k)—= 1—— ht&'& (kr) V (r)Qt(r)dr,
ik p

Q0

f,(k)e'-t = 1+— ht&s& (kr) V(r)P, (r)dr.
ik p

(A5)

lim ft(—k)=1,

lim f t( k)e' r'=1.
It;-+O0

(A6)

Next, by following the steps outlined by De Alfaro
and Regge, ' and by using the expression of Eq. (A2)
for the regular solution, we derive

dft( k)—
its(r)dr= ',ie'" ft(k)-dk, g, ;

(A7)

Then it is clear that the above Jost functions sat&sfy

the normalization conditions

where the spherical Bessel functions jt(kr) and rtt(kr)
are defmed in Ref. 1. This solution can be written as a From the behavior near the origin of pt(r),
linear combination of the Jost solutions.

1.
4t(r) =—e' '"t ft(k)ft( —k, r)—ft(—k)ft(kr)). (A2)

2i

The phase factor e' '" is introduced to guarantee the
desired normalization condition for the Jost functions

ft(k) and ft(—k). The Jost solutions ft(~k, r) satisfy
the following boundary conditions

lim ft(Wk r) = lim e+'r "+'&t'h "& n& (kr) =e+'~" (A3)

where the spherical Hankel functions are defined as

h&" "'(kr) = Lgt(kr)+irtt(kr) j (+ for h&'& —for h "&).

The partial-wave S matrix is constructed from the Jost

~
P, (r) ~

&sdr (1)t+r Pts(r)dr-
p

and from Eq. (A4) for the S matrix,

ft(in) = —2nR&Dt'( —n')e ' ',

Dt'(-+) =
I

&2ini dk

From the preceding three equations, we obtain

00

1/C, =—
~ yt(r) ~'dr

2G p —k~ia

=—(—1)'Zt&Dt'( —xs)g'.

(A8)
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L. D. Faddeev (translated by B. Seckler), New York University
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