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The P» partial wave of the nNsys. tern is characterized by a large absorption and a resonance (possibly
inelastic) at 373MeV laboratory pion energy (Roper resonance). In view of these features of the Pn channel,
the 2IN system may be rendered suKciently weak not to bind the nucleon. Using the experimental mass of the
nucleon and the recently obtained extensive energy-dependent, complex phase-shift results on wN scattering
data, we examine here, through a nonperturbative S-matrix approach, the existence of a nucleon bound state
in the mN channel in the absence of forces arising from the inelastic states. The formalism is independent of
any model for the contribution of the left-hand cut. We discuss two diBerent possibilities concerning the
nature of the Roper resonance: (a) It is an elastic resonance primarily due to the forces in the rrN channel;
(b) it is an inelastic resonance mainly due to the forces from the inelastic states. In either case we find it
unlikely that the xX system by itself can sustain the nucleon bound state.

I. INTRODUCTION

ECENTLY, Roper and Wright, ' Auvil, Donnachie,
Lea, and Lovelace, ' and others' have reported

extensive energy-dependent phase-shift analyses of the
pion-nucleon scattering data, for incident-pion labora-
tory kinetic energies E up to l00 Mev. Many prom-
inent features emerge as a result of this analysis. Of
particular interest is the existence of the Roper reso-
nance in the F11 partial wave at E 575 MeV accom-
panied by a very small value ( 0.265) for the absorp-
tion parameter q at this energy. Because of the rapidly
decreasing value of q above E„=170MeV as well as
the possibility that, the Roper resonance may itself be
an inelastic resonance, arising mainly from the presence
of inelastic channels, we investigate here the reasonable
possibility that the nucleon is an inelastic bound state
in the zS system. If this were so, it would imply that
the simple-minded model of the nucleon as a pion-
nucleon bound state is quantitatively not a be1ievable
model. Thus the nucleon would emerge as a more com-

plicated object involving other states (possibly three-

body states) besides the sr' for its adequate descrip-
tion. Clearly the new status of the nucleon would have
obvious implications for other calculations involving
the structure of the nucleon —e.g., nucleon bootstraps.

II. FORMULATION OF THE PROBLEM

It is well known that kinematic singularities intro-
duced by the nucleon spin in the xE partial-wave ampli-
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with M the nucleon mass, q the (center-of-mass)
momentum, and E the nucleon energy f= (W'+~s
—1)/2Wj. Bss is the real part of the phase shift, and
rtss (=e '"s') the inelasticity parameter (1~&rl,s~&0).
62J and g2J satisfy identical symmetries in the 8' plane:

rtss(W) =siss(t= f+-', , W), W) Ws
=siss(/= J—-'„W), W( —Ws, (2.3)

where Ws=M+1 is the elastic threshold. We also
define the elastic-scattering amplitude Tss(W) which
describes the scattering of the zS system in the absence
of inelastic sects:

Tss(W) = fexp2i5ss(W) —1j/2tp2J(W) . (2.4)

The I=—'„J=-', amplitude has a pole at the nucleon
mass with a residue It.= —sg triv'/47r, where g iviv'/47r

is the renormalized xlV coupling constant. We ex-
plicitly display this pole and write'

Ttt(W) =Nit(W) R= tii(W)+
Dit(W) W—3II

(2.5)

where tii(W) is the remainder function. The elastic srlV

scattering amplitude T»(W) (obtained by switching
off the inelastic effects) would have the pole shifted to
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tudes can be avoided by working in the total energy
variable W.e We consider the amplitude Tss(W) de-
fined by (we suppress the isospin index)'

Tu (W) = [rtzs(W)e"" ~ —1j/2ipss(W), (2.1)

where the kinema. tical factor pss(W) is given by
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a new value 3fwith a modified residue R so that

Err(W) R
Trr(W) = = err(W)+

Drr(W) W M—

Now the modification T»(W) —Trr(W) can be dispersed along the inelastic unitarity cut to obtainr

(2.6)

where'

Z(W; 3II)
Trr(W) = T»(W)—

D» (W)D11(W)

1 " iD»(W)Drr(W) i (1—rirr(W') cosL8qr(W') —brr(W')]dW'
Z(W; M) =—

I (W' —W) 2pr (W')

(2.7a)

(2.7b)

(W—M)
+exp

err (W') d W'
(2 8)

s s (W' —W)(W' —M)

with 5»(~ ) = —z.. Now we are led into a self-consistency
problem in the following sense. We use (2.8) to com-
pute Z(W; M) from (2.7b) and then compute
D&r (M; M) from (2.7a) by taking the limit W —& M.

DyP (M; M) =Z(M; M)/RD»'(M) . (2.9)

If 2VI is truly the new position of the bound state, it
must satisfy the self-consistency condition

Drr(M; M) =D» (M i M) . (2.10)

We define, for convenience, in searching for 3/I on a
computer:

i Dtt(M; M) —D»z(M ) M) i

sin(= — — — . (2.11)
L'2(Drr(M; M)s+Drrz(M; M)') j'is

It is clear that zero or a low minimum in sin $ indicates
consistency or near consistency. It should also be
emphasized that there is no contribution from the
left-hand cut to (2.7a) and hence our results will be
independent of any model for the actual forces arising
from the exchanges in the crossed channels. In the
next section we give the details of the calculation and
dlscusslon.

III. CALCULATION AND DISCUSSION

The results of the extensive phase-shift analyses
determine the behavior of 6~~ and g~~ up to E 700
MeV. ' '

5~~ starts off with a small negative value, then
changes sign and goes through -', x at E 575 MeV to

7 P. Nath and Y. N. Srivastava (to be published).
We have checked numerically that the —S' contribution to

the dispersion integral is negligible in the present case.

Here O'I is the threshold for the inelastic unitarity cut.
Thus, assuming that the nucleon can be sustained as

a bound state with mass 3f in the elastic pion-nucleon
amplitude, we have

Drt(W; M) = (W—M)

8» (W') dW'
(3 1)

s ~ (W' —W)(W' —M)

To construct Dqq from (3.1), existing experimental
phase-shift analyses are supplemented by various asym-
ptotic forms which join smoothly to the experimental
values. In order to test the sensitivity of our results to
the high-energy behavior of the phase shifts we use the
following set of significantly different asymptotic forms:

5»(W) = —z+A/W,

err(W) = —z+ 1/ln(W/A),

5»(W) = —z.+Ae ~.

(3.2)

(3.3)

(3.4)

Since in the non-CDD situation the major force produc-
ing the Roper resonance comes from the xE channel
itself, the resonance will be present even in the elastic
amplitude T~~, perhaps at a different energy. Shaw and
Wongm have given the following fit to 8qr(W):

8z.gs (W—8.5) (W—Wp)
err(W) =-

(W'—2)'

where t/t/0 is adjusted to yield the Roper resonance at
the experimental value. We use the same expression for
5»(W), but adjust Wo to yield the resonance at dif-
ferent values (Wn, ~) in order to produce widely different
energy dependences for 5. On the other hand, if the
Roper resonance is a CDD-type resonance' and is
produced mainly by inelastic channels, as is strongly

9 M. Bander, P. Coulter, and G. Shaw, Phys. Rev. Letters 14,
270 (1965);J. Hartle and C. Jones, Phys. Rev. 140, 890 (1965);
Phys. Rev. Letters 14, 534 (1965). (CDD —=Castillejo-Dalitz-
Dyson. )"G. L. Shaw and D. Y. Wong, Phys. Rev. 147, 1028 (1966).

produce the Roper resonance. Now, assuming that the
Roper resonance is produced mainly by forces in the
7rÃ channel (we shall call this a "non-CDD-type"
situation') we can write, using the normalization
err(~) = —z.,

t/V —M
Drr(W) = (W—M) exp
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were W„ is adjusted so that 8»=-,m at the Roper
resonance (W=10.7) and Wa=16 and Wz ——2. We also
consider a cutoff form of 8u, where bn(W) is set equal
to zero after W= j.5.'

Since in the CDD situation, the Roper resonance is
not present in the elastic mlV scattering, 5zz is expected
to be significantly different from 8». Assuming that the
nucleon is still present in the elastic scattering as a
bound state, we have, using Levinson's theorem, "
Fzz(0) —Pzz(ac )= 7r. Now we use the normalization
Bzz(ee)= —

m consistent with (2.8) and three signifi-
cantly different parametrizations of 8»(W):
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bzg(W) = —n.+ 8" (3 7)

FIG. i. The inelasticity parameter q» for various values of the
parameter b. Because of the exponential form for p beyond the
experimental limit, g rapidly approaches 1 for 6nite values of b. (3.8)

Xexp
Rgb(W')dW'

(3.5)
se (W' —W)(W' —M)

with 8i~(~)=0.1 Again we use the Shaw-YVongm fzt

to 8zg(W):
W„qs(W —8.5)

8zg(W) =-
(W—2.0) '

(3 6)

suggested by the small value of g~~ at the resonant
energy, then a pair of CDD zeros at 8'=5'~&iWz
appears on the physical sheet in the S-matrix element
S~» and we use"

((3z wR )'+wr')"—
Dgz(W) = (W'—M)~

k (W—Wa)'+ Wz'

(39)

We have also considered a possible ca,se where bz~(W),
instead of decreasing uniformly from 0 to —x, attains
small positive values and then asymptotically tends to
—x. Again the vulnerability of our results to the
different parametrizations will indicate how general
our conclusions are.

The single most important parameter in the present
calculation is q~~. The absorption parameter g~1 reaches
a minimum at E 616 MeV and rises slowly up to
E 700 MeV. Beyond this value there is no restric-
tion on g~z (except that it is constrained to lie between
0 and 1). Even though the contribution to g from any
given inelastic channel goes to zero asymptotically, an
in6nite number of channels open up, which could pre-
sumably shift g(~) from 1. On the other hand, it has
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FIG. 2. The Roper resonance is assumed to be an inelastic

resonance in this case. p—= 1 beyond the experimental limit, corre-
sponding to 5= ~. The various parametrizations for 811 used in
the numerical analysis are labeled 8&, 82, and 83 corresponding to
(3.7), (3.8), and (3.9), respectively. As indicated by the curves, no
bound-state solution is found.

M (in)

FIG. 3. Same as Fig. 2 except that a sharp cutoff on 5» was used,
so that 811(W)=—0 for 8'~& 15.

"See, e.g., R. Wsrnock, Phys. Rev. 131, 1320 (1963l.
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FIG. 4. The Roper resonance is assumed to be an elastic reso-
nance in this case. WR,~= 10.9 and b =0.2. The curves have been
labeled Ai, As, As, corresponding to (3.2), (3.3), and (3.4),
respectively. As is clear from the fIgure, no bound-state solution
exists.

t)it=1 —(1—r)p)e "~ ~», (3.10)

where z0 is the value at the last experimentally known

energy Wp. Equation (3.10) is a very conservative
estimate for g. In fact some recent calculations" have
used far more liberal parametrizations of g. In Fig. 1 we

have plotted r)it(W) for various values of the parameter
b.

recently been conjectured, " on the basis of certain
specific models, that even though an infinite number of
channels may open up as energy goes to infinity, r)(~ )
does in fact equal 1. In the present calculation we shall
use as conservative an estimate of q~~ beyond experi-
mental energies as necessary to remove any doubt as
to its reasonableness. First, we shall in fact set
t)tt(po)=1. We still have a number of choices left for the
high-energy behavior of (1—t)»).is Again we take the
conservative estimate that asymptotically 1—g~~ be-
haves exponentially. We write

FIG. 5. Sams as Fig. 4 except that g ~,~= 14.

1.0

0.8 A3

found. "In the case when 8ii(W) attains positive values,
the curves were found to slope downwards in the bound-
state region, but we did not get a solution for any
reasonable value of b Only f. or large values of b (r)=1
beyond the experimental limit) did we find bound-state
solutions for certain parametrizations of 3ii(W). It
can be readily seen that any parametrization of p with
ri(po)(1 will indeed increase the magnitude of the
integrals asymptotically on the right-hand side of Eqs.
2.7(a) and 2.7(b) and hence will yield no solution.

The results for the non-CDD case are shown in
Figs. 4—7. Figures 4 and 5 are given for b=0.2 (when
t)-+1 near W=35) and Fig. 6 for b=0 5(ti —&.1 near
W=18). Here again we find that although some of the
curves slope downwards, they still yield so solution.
Again we present the extreme case of g=—1 beyond the

Some typical results are given in Figs. 2—7 where
various parametrizations have been indicated. First
consider the CDD-type situation, which seems to be
the more reasonable one because of the small value of

g near the resonance. In this case, as an extreme ex-

ample, we set ~i=—1 (i.e., b= ~) after the last experi-
mental point. Figures 2 and 3 show the results for the
parametrizations (3.7), (3.8), and (3.9) for 5ii(W). The
curves of sing versus fV(in) do not give any zeros or
minima, and hence no solution exists between 6.8 and
7.8.' These curves will probably slope downwards in
the physical region and a resonant solution may be
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"R.E. Kreps and P. Nath, Phys. Rev. 148, 1436 (1966)."Various possible asymptotic behaviors for 1—F11 are:
O(1/InW), O(W i'i), O(e i'iir), etc.

'4 P. Coulter, A. Scotti, and G. Shaw, Phys. Rev. 136, 81379
(1964).

FIG. 6. Same as Fig. 4 except I5i =0.5.

"This was veri6ed explicitly in some cases where we looked for
solutions for M in the region above the threshold.
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Fzo. 7. Same as Fig. 4 except that g
—= 1 beyond the experimental

limit. In this case we 6nd that bound-state solutions exist for
asymptotic forms (3.2)LAsj and (3.3)LAN) of b» but not for
(3.4)LA 33.

experimental limit, in Fig. 7. Here we 6nd that bound-
state solutions are present. Thus in both the CDD and
non-CDD cases we can force a bound state for larger
values of b and certain parametrizations of the phase
shifts, although this is not true for all the parametriza-
tions. As expected, because of the additional attractive
forces in the non-CDD situation, the value of b needed
to force a bound state is much larger in the CDD case
than in the non-CDD case. However, the particular
situations in which bound-state solutions were obtained
seem to be very artificial. It seems unlikely that the
experimental value of g will tend to 1 so fast. For any
realistic parametrization of p we do not obtain any
bound-state solution. Thus we conclude that given the

presently known experimental phase shifts and in-
elasticity parameters, the 7i-g system by itself is un-
likely to be able to sustain a nucleon bound state, and
higher inelastic channels must play a considerable role
in binding the nucleon. It is interesting to note that the
SU(6) static baryon bootstrap model also suggests tha, t
a substantial part of the binding of the nucleon comes
from the channels other than the xE channel. "

Finally we make some remark regarding the rele-
vance of the present conclusions to the results obtained
by Coulter and Shaw. "In that work it was not possible
to produce a nucleon bound state with the correct
residue even in the presence of inelasticity. VVhen they
forced the nucleon bound state to appear with the
correct residue by including it in the direct-channel
contribution, they obtained reasonably good agree-
ment for the phase shifts. From their results one can
see that their unperturbed (q = 1) and perturbed
(ri/1) phase shifts diGer considerably. Their formalism
did not ask for the location of the unperturbed pole.
This is indeed what was considered in the present work.
It seems natural to us that when the predicted phase
shifts change considerably by the inclusion of inelas-
ticity, the location of the bound state should also
change appreciably.
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