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the constant A& could be varied considerably without
any significant modification of R (p ). However, on
the other hand, a change in', by a factor of —', would
already produce too large a first peak of R, (p ), due
exclusively to the Z-A —conversion amplitude.

By comparing our result of Fig. 2 with the curve (b)
of Fig. 7 of I, we observe that, indeed, the assumption
of 2I' capture gives a better semiquantitative fit to
the data' than does the assumption of the 1S capture.
The now very pronounced first peak corresponds to the
A-Z threshold which occurs at p„=164 MeV/c (cf. the

pygmy peak of Fig. 7 of I).
In summing up the discussion of both Figs. 1 and 2,

we may say that while the rough agreement with the
data4 is about the same for the 2I' capture as for the
1S capture of I, the R (p ) pion data appear to defi-
nitely favor the former case. '

'Actually, the smallness of the first peak of the curve 1S of
Fig. 2 is a little exaggerated by the interference terms calculated
in I with an inappropriate choice of one of the relative phases.

Obviously, one should regard our results with caution
because of the crudeness of the treatment of the
Z-A—conversion amplitude by the two-component dis-
torted-wave approximation as in I.

Our numerical results correspond to a simple but com-
pletely arbitrary choice of the phase of the conversion
amplitude relative to the rest. In view of the inevitable
smallness of the corresponding interference terms, only
a very small improvement of our Rs(ps) could be
achieved by any required shift of this phase, while
R (p ) would suffer practically no change.

Many more data, particularly on angular distribu-
tions and on the absolute values of the reaction rates,
should be avilable before a more detailed analysis
becomes warranted.

The author wishes to acknowledge the invaluable
help of Melle M. T. Commeault with the numerical
computations and several useful conversations with
P. Said.
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The uncoupled-phase method is a nonperturbative formalism which describes the influence of any given
(Nth) channel on the dynamics of an e-channel scattering reaction. The method relates scattering amplitudes
for the uncoupled reaction, obtained by switching o8 interactions to the nth channel while the interactions
among the rest remain unchanged, to the scattering amplitudes describing the full reaction. We extend the
uncoupled-phase method further, under exactly the same assumptions used to derive the previous un-
coupled phase relations. We remove the restriction that there is only one perturbing channel and allow for
the possibility of an arbitrary number of perturbing channels. The more general set of uncoupled-phase
relations reduces to the previous uncoupled-phase relations when the number of perturbing channels is
equal to 1. Some elementary applications of these relations is made, and their possible application in ele-
mentary particle reactions is indicated.

I. INTRODUCTION

1
~~NE of the crucial facts about high-energy scattering

is the large number of channels that become
available for scattering, and a correct description of any
one of them involves all the channels that are signifi-

cantly coupled at the relevant energy. In many impor-
tant physical situations it may be sufhcient to consider
only the coupled two-body channels (some of which may
be closed in the energy region of interest). For example,
in the meson-baryon scattering, (srA, 7',ZX,r)Z,E )
may be coupled significantly near the energy region of
the F~e resonance, and (7r,EA,KZ, rt ) near the region
of the I/2* resonance. However, even though such
systems can be handled by matrix X/D dispersion rela-

tions, the calculations are generally involved and in

practice most calculations ignore all except the nearest
channel. On the other hand, some channels may not be

significantly important and could be safely neglected,
but one needs some semiquantitative criterion in ignor-
ing them.

The uncoupled-phase method (UPM) developed by
Ross and Shaw' ' relates the actual amplitudes describ-
ing e coupled channels to the "uncoupled" amplitudes
which describe the scattering, when the couplings to
the nth channel are switched os', the other interactions
remaining unchanged. Although the UPM was originally
developed in the framework of a potential model, '~ it
has subsequently been extended to relativistic N/D
matrix calculations. ' The usual weak-coupling approxi-

' M. Ross and G. L. Shaw, Ann. Phys. (N. Y.) 9, 391 (1960).' G. L. Shaw and M. Ross, Phys. Rev. 126, 806 (1962).' P. Nath, G. L. Shaw, and C. K. Iddings, Phys. Rev. 133,31085
(1964).

4 Interactions with hard cores were also investigated.' P. Nath and G. Shaw, Phys. Rev. 137, 3711 (1965).
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mations which include the neglected channel as a
perturbation, appear as limiting cases of the UPM. ' The
UPM was tested numerically by comparison with the
exact solutions and was found to have a large range of
validity both in the nonrelativistic a»d the relativistic
situations under signi6cant modifications of the un-
coupled phases. ' ' ' ' Several applications of the UPM
have been made with semiquantitative success. '—"

In the present paper, we develop the UPM further by
removing the restriction that there is only one perturb-
ing channel. Such an extension of the UPM will be of
importance to handle situations where more than one
perturbing channel influences the scattering reaction
significantly. Such a situation cannot realistically be
approximated by a single artificial channel. This is
particularly true if the energy region of interest lies
close to or between the thresholds of the perturbing
channels, especially when there are resonances present.
Another natural application of the extended UPM
would be in context of peripheral scattering.

In Sec. II we review the salient points of the UPM.
In Sec. III we derive the extended form of the UPM
under exactly the same set of assumptions used to
derive the restricted uncoupled phase relations. The
extended UPM, therefore, is expected to have the same
range of validity as the restricted UPM. In Sec. IV we
discuss some elementary applications of the uncoupled
phase relations. Section V is devoted to discussion and
conclusions.

1 ImA (s')ds'
B(s)=

Z, e~~ S —S
(2 5)

L(s) is a diagonal matrix, the element Ls being related
to the range of the forces in the kth channel:

gs 1
Lg, (s) = P

a Bl,s'(s)

"s~~'(s') p~(s')as') '
, (2 6)

(s' —s)

where s~ is the production threshold for the kth channel.
The parameter L~ depends only on the interaction in
the kth channel. '

When the couplings to the eth channel are switched
oft, the uncoupled X matrix elements X;, are given by

n—1

E,,=(B;,+Q B;sLs Es;)(1—8;„)(1—8,„). (2.7)

From (2.4) and (2.7) one gets

meaning. The reaction amplitude E is dehned by

E=X(ReD) '=A(1 —ipA) '. (2.3)

Under approximations of the uncoupled-phase method, "
E satisfies the AX+ matrix equation for a given partial
wave

E()=B()+B()L'()E() (24)

where B(s) is the left-hand cut of A, i.e.,

II. REVIEW OF THE UNCOUPLED-
PHASE METHOD

A =/D =p ~sP(g —1)/2igp

The diagonal matrix p depends on kinematics

p"= 8 ks'+'/Qs,

(2 1)

(2.2)

where s is the square of the total energy and k; is the
relative momentum in the ith channel in the overall
center-of-mass system, and E and D have their usual

' The weak coupling approximations usually employed are (1)
E~,where X and X are perturbed and the unperturbed reaction
amplitudes (2) M~M, where M and 3E are essentially the inverse
of the E and E amplitudes. For details see Ref. 3.

7 Even for cases where the inhuence of nth channel was large
enough to cause bound states, the UPM reproduced the actual
phases with an error of less than 15'P().' M. Ross and G. Shaw, Phys. Rev. 115, 1773 (1959);Bull. Am.
Phys. Soc. 5, 504 (1960).' G. Shaw and M. Ross, Phys. Rev. 126, 814 (1962).' P. Nath and Y. N. Srivastava, Phys. Rev. 138, 8404 (1965).

»M. DerSarkissian and P. Nath, Nuovo Cimento 38, 1355
(1965);M. DerSarkissian (to be published).

Before we derive the uncoupled phase method for the
case of many perturbing channels, it would perhaps be
desirable to review in brief the uncoupled phase method
for the case of one decoupled channel. ' Let us consider
m coupled two-body channels and define the invariant
partial-wave amplitude 2 by

X[E.,—E„(1—~;„)(1—~,„)+L„~,.S,.]=0. (2.8)

In order that solutions to (2.8) exist, the 2nd bracket in

(2.8) must satisfy (I'—e)/2 independent relations.
There are (e—1) relations for iWe,

~ ~ ~ ~ ~E;; E;; E;„—
det ~=0

E,„E„„+L„i (2.9a)

and (e—1) (e—2)/2 relations for i &n, joe,
)E;; E;; E;; E;;— —

det~ =0.
&E"—E" E —EU v jj Al

(2.9b)

The number of uncoupled phase relations is equal to the
number of the uncoupled amplitudes.

III. DERIVATION OF THE UNCOUPLED
PHASE METHOD WITH MANY

PERTURBING CHANNELS

We would now like to present a simple derivation of
the uncoupled phase relations that result when the re-
striction that there is only one perturbing channel is
removed. To be specific we shall consider that there are

»For a detailed discussion of the approximations and their
numerical veri6cation see Ref. 5.
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K=B+BL 'K. (3.1)

Let us now decouple m channels )by setting B; =0,
wherei=1 (e—m) andn= (e—m+1) e, while the
rest of the interactions B;; (i, j=1 (I—m)) remain
unchanged). The reaction matrix E which describes
scattering for the remaining (e—m) coupled channels
satisfies the relation

E= (PBP)+(PBP)L 'E. (3.2)

P is the diagonal projection matrix onto the space of
coupled channels whose first (m —m) diagonal elements
are equal to 1, the rest of the elements being zero. In
order to facilitate further discussion, it is useful to
define a matrix X by

X=B+BPI. 'pX. (3.3)

We use the condition P'= P and Eqs. (3.2) and (3.3) to
obtain

E=PXP. (3.4)

m coupled channels of which m are finally decoupled.
The nXe reaction matrix K satisfies the relation (2.4)

Kcc KCD (LC 0 )E= K, E &0 I& (3.6)

where Kcc is a square matrix of dimension (e—m),
whose elements are those of PEP; K~~ has the elements
of PK(1—P), etc. ; the subscripts C and D refer to
coupled and decoupled channels, respectively.

tI+KL '(1—P)] '

I KCD/LD—+KDD]
(3.&)

0 PI+KDDLD i] i

It is to be noted that the inverse in the elements of (3./)
is to be taken in the ns-dimensional space of the de-
coupled channels. Using (3.5) and (3.7), X may be
written in the form

From (3.3) and (3.1) we can solve for X in terms of K:
X=P+KL '(1—P)] 'E. (3.5)

It is profitable to express E and I. in the following
fashion:

[+CC KCD(LD+KDD) KDC] [+CD LD+KDD LDx=
P.D(LD+KDD) KDD]&-

If we use (3.8) in (3.4) we find that
KCC KCDLLD+KDD] KDC ~

(3.8)

(3.9)

Though the uncoupled phase relations expressed by the matrix equation (3.9) have a compact form, it may be
more convenient to work with an equivalent set of determinantal relations where matrix inversion as in (3.9) does
not occur. Moreover, the equivalent set of relations appear as a natural generalization of the old uncoupled phase
relations with one perturbing channel. To obtain the equivalent set of relations we define a matrix M by

M=K —E+(1—P)L ' (3.10)
It is easily seen that

P(1 BL)M=O. —
After a little manipulation, (3.11) can be recast in the form

(3.11)

where
P)1—t(1—P)]M=0,

t=BL(1 PBL) '. —
(3.12)

(3.13)

Taking matrix elements of Eq. (3.12), we have explicitly

and

M, ,= Q t;i.Mi„, i(&m m, j(&rs m, — —
k=n—m+1

(3.14)

M, i
—— Q tcMii, t)~e—m+1. (3.15)

Since Eqs. (3.14) and (3.15) express the first column as a linear combination of the last m columns, the following
set of determinants of dimension (m+1) must vanish:

~n

M„„

=0 (3.16)
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To display explicitly the relations (3.16) in terms of the coupled and the uncoupled reaction amplitudes, we write
for i, j((43—423+1),13

' (E;,—E;;) +s (n—~I.) ~ ~ - E;„
E(nm—+1)j (E (n e+-1), (n—m+1)+L (n—m+1) ) ' E(n—tn+1), e (3.17)det

E J. +n, (n—~].) ~ (E„„+L„)
It is also possible to derive more determinantal relations involving several elements of X similar to relations
(2.9b). However, the total number of independent relations is exactly (e—233) (23—433+1)/2 equal to the number
of independent elements of E. This is'evident from Eq. (3.9) where the E matrix has been explicitly expressed.

We shall consider now some special cases:

(I) m=1; This case corresponds to decoupling one channel, say the nth channel We have for 3, j&~ (23—1)

'bn ng

X —K
K„„+I.„' (3.18)

These relations can be seen to be equivalent to the uncoupled phase relations (2.9a) and (2.9b).
(II) 423=23—1; In this case we are decoupling (43—1) channels which we shall regard as labeled 2 to 23. We get

only one uncoupled-phase relation

det

EI]—X
K2I

K I

EI2
(E22+L2)

+n2 ~ ~ ~

+1n
+2n

(K„„+L„)
(3.19)

+11 +12 +18 +11 +12 +13 +14 +15
((E33+L3)

E21 E22 E23 E21 E22 E23 E24 E23
E,4—E43 t K41 E42 K43)

! (3.20)
(K44+L4) (K31 E32 E33)

-&31 &32 &33- &32 ~E34 E35'

(III) To illustrate the form (3.9) of the uncoupled phase relations we consider the case when there are 5 coupled
channels where the channels 4 and 5 are regarded as the perturbing channels for the system of coupled channels
1, 2, and 3. Equation (3.9) becomes

where
6= (E44+L4) (E33+L3) E43E34.'(3.2—1)

IV. SOME ELEMENTARY APPLICATIONS

condition

where

I'DSI'D)
det ZD — =0,

III IIII1—(4.3)

r,l,
E;1 +R,, ——

s—M
(4 1)

Let us consider a situation where the reaction matrix
has a pole (as is the case when the system has a bound
state or a resonance). Let All be the position of the pole
in X. We may write

@D LD+RDD (4.4)

where

M =3II—A(3II), (4.5)

and F~ FD is the outer product of a column and a row
vector whose elements run from (43—433+1) to 23. From
(4.3) it is readily seen that the mass shift is given by

Due to the inhuence of m perturbing channels the pole
will shift to some value cV so that (for i, j= 1 n)

A(s) = Q I',Z;; '(s)I';.
i, j=n—~+1

(46)

r,r,
Eg= — +R;;.

s—M

If we make a further simplifying assumption and
assume that the background term R may be neglected
in comparison with I. in (4.4), we have

If we refer back to the uncoupled phase relations (3.9)
it is clear that as we approach s=3f, we have the
"These relations are exact if the left-hand cut is replaced by a

pole. An exactly similar set of relations can be obtained in the
potential model. The uncoupled phase parameters I. s are related
to the range of potentials. See Refs. 2 and 3.

and

k=n—en+1
k

(4.7)

(4.8)
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For poles below the perturbing channels, since I.~ is
then positive, Eq. (4.8) tells us that the bound or reso-
nant state is forced into a tighter and tighter con6gura-
tion due to the presence of each additional perturbing
channel. The result is in conformity with the recent
detailed computer experiments involving several coupled
channels. "'4

In order to investigate the modifications of the
residues we examine Eq. (3.9) as we approach s=3II. It
is straightforward then to obtain the relation

where (4.9)

r, = Q E,san(
—'(M)1't.

In the same spirit as before if we neglect the background
term R in comparison to L, we get the following interest-
ing result'5

r, r,
(4.10)

From Eq. (4.10) we can approximately compute the
residue changes in all the channels from a knowledge of
the change in residue in one channel due to the inhuence
of a set of perturbing channels.

V. DISCUSSION AND CONCLUSIONS

The uncoupled phase relations obtained previously
have been tested numerically both in the potential
model as well as in the relativistic case. It was found
that they can accommodate large modi6cations of the
uncoupled phases due to the presence of one perturbing

'4 J. R. Fulco, G. L. Shaw, and D. Y. Wong, Phys. Rev. 137,
B1242 (1965).' Actually, a somewhat weaker condition, namely, r;~l'; is
suKcient to obtain relation (4.10).Equation (4.10) is also obtained
when r;/I', «A'/(1+ L1—A' (3II)g'~'}.

channel. Under exactly the same set of assumptions
used to derive the previous uncoupled phase relations
we obtain a natural generalization, which is expected to
have the same range of validity, by removing the
restriction that there is only one perturbing channel.
In particular, we can study many situations where two
or more perturbing channels significantly inRuence a
scattering process. In an elementary application of the
relations to the resonance situation, we find the change
in pole position and residues, and observe the interesting
result that the modifications in resonance widths are
approximately proportional to the widths themselves.

As in the case of old uncoupled-phase method, we
envision two main uses of the extended relations. First,
in many physical situations, because of experimental
diKculties, only a few (say nz) channels may be
available as incident channels. In this case, therefore,
we can measure m complex-scattering lengths and
Lme —-', m(m+3) j production ratios into the other
channels. The total number of experimental quantities
known in this case is mN —stm(m —1). If we use these
in conjunction with t

s(m —m) (I—no+1) uncoupled
phase relations we have stn(m+1) quantities which
allow us to construct the full E matrix. Thus some
theoretical knowledge about (n —m) channels and
experimental knowledge about the nz available channels
can enable one to construct the complete n)& e scattering
matrix. For the case of one available channel (m=1)
this procedure has explicitly been employed to the
s-wave XS scattering with two and three coupled
channels. '

The second situation is one where all relevant scatter-
ing amplitudes are known experimentally from the
measurement of cross sections. In this case the eXe
reaction amplitude E is known. On the other hand a
theoretical model (for example, from symmetry
schemes) predicts a X matrix which ignores some of the
channels in the eXe reaction. In this case we can use
the relations (3.9) to construct a X matrix from the
experimental K matrix, which may then be used to test
the predicted X matrix.


