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The general structure of the scattering amplitude is expressed in terms of the one-particle reducible and
irreducible parts, when there are several particles present having the same quantum numbers in the channel
in addition to the physical and unphysical cuts. A comparison with field theory is made to obtain the propa-
gator, the vertex functions, and the matrix of the wave-function renormalization constant Z in terms of the
N and D functions of the N/D method by making use of the Lehmann representation of the propagator.
We then prove the equivalence between composite particles dehned in the N/D method and elementary
particles with a singular matrix of the wave-function renormalization constant, i.e., detZ=O in a full field
theory under the approximation of keeping only up to the two-particle intermediate states. We show also
that Z becomes singular when the one-particle reducible part A (s) of the scattering amplitude does not de-
crease as fast as s ' at high energies, i.e., B=—lim—, „s 'A '(s) =0. In particular, the condition B=O so
that detZ=O makes all particles to become composites of other particles, while B&0 but with detZ=O
allows mixture of the elementary and composite states. The one- and two-particle cases are discussed in
detail to illustrate the compositeness condition detZ=O.

I. INTRODUCTION
' 'T has been suggested in some field-theoretic models' '
~ - that the composite state can be regarded as an ele-
mentary state with vanishing wave-function renormali-
zation constant. It has further been proposed' that the
wave-function renormalization constant will vanish pre-
cisely when a bound state is generated dynamically
within the framework of the ll//D method of the 5-
matrix theory.

In particular, for the one-particle case, the equiva-
lence between the bound state so generated and the ele-
mentary particle with its wave-function renormalization
constant set equal to zero has been discussed by many
authors both in field-theoretic models" and in a full
field theory. ' This equivalence has been proved up to
the approximation of neglecting all but two-particle
intermediate states. In an earlier paper, 6 we have shown
for an exactly soluble model that a vanishing wave-
function renormalization constant is also equivalent to
imposing a certain high-energy lower bound to the
scattering amplitude, while the relation expressing this
condition contains, in general, parameters other than
the coupling constant and mass of the particle, unless
one neglects all the Castillejo-Dalitz-Dyson (CDD)
zeros of the amplitude.

*Work supported in part by the U. S. Atomic Energy Commis-
sion (Report No. NYO-2262TA-130. )' B. Jouvet, Nuovo Cimento 5, 1 (1957); J. Houard and B.
Jouvet, ibid. 18, 466 (1960).' M. T. Vaughn, R. Aaron, and R. D. Amado, Phys. Rev. 124,
1258 (1961);J. S. Dowker, Nuovo Cimento 25, 1135 (1962); M.
L. Whippman and I. S. Gerstein, Phys. Rev. 134, B1123.

'A. Salam, Nuovo Cimento 25, 224 (1963); Phys. Rev. UO,
1287 (1963); S. Weinberg, ibid. 130, 776 (1963); 131, 440 (1963).

4 R. M. Rockmore, Phys. Rev. 132, 878 (1963); J. S. Dowker
and J. E. Paton, Nuovo Cimento 30, 450 (1963).'B. W. Lee, K. T. Mahanthapaa, I. S. Gerstein, and M. L.
Whippman, Ann. Phys. (N. Y.) 28, 466 (1964); D. Lurid and A.
J. Macfarlane, Phys. Rev. 136, B816 (1964).
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Recently a good deal of attention' "has been given
to the problem of describing two different particles with
identical quantum numbers. However, a number of
authors~ ' claimed that a peculiar situation, not known
in the one-particle case, arises in the two-particle prob-
lem; fixing one of the elements in the matrix of the
wave-function renormalization constant makes all the
remaining elements zero simultaneously, so that the
composite state is indistinguishable from the elemen-
tary state, Others" asserted that the vanishing of the
particle's renormalization constants has nothing to do
with the particle being composite. In view of these di-
verse remarks, it is of some interest to study the com-
positeness conditions in the case of many particles with
the same quantum numbers.

In this paper, we shall prove the equivalence between
(i) bound states as generated dynamically, and (ii) ele-
mentary particles with a singular matrix of the wave-
function renormalization constant in a full field theory.
We assume that the s-wave amplitude for scattering of
two spin-zero particles has two cuts, the phsyical as
well as the unphysical one, as well as that the S par-
ticles have the quantum numbers of this channel. We
shall make the approximation of keeping intermediate
states only up to the two-particle ones.

We shall also show that the matrioc Z of the waM-
function renormalisation constant becomes singular when
the ssngle particle reducible -part A(s) of the scattering
amPlitude does not decrease as fast as s ', i e , when. .
8=—lim, „„s 'A '(s—) =0. However, the conwrse of thi s

7 P. K. Srivastava and S. Rai Choudhury, Nuovo Cimento 39,
650 (i96S).' K. Kinoshita and H. Vabuki, Progr. Theoret. Phys. (Kyoto)
34, 825 (1965); 34, 981 (1965).' H. Yabuki, University of Tokyo report (unpublished).

"M. Alexanian and R. L. Zimmerman, Lawrence Radiation
Laboratory Report UCRL-14808-T, 1966 (unpublished)."J.C. Houard and J. C. LeGuillou, Nuovo Cimento 44, 484
(1966).' M. M. Broido and J. G. Taylor, Phys. Rev. 147,. 993 (1966).
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statement is not true ie geuerat; even if detZ =0, there are
cases in which the quantity 8 can take a nonzero and
positive-definite value in the presence of more than one
particle with the same quantum numbers.

In particular, it will be seen that if detZ=O with
8=0, then the X particles can be exhibited as compos-
ites of other particles, and that if detZ=O but with
8&0, then we obtain some composite and some ele-
mentary particles instead of all composite particles. In
any case, we shall see that if detZ= 0, then at least one
of the particles becomes composite. Thus detZ=O is a
natural generalization of the compositeness condition
in the many-particle case. This is in agreement with
what was found by Houard and Le Guillou. "However,
these authors considered the compositeness condition
for only one of the two particles by using a special 6eld-
theoretic model. Our analysis will show that 6xing one
of the elements in Z does not automatically make all the
remaining elements zero, contrary to what was claimed
in Refs. 7 and 9.

We shall apply our condition to the one- and two-
particle cases in detail. In the one-particle case, Z=O
is completely equivalent to 8=0, thus confirming our
previous result obtained for an exactly soluble model.
Again it will be pointed out that the relation Z=8=0
contains in general parameters other than the coupling
constant and mass of the particle. This means that,
when the right- as well as the left-hand cuts are present,
the vanishing of the wave-function renormalization con-
stant is equivalent to imposing a certain high-energy
lower bound only on the single-particle reducible part
A(s) of the scattering amplitude. The amplitude A(s)
will be shown to have only the right-hand cut in addition
to the particle poles. In the two-particle case, we will

consider detZ=O both with 8=0 and 8~0, and show
that the former corresponds to having two composite
particles and the latter to one e1ementary and one com-
posite particle.

In Sec. II, the general structure of the scattering
amplitude is analyzed within the framework of the E/D
method. "Special emphasis is put on the decomposition
of the scattering amplitude into the single-particle re-
ducible part and the irreducible part. In Sec. III, the
field-theoretic quantities like the propagator, the ver-
tex functions, and the wave-function renormalization
constants are obtained from the scattering amplitude
by using the Lehmann representation'4 of the propa-
gator in the two-particle approximation and the various
forms of the unitarity relation. Section IV contains the
discussion on the compositeness conditions in the form
of detZ=O. Here the equivalence between the elemen-

tary particles with detZ=O and the bound states gen-
erated dynamically is proved. Finally, some concluding
remarks are given in Sec. V.

"G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (j.960).
"H. Lehmann, Nuovo Cinmnto 11, 342 (1954).

where f(s) is the given discontinuity across the left-
hand cut c~, and s& is the threshold value. In writing

(1), we have overlooked the possible subtractions since
we will not need the detailed solution of the scattering
amplitude. Our amplitude is normalized as

T(s) = (1/p(s))e" &' sin8(s),

where p(s) is the phase-space factor and approaches a,

constant at infinity. The amplitude will have, in gen-

eral, a zero between every two successive poles and at
least one zero between the nearest pole and the branch
point s& if T(s) obeys an unsubtracted dispersion rela-
tion aud T(s,))0. If the unsubtracted T(s) of (1) has
a negative value at the left-hand branch point, then
the amplitude will also have at least one zero between
the left-hand branch point and the pole of the lowest
mass. In what follows, we shall assume an unsubtracted
dispersion relation for T(s), since introducing one sub-
traction" will not make any essential difference, but
will only complicate the algebra.

Following the usual E/D method, " we write the
amplitude as

T(s)=E(s)/D(s),
where

D(s) =1—$—$0 , p(')W')
ds

$ —$ $ —So
(4a)

$(s)=— f(s')D(s') ~ g D(m )
ds' +Q . (4b)

s —s kg —$

Here we have normalized D(s) at s=so. While the
zeros of T(s) between the two succsesive poles are auto-
matically taken care of by our numerator function (4b),
a number of pole terms should be added to the denomi-
nator function (4a) corresponding to other CDD zeros, 'e

if there are any, of the amplitude in the regions between
the threshold and the pole of the highest mass, and be-
tween the left-hand branch point and the pole of the

"We have recently given a proof that the partial-wave scatter-
ing amplitude needs at most only one subtraction, by making use
of rather general assumptions of analyticity, unitarity, tempered-
ness, the normal threshold behavior, and a hnite number of sign
changes of the left-hand-cut discontinuity. See Y. S. Jin and
Kyungsik Kang (this issue), Phys. Rev. 152, 1227 (1966). See
also T. Kinoshita, Phys. Rev. Letters 16, 869 (1966)."L.Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101'
453 (1955).

II. GENERAL FORM OF THE SCATTERING
AMPLITUDE

Let us consider the s-wave amplitude T(s) for two-

particle scattering. If there are particles of masses m~,

m2, , m& which have the quantum members of this
channel, then the scattering amplitude can be expressed

by a dispersion relation"

1 " Im T(s') 1 f(s') tv g;2
T(s) =— ds' +— ds' +P, (1)

7r 8t s' —s 7r cL sf—s g m%2 s
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where

(s) ego(sl

t(s) = = sinbp(s),
d(s) p(s)

(5)

d(s) =1—$—Sp p(s') m(s')
dS

(s' —s) (s'—s )
(5')

lowest mass. We shall assume throughout our paper
that there are no other such zeros of the amplitude, and
that 1V(s) and D(s) have no coinciding zeros.

If it were not for the particle poles at m~', m2',
m~', the above procedure would have resulted in a
unitary amplitude

g;s 1 " Irna(s')
a(s) =g +— ds'

j mi $ x &g $ $
(14)

The meaning of this decomposition is obvious: The
Grst term is the one-particle irreducible part of T(s),
while the second term is the contribution of the one-
particle intermediate states. In order to see the con-
nection between the two denominator functions D(s)
and d(s), let us denote the one-particle reducible part
of T(s) in (13) by a(s). Since this function has only
the right-hand cut plus the pole terms it admits a
representation

From unitarity of T(s) and t(s), we have'r

(51~) Ima~(s) =&p(s) I a~(s) I
'&2p(s) ReLa+*(s)t(s)], (15)

where

f(s') d(s')
ds .e(s) =-

x' c s sL
a+(s) =a(s+is) =a *(s).

Then one can easily show that (4) and (5) are related
by After some manipulations, one can get

where

D(s) =d(s)+E(s),

E(s)=n(s)+F(s),

(6a)

(6b) (
1 Vip(s) 1

+[1wi tan8p(s)]Re
I

~ (16)
a(s) ~ cos28p(s) a(s)~ +

E(s)=—$—Sp p(s')F(s')
ds

$ —$ $ —Sp

This is a standard inhomogeneous Hilbert arc problem, "
(&) and the solution has the form

and
g'D(nz') 1 " ds'

F(s)=P +-
mi —S 7l g,

( 1 "ds' g(s')
=X~(s)

Ea(s) 8g K $ —$ Z6

(18)X~(s) =L1&i tan25p(s)]ReX+(s),

In (8), the function B(s) is given by the second term in and the function g(s) is given by
(1):

1 1
/X+(s) — /X-(s) =»g(s); (19)

&a(s) ~ a(s)

1 f(s')
B(s)= ds'. —

t:L $ —S

where X~(s) is the solution of the homogeneous$—Sp

&& B(s')— B(s) p(s')F(s') . (8) problem
$ —Sp

e(s) 1 1
T(s) = + (s)

d(s) D(s) d(s)
(10)

Our amplitude T(s) can now be decomposed into two
parts as

and
g(s) = —I:p(s)/p(s)] I d(s) I

'

X ( )=p( )(~ ( )}'

(20)

(21)

with

G(s) = d(s)F(s) —N(s)E(s) .
Here p(s) is an arbitrary polynomial which is assumed
to have no zeros on the right-hand cut, and the function
d(s) is given by (5') and has the phase representation

This function G(s) has neither the right-hand nor the
left-hand cuts, but has the poles at m~', m~', , m~',
and tends to zero at inanity. Thus from the Cauchy
theorem, it follows that

$—Sp

d(s) =exp(—

Notice that

bp(s')
ds' . (22)

$ —$ $ —Sp

& D(m')g'd(m')
G(s) =Q

m —s
(12) e '"t' =R(s)—ip(s),

a(s) +
(23)

so that (10) becomes

e(s) v D(m;s) g
s d(m;s)

T(s)= +Z
d(s) '=i D(s) m,'—s d(s)

(13)

' R. Blankenbecler, M. L. Goldberger, N. N. Khuri, and S. B.
Treiman, Ann. Phys. (N. Y.) 10, 62 (1960).' N. I. Muskhelishvili, Singular Integral Equations (P. Noord-
hoff Ltd. , Groningen, The Netherlands, 1953). See also M.
M. Islam and Kyungsik Kang, Phys. Rev. 139, 8973 (1965l,
Appendix.
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then we get
A(s) —=~(s)(d(s)&' (24)

with a real function R(s). Thus, if we deGne a new and
function 1 ~ d'(m')g'd(m')

&(s)= P +n(s)d(s) . (29b)
d(s) a=i mP —s

(30a)T '(m, 2)=0

N g 2d2(m 2) 1 " p(s') IA(s') I' It is clear from (1) that the solution (28) should satisfy
A (s)= P +— ds' . (25) the conditions

m' —s m ., (s'—s) Id(s') I'

S—so
d(s) =1— p(s')" (s )

ds', (27a)„(s'—s)(s' —so) I
d(s') I

~

& d(m;2)gPd'(mP)
n(s) = P

i=1 5$i —S
(27b)

Again we have assumed in writing (25) that the ampli-
tude (24) needs no subtraction. Then (25) will have a
zero between every two successive poles. These zeros
will automatically be present in the solution by the E/D
formalism. If A(s,))0, the amplitude (25) can have a
zero in the region between sf and the pole of the highest
mass. However, if one subtraction was needed for (24),
then A(s) will have a zero in the region below the pole of
the lowest mass. Those other zeros of A(s) will give rise
to the CDD pole terms in the denominator function
of A(s). We shall consistently assume no such zeros of
A(s). One can easily solve for A(s) by putting

A (s)=n(s)/d(s),
where

and

(dT
—

'(s))

g
~2

5';;(s)=
1 " A.;*(s')p(s')h. ;(s')

+— ds', (31a,)
m' —s 7l g] s —s

where the quantity A;(s) is related to the form factor
F;(s) by

F;(s)= (m 2—s)A, (s),

and the form factor has the dispersion relation

(32a)

III. FIELD-THEORETIC QUANTITIES

As we have started from the dispersion relation (1)
for T(s), we do not a priori have the Geld-theoretic
quantities like the propagator and the vertex functions.
In this section, we shall recover these quantities in
terms of the scattering amplitude T(s) given by (28).

The Lehmann representation" for the propagator has
the expression

It is interesting to notice that A (s) of (25) is a Herglotz
function'9 of s, i.e., ImA(s))0 for Ims)0. Thus
—A '(s) is also a Herglotz function and, in general,

F,(s) =g;+
s—m' ImF;(s')

ds' . (33)
s' —s s' —m,'

This means that

8=—lim — — &0.'-"A(s)s

d(~) I P d(m')g'd'(m') I)0,
(N

i=I

p(s) —=

1/(mP —s)
0

0

0 ~ ~ ~

1/(mg' —s)

Let us use the matrix notations

0
0

1/(m~' —s).
(34)

so that d(ao)) 0, in general. Because A(s) is a Herglotz
function of s, it is in general bounded by O'IsI
&

I A(s) I «I s w»c»mp»es &2I s
I

'&
I d(s) I

&t-"~.

Thus, even if d(~)%0, one subtraction is sufhcient in
(27a). If d(~) =0, then we may undo a subtraction in
(27a). We shall see that d(~) plays an important role
in the discussion of the compositeness condition.

Finally, the amplitude T(s) can be written as

n(s) & d(m')d(m') g' d(m')
T(s) = +Z, , (28)

d(s) ~=i d(s)d(s) m;2 —s d(s)

and

A.(s) = (Ai(s),A2(s), ,A~(s)), etc. (35)

F(s) =&(s)p '(s). (32b)

The quantity A.(s) is related to the vertex function by

A.(s) = I'(s) X'(s), (36)

Then (31) and (32) become, respectively,

,p(s')
4'(s) =p(s)+ — ds' At(s')A. (s') (31b)

s —s
and

so that by comparing (28) with (13) one obtains

D(s) =d(s)d(s) (29a)

so that

Imck'(s) =p(s)A. t(s)A(s) =p(s) 4'tI'tI A' (37)

"J.A. Shohat and J. D. Tamarkin, The Problems of 3foments
(American Mathematical Society, New York, 1943).

and
ImA' '(s) =p(s) I' t(s) I'(s) . (38)
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From (31b) and (38), one gets'

Z(s) —=p(s) &' '(s)

or
r,*( ') I', ( ')p(s')

ds'
(s' —s) (m '—s') (m '—s')

(39b)

$—8$g

Z;;(s) = 3;,+ so that

(48)ImH(s) =p(s)Ht(s)H(s) .

while from (43),

ImT(s) =pTt(s) I (s)Ar(s)+pale(s)I t(s)H(s)
+pH t(s)H(s) . (46b)

p(s )I' (s )I'(s')p(s') ~P '(s) (39a) On the other hand& from (44) and (45) it follows that
rS —S

im(i1(s) I'(s)3=p(s) T'(s)&(s) I'(s)
+p(s)&*(s)I'(s)H(s) (4~)

In writing (39), we have assumed no propagator zeros,
since we are assuming no CDD zeros in A(s) and T(s).
Notice, however, that 6',;(s) can have a zero between
mP and s, if no subtraction is needed for (31a) and
&';;(s&))0, while it can have another zero below mP if
one subtraction is needed.

From the definition of Z(s), it follows that

Thus H(s) by itself satisfies unitarity, and furthermore
it is nothing but the single-particle irreducible part t(s)
of the scattering amplitude T(s) given in the preceding
section. From (45), one can notice that the vertex func-
tion I'(s) has the phase of t(s). Since the form factor
F(s) has the phase of the scattering amplitude T(s), it is
appropriate to defi.ne

or

1 " p(s')
Z—'(s) =1+ — ds' At(s')st(s'))0 '(s) (40a) aa that

8t $ $

F;(s)= g;D(mP)/D(s), (49a)

h. ;(s)= (g,/(mP s))D(mP)/—D(s) . (49b)
SSg' —$

(Z—'(s)),,= 3;;+ , ( ') J"*(')F ( ')
8$

s' —s (mp —s') (mt2 —s')
(40b)

Thus F(s) so defined has zeros only at CDD zeros of

T(s), which we are assuming not to exist in our prob-
lem. Then from (36), we see that

and
~''d(s) =(md2 —s) '(Z '(s))',

(t)'—'(s));;= (m' —)Z,,(s).

(41a)

(41b)

Let us make the following decomposition" of T(s):

T(s) = I (s)ck'(s) I'r(s)+H(s), (42)

r(s) = F(s)Z(s)

rd g, D(mt2)
I''(s) = Z Z '(s)

D(s)

A.(s) = I'(s)Z '(s)p(s)

(50a)

(50b)

(51a)
where I'~(s) is the transpose of I'(s).

From the unitarity conditions, we know that
or

1 N

P I;()(Z '()),,
m —s ~=~

(51b)(43)ImT(s) =p(s) Tt(s) T(s)

ImF(s) =p(s) Tt(s)F(s) .
and

By inserting (32b) into (44a), one obtains

ImA. (s) =p(s) Tt(s)A(s) . (44b)
(52)I';(s) =g,d(mP)/d(s) .

(44a) Since we know that the vertex function has the phase of
t(s), let us put

We notice here that F(s) and A.(s) have the same phase
as the scattering amplitude T(s). By making use of (38),
(43), and (44), one can easily verify that

Imr(s) =p(s)Ht(s) I (s) (45a)

Then (39b) becomes

$—18'
Z;;(s) =3;,+

p(s')
4$

(s' —s)

and
ImI r(s) =p(s)H(s)I'&(s).

To find ImH(s), we notice from (42) that

(45b)

ImT(s) = 1m[A.(s) I r(s)]+IrnH(s), (46a)
' Our definition of the function Z(s) is an extension of the one

defined by M. Ida LPbys. Rev. 135, B499 (1964); Progr.
Theoret. Phys. (Kyoto) 34, 92 (1965)j to the many particles with
the identical quantum numbers.' S. D. Drell and F. Zachariasen, Phys. Rev. 105, 1407 (j.957);
M. Ida, ibid 136, B1767 (19.64); Y. S. Jin and S. W. MacDowell,
ibi(t 137, B688 (19.65).

g;g,d(m, 2)d(m, ')X,(39c)
(m' —s')(m' —s')

~
d(s)

~

2

whereas (40b) can be rewritten as

m -—s " p(s')
(Z '(s));;=3,,+ ds'

7I gg S —S

g,D(mP) g;D(md2)
X . (40c)

(m 2—s') (m '—s')
~
D(s')

~

2
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From (50b) and (52), we get

and from (49b) and (51b),

Now one can easily check that

g;d(m;2) & -g;D(m, ')
Z;, (s);

d(s) g=i D(s)

D(s)

g;D(m,') N g;d(ms2)
(Z '(s));;.

d(s)
(54)

i Q g;D(m, ')Z;;(s) i/g;d(mP) =d(s) =d(m')+
7r

p(s') N
ds'

(s' —s)(m, 2—s') id(s') j' &=i

d(m ')g 'd'(m ')
SSg —S

(i=1, 2, ",X) (55)

I 2 g, d(m, ')(Z-'(s)), , Ilg,D(mP) = 1/d(s) =
d(m;2) gr

ds'
p(s ) & D(m')g'd(mt2)

(s'—s) (s'—m,') i
D(s')

i
' g=i ss' —s

(i=1, 2, , lV). (56)

By inserting (55) and (56) into (53) and (54), respec-
tively, we see that (29) is reproduced. Thus the forms
of the form factors and vertex functions given by (49)
and (52) are indeed appropriately written. Finally, the
propagator is obtained by inserting (39c) and (40c) into
(41), and the scattering amplitude given by (42) be-
comes (28).

Before closing this section, a few words on the wave-
function renormalization constants are in order. As Z,,
is given bylim, „(m,'—s) '(A' '(s));,=Z;;(~) Lwhich
is obvious from (41)$, by making use of either of (39)
and (40), we obtain

1 " p(s')g~g;d(m, 2)d(m, ')
vr ., (s' —m;2)(s' —mt2) id(s') i'

or
1 " p(s')g;g, D(m,')D(mt2)

(Z '),,= 8;,+— ds' . (58)
7r (s' —m ) (s' —m,') i

D(s')
i

'

It is seen that the matrix of the wave-function renor-
malization constant Z is symmetric, as it should be.
From (55), we observe that Z;; is related to d(~ ). This
is a fact which was found for the one-particle case in an
earlier paper. 6

As we mentioned earlier, A';;(s) can have at most one
zero (two zeros) if (31a) needs no (one) subtraction.
These zeros would give rise to the CDD pole terms in
(39) and thus in d(s) from (55). On the other hand, the
single-particle irreducible part t(s) and the proper vertex
function I'(s) will have poles if the denominator func-
tion d(s) has zeros. Since such zeros of the d(s) do not
represent the physical particles, they will not appear as
poles in T(s). In other words, these poles in t(s) should
be canceled by the denominator function d(s) of A (s) in
(29). Thus d(s) must have poles at the zeros of d(s), in
addition to those poles corresponding to zeros of A(s).
While one may consider only those poles in d(s) that

come from zeros of d(s), '2 we have simply assumed no
zeros in d(s), since this does not weaken the validity of
our results on the compositeness condition.

In the next section we shall investigate the composite-
ness conditions in the form of detZ=O, and in particu-
lar, for the case of two particles with identical quantum
numbers, we shall show that they can be explained as
composites of other particles.

IV. COMPOSITENESS CONDITIONS

In the one-particle case, it has been proved by many
authors' '6 that a bound state as de6ned by the so-
called bootstrap equations of the scattering amplitude,
such as (31), is equivalent to an elementary particle
with its wave-function renormalization constant set
equal to zero, at least in the elastic unitarity approxi-
mation. In particular, it was shown in an earlier paper
that in order to obtain a de6nite relation between the
mass and coupling constant of the particle, the scatter-
ing amplitude should have a certain high-energy lower
bound and should not have any CDD zeros. Since we
have constructed the scattering amplitude by requiring
that D(s) have no poles and that E(s) and D(s) have
no common zeros, there will be no CDD poles in D(s).
Therefore, if what we have found in the one-particle
problem is going to be true also in the present problem,
there should be some connection between the high-
energy behavior of the amplitude and the properties of
Z. As we mentioned earlier, this is indeed the case, and
this can be seen easily from (55) and (56). Since the
high-energy behavior of the denominator function.
of the amplitude A(s) defined by (25) is related to
8= —lim, „s '&&A '(s), as —is discussed in Sec. II, the

~2 This assumption was made by M. Ida in the second reference
of Ref. 20 for the single-particle case. If one adopts this attitude,
then one can calculate the residue of the CDD pole from Eq.
(29b).
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high-energy lower bound of the amplitude A(s) is re-
lated to the Z factors. It is interesting to notice that in
the model field theories 6" which can be soluble ex-

actly, one usually obtains an amplitude of the same

type, i.e., no left-hand-cut contributions present, so that
the high-energy behavior of the amplitude and the wave-
function renormalization constant are rather directly
related to each other. The amplitude A(s) becomes the
one in the Zachariasen" or the extended Lee model ~

in the absence of the left-hand cut in the single-particle
irreducible part t(s).

From (55), we get

comes indeterminate. In that case, d(~) should be
evaluated from (59).

At this point, we mention that a previous author' has
claimed that "if one of the Z;; tends to zero, then all the
others also tend to zero" and that "if d(~) =0, then all
the Z;;=0."We see that neither of these statements is
true in general.

We shall now investigate the connection between
bound states defined by (30) and elementary particles
with detZ=O for both d(~) =0 and d(~) &0. We shall
brieQy review the one-particle problem and discuss io
detail the two-particle case.

N

Q g;D(m; )Z;; (i =1, 2, , 1V), (59)
g;d(mrs) ~=i

while from (56), it follows that

1 N

Z gd(m')(Z ')t' (i=»»
d(~) g D(mrs) ~=i

(60)

(Z- ) = I:(—) +~/detzlD(j, i), (61)

where ( )r'"*D(j,i)—is the'cofactor of the element Z, ; in
detZ. From (59), it is clear that for d(~)=0, the E
simultaneous linear equations will have only g,D(m;s)
=0(i= 1, 2, , E) if detZWO. Since all D(m, s) cannot
vanish, we state that if detZNO, then d(~)%0. How-

ever, it is obvious from (60) that if d(~)=0, then

detZ=O, because D(m s)&0 and d(s) cannot have poles
at s=m;s (i=1, 2, , E). Furthermore, this will en-

able D(m;s) (i=1, 2, , E) to have nonzero values in

(59). The inverse of this statement is not true in gen-

eral, because

We mention that in (59) and (60) Z;;=Z;;. If the matrix
is not singular, i.e., det ZQO, then the inverse matrix
exists and we have the relations

d(m')Z=d(~), (62)

which implies that if d(~ )WO, then ZWO. This can also
be seen by observing that if d(~) is constant, then
D(ao) is also constant, so that the integral in (58) con-
verges. Remember that from the Herglotz property of
A (s), d(ae) can at worst be a positive-definite constant.
If Z=0, then (59) gives

p(s) d(m') '
1=— ds

(s—m')' d(s)
(63)

On the other hand, since d(ae )=0, we can undo the sub-
traction in (27a) so that the scattering amplitude
becomes

t'd(m') ) ' g'
T(s) =t(s)+I

k d(s) ) m' —s

p(s')g2 d(m') '~-'
X —— ds' I, (64)

(s'—s)(m' —s') d(s')

A. The One-Particle Case

This case has been studied extensively by other au-
thors, ' and so we shall only sketch the main points. From
(59), we get

can vanish for E)1 even if detZ=O. This is the case
when we have mixture of some elementary and some
composite particles, as mill be seen later. We can ac-
cordingly say that for E)1, if detZ=O, thee d(~) =0
unless

N

P (—)&'+'g d(mts)D(j, i) =0.

One can easily check that whenever

N

Z (—)'+' d( ')D( )=0

one has detZ=O, so that the right-hand side of (60) be-

sl F. Zachariasen, Phys. Rev. 121, 1851 (1961).

which gives

(dT '(s)) 1 "
p(s) d(m') '

(65)
~ e=m' s „(s—m')', d(s)

By comparing (65) with the bound-state condition
(30b), we get the relation given by (63). Thus the ele-
mentary state becomes a composite state in the limit
when Z —+0, or equivalently when 8—&0. This is a
generalized statement of what we have found before. e

We remark that no CDD zeros are assumed for the
amplitude A(s) except those between the poles.

B. The Two-Particle Case

Let us first consider the situation in which both par-
tides are elementary. The scattering amplitude is given
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by

N(s) 1 1
T(s) = +

d(s) d'(s) d2(s)

where

g;D2(ms2) 2 gid(m12)
G. J— g ( )i+1Z.

g;D2(m;2) i=i gld(m22)

where

m12 —S tÃ2 S

s—m2
d2(s) =d (m;2)—

p(s')
Gs'

(s' —s) (s' —m ')
i
d(s')

i

'

2 d2(m. 2)g,2d2(m, 2)

Xg (j= 1 « 2). (67)
i=l ss —s

The wave-function renormalization constants can be
worked out from (59), i.e.,

It is interesting to notice that in the elementary version,
when the two particles have the same residue in the
scattering amplitude (66), the diagonal elements are re-
lated to each other by a constant which contains only
the values of the denominator function d2(s) evaluated
at the masses of the particles. It is obvious from (68)
and (71) that eeiIher setting one of the Z,; equal to zero
nor letting d2(eo ) —+ 0 makes all the Z;; simultaneously
tend to zero, in general.

If detZ= 0, and the right-hand sides of (69) and (70)
are not zero, then d2(oo ) =0. Again we can easily show in
this case the equivalence between detZ=O and the
bound states defined by (30). Since detZ=O in the
present case gives d2(eo) =0, we find from (67) that

glD2(ml )Zll+g2D2(m2 )Z21 gld(ml )d2(~)
(68) 1=— ds

1 p(s) 1

glD2(ml')Z12+g2D2(m2 )Z22 g2d(m2 )d2(~ ) mi' —s Id(s)

where D2(s)=d(s)d2(s). We mention that Z12——Z21 is
related to Z» and Z22 by

and

/gl d (ml ) d2(m2 ) g2 d (m2 ))+
I (74)

5 mi' —s d2(mi') m2' —s I

gld(mi2)
Z11 Z12

g2d(m22)

and

~12 ~22

p() g'd'( ')
ds , (69)

(s—mi2) '(s—m2')
~
d(s)

~

'

1 " p(s) 1
1=— ds

m22 —s [d(s)~2

(
d2(mi') gl'd'(ml') g2'd'(m2'))

d2(m2 ) ml s m2 s

g2d(m22)
Z22- Z12 —1—

gid(m12)

m2 —@21

p(s) g22d2(m22)
GS (70)

(s—m22) '(s—ml')
i d(s) j

'

We notice from (58) that detZ ~ 0 implies that the
high-energy behavior of D2(s) is at most of the order of
s '. Furthermore, it has been shown by%arnock24 that
the asymptotic behavior of D2(s) is given, possibly up
to a logarithmic factor, by

respectively. From (60) and (61), one gets

lim D2(s) =O(s" "&),
g ~Op

(76)

glD2(m12)/d2(~ )
= (gld(mi')Z22 g2d(m2'—)Z21)/detZ,

(71)
g2D2(m22)/d2(~ )

= (g2d(m2')Zll g d( li'm)—Z )/1d2tZe.

so that

G12&'=G22&', (j, &=1, 2), (72)

d2(mi') (g2d(m2') glD2(ml')
Z22= Zli+I — Z12, (73)

d2(m2 ) kgld(ml ) g2D2(m2 )

If detZ&0, then we get from (71) that d2(~)WO and
finite. Also then it follows from (68) and (71) that

where m, is the number of CDD zeros and n~ the number
of bound-state poles in the scattering amplitude. Since
we are considering two bound states (N2=2), there
should be a CDD zero between two bound-state poles
(22,= 1).Moreover, as we explained in. Sec. II, there are
no other CDD zeros if we assume an unsubtracted dis-
persion relation for T(s) and that T(s,)&0. Thus the
asymptotic behavior O(s ') of D2(s) is consistent with
having two bound states, i.e., two zeros of the denomi-
nator function.

Furthermore, the scattering amplitude T(s) of (66),
after undoing the subtraction in d2(s) [since d2(~) =0],

'4R. L. Warnock, Phys. Rev. 131, 1320 (1963).
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can be rewritten as

(77)

&2(s) +(s) d(m& ) g) 1 ", p(s ) gl d'(ml') d2(m2') g2'd'(mp) ' t'd(m22) 2 g22

D,(s) d(sj d(s) m, '—s „(s'—s)(d(s')~' m, '—s' d, (m, ') m, '—s' ( d(s) )m, '—s

p(s') d2(mg') gr'd'(mr') g2'd'(m, ') ——

m ., (s' —s)
~

d(s')
~

2 d2(mg')(m)2 —s') m22 —s'

(i=1, 2).

The poles come from the second and third terms on the right of Eq. (77). We get also from (77) that

d1' (s)- -—1
—

1 " s(s) ' d d'(m )(d (m
))ds

g' vr (s—m')jd(s)~'d=l m&' —s kd2(md2)
(78)

g2 ~

p(s)gP d(mP) s

ds
(s—m2')(s —mr2)' d(s)

m] —m2

(85a)

ggd(mP)
~11 ~12 p

g2d(m2')

while from the condition (84b), it follows that

p(s)g22 d(m22) '
ds (86a)

d (s ml ) (s—m2')' d(s)

m2 —m1

By comparing this with (30b), we see that (74) and (75) and
are reproduced for i=1 and 2, respectively. What we Eg(s)-
have shown here is that the two particles can be exhib-

ited as composite states of other particles by letting — &'(

detZ~Oso as to haved2(~) ~0. Thus we agree wi F (83) d (84 )Houard and LeGuillou" that detZ= 0 is a natural gen-
eralization of the compositeness condition for two ele-

mentary particles with the same quantum numbers.
However, these authors obtained this result for a 8

special field-theoretic model and did not attempt to
or equivalently

make both particles composite. We also mention that
recently Broido and Taylor' discussed field-theoretic
mechanisms by which two particles having identical
quantum numbers can be exhibited as composites of
other particles.

Next, let us consider the situation in which only one

of the two particles, say m1, is elementary, and the
other particle, say m2, is composite. Then the scattering
amplitude is given by

m(s) fd(mP)i' g)' dg(mP)
T(s) = +I

d(s) k d(s) d) mP —s dq(s)
where

d, (s) = dg(my')

X 1+
s—m]. p(s')gP d(mP) '

ds
(s'—s)(s' —mP)' d(s')

, (80)

where
1 dg(mP)gPd'(m)2)

(82)
rs(s)

X)(s) = Dg(s)+
d(s) d(s) m1' —s

and
Dg(s) =d(s)dg(s) . (83)

Then the Eqs. (30) defining the bound state can be re-

written as
D,(m2') = 0 (84a)

and generates dynamically a bound state at s =m2' given

by (30). A similar case, but with no left-hand cut, was

considered by some previous authors. ' For this purpose,
let us recall the E/D decomposition of T(s), i.e.,

T(s) =Xg(s)/D, (s), (81)

so that from (70),

~ =iud(m')/g d( '))& . (86b)

Although the conditions of (84) make the matrix Z
singular, they do not necessarily make d, (m) =0 be
cause (85b) and (86b) make the right-hand sides of (71)
indeterminate. We notice that (85) and (86) are sym
Inetric with respect to particles 1 and 2. Moreover, we
would have obtained (86a) and (85a), respectively, cor-
responding to (84a) and (84b), had we assumed that
m2 is elementary and tried to generate a bound state at
s=m1'. Contrary to what was asserted by the previous
authors, ~' we have achieved one elementary and one
bound state by letting detZ=O but with d2(~)%0.
Thus, making one of the particles composite does not
automatically force the other particle to become com-
posite. From our discussions, it is clear that detZ=O
Inakes at least one of the particles composite, and
this allows us to define the compositeness concept
coherently.

For the case of more than two particles, we can pro-
ceed in the same way as for the two-particle case. In-
stea, d of going into more examples, we shall just state
the main results. First of all, if detZ&0, then d(~) PO
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and all the particles remain in the elementary states.
Secondly, if the single-particle reducible part of the
amplitude decreases as fast as s ' at high energies, so
that d(eo) =0, then detZ=O. In this case, all the par-
ticles can be exhibited as composites of all other
particles. All the elementary particles with detZ=O
become equivalent to the bound states generated dy-
namically. Thirdly, even if detZ=O, there are cases in
which d(eo) &0 because of

P (—)'+'g, d(mP)D(j, i)=0 for cV) 1.

We have seen above that this is exactl.y the case where
one elementary and one bound state occur in the two-
particle problem. In particular, it turns out that if

then the eth particle becomes composite and can be ex-
pressed by D(m„')=0, while all others remain in the
elementary state. We shall report on the three- and
more-particle problems in detail elsewhere. "

V. CONCLUSIONS

We have shown that in the presence of many par-
ticles with identical quantum numbers, detZ= 0 allows
us to obtain composite states from the elementary par-
ticles and they are equivalent to the bound states gen-
erated dynamically. In the limit of detZ=0, there are
two situations, i.e., either d(ao)=0 or d(ee)WO. In
the former case, the one-particle reducible part A(s) of
the amplitude does not decrease as fast as s ' at high
energies, and all the particles can. be exhibited as com-
posites of other particles; while in the latter case,
8=—lim. „I—s 'A '(s)g is a positive-definite constant,

"K.Kang, Nuovo Cimento (to be published).

and mixture of elementary and composite particles is
possible. The condition detZ=0, in any case, makes at
least one of the elementary particles become composite.
Thus detZ=O is a natural generalization of the com-
positeness condition in the case of many elementary
particles with the same quantum numbers.

We have seen that letting one of the Z;; vanish does
not, in general, make all the Z;; simultaneously tend to
zero. Nor does it make d(eo) ~ 0, in general. In the
two-particle problem, when detZ= 0 with 8&0, we ob-
tain one bound and one elementary state, and the off-
diagonal element Z~2 is related to the diagonal elements
by (85b) and (86b). Thus if one sets one of the Z;; in this
case equal to zero, then all of the Z;; vanish. But then
the composite particle is indistinguishable from the ele-
mentary one. We remark again that the condition
detZ=0 with d(oo) %0, not setting one of the Z;; equal
to zero, is the mechanism used to obtain one bound and
one elementary particle in this case. We have just stated
the results for the many-particle case at the end of the
last section.

It should be mentioned that the condition detZ=O
with either d(~) =0 or d(eo)NO would result, in gen-
eral, in relations which contain parameters other than
those of masses and coupling constants of the particles,
unless one neglects all the CDD zeros except those be-
tween the particle poles in the amplitude A (s) defined
by (25). We have assumed no other CDD zeros of A(s)
in our discussions. Including the possible CDD zeros in
the amplitude A (s), however, does not change anything
in our discussion of the compositeness condition
Z= 0.
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