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Under the general assumptions of analyticity, unitarity, temperedness, and normal threshold behavior, the
relation between the number of zeros and the high-energy behavior of the partial-wave scattering amplitude
is studied. If the left-hand-cut discontinuity makes a finite number of sign changes, the maximum and mini-
mum numbers of zeros can be determined by the high-energy upper and lower bound of the partial-wave
respectively. 1n particular, for C~s~ '+'&

~ f~(s) [ &C, the number of zeros is determined. After having
determined the number of zeros, the number of subtractions as well as the sign of the scattering length is
obtained for given number and character of zeros of the left-hand discontinuity A fi(s)

I. INTRODUCTION

'N the application of the partial-wave dispersion rela-
- - tion, it is usual to regard the jump on the unphysical
cut, Af~(s), and the transmission factor rf~(s) or in-
elasticity 1—ri&(s) as given information. Then, on using
unitarity, the dispersion relation for f~(s) turns out to
be an integral equation. In this approach, the partial-
wave dispersion relation is compared to the nonrela-
tivistic quantum theory, though the analogy is im-
perfect. In particular, the information on the jump over
the left-hand cut which should correspond to the driving
force is very scarce in a relativistic theory, though a
simple-minded pole approximation could give reasonable
results in the low-energy region. As to the inelasticity,
a total neglect of this effect may also give a good ap-
proximation below the inelastic threshold. Rigorously
speaking, there is no profound reason to treat the in-
elasticity as an input while keeping the elastic partial-
wave amplitude as an unknown quantity to be deter-
mined by solving the integral equation.

Even if one takes this attitude of regarding the
partial-wave dispersion relation as a closed integral
equation, one must face the mathematical problem
whether such an integral equation has a solution at all
and whether such a solution is unique. These problems,
however, have recently been studied in detail by Frye
and Warnock' and by Balachandran. ' In fact, among
other things, they hand conditions for 3f&(s) and r)&(s)

under which a solution exists and is unique. While it
is well known that an unspecified number of the
Castillejo-Dalitz-Dyson (CDD) zeros gives rise to the
multiplicity of the solution, ' the uniqueness condition
on the solution entails certain restriction on the high-
energy behavior.

In this paper, we address ourselves to the following
problems. What is the relation between the number of
zeros and the high-energy behavior of the partial-wave
amplitudeP How many subtractions are required for
any given number of zeros' We assume only these
general requirements: analyticity, unitarity, tempered-

* Work supported in part by the U. S. Atomic Energy Com-
mission.

' G. Frye and R. L. Warnock, Phys. Rev. 130, 478 (1963).' A. P. Balachandran, Ann. Phys. (N. Y.) 35, 209 (1965).
'L. Castillejo, R. H. Dalitz, and F.J. Dyson, Phys. Rev. 101,

453 (1956).

ness, and normal threshold behavior. In contrast to the
conventional approach, we do not use any detailed in-
formation on Aft, (s) and r)~(s), except that the left-
hand-cut discontinuity does not change its sign infinitely
many times. Consequently, our results are independ-
ent of the method of solution. Following a recent paper
by A. Martin and one of us, 4 we use the Herglotz de-
composition' ' of the partial-wave amplitude itself,
instead of the Herglotz decomposition of the D func-
tion used in Refs. 1 and 2. Then f~(s) turns out to be a
Herglotz function times an appropriate rational func-
tion which, among others, contains all of the zeros of
f~(s) except at most one in the numerator, and contains
at most one zero of f~(s) in the denominator. Then, by
comparing the high-energy behavior of this decomposi-
tion of f~(s) with the given upper and lower bounds,
one gets bounds on the number, as well as a classifica-
tion, of zeros of f~(s). In particular, we impose thebound
C

~

s
)

'+'&~) f~(s) (
~& 1 (e)0) and determine the number

of zeros. Then it will be proved that if p —l is odd,
where p is the number of sign changes of 6f~( )s /( s 4)', —
the partial-wave dispersion relation does not need sub-
traction. Furthermore, using the classification of
Herglotz functions appearing in the decomposition, the
sign of the scattering length is also discussed. The
results of our investigation are given in Tables I
through IV.

The basic assumptions as well as the mathematical
tools are introduced in Sec. II. In Sec. III, the Herglotz
decomposition is explicitly carried out. In Sec. IV, the
number of zeros is found, subject to given high-energy
bounds on the partial-wave amplitudes. In Sec. V, the
number of subtractions and the sign of the scattering
length are discussed. Finally, in Sec. VI, our results are
applied to the s- and p-wave amplitudes.

II. PRELIMINARIES

Let us consider the /th partial-wave amplitude f~(s)
of the elastic scattering of two equal-mass spin-zero
and isospin-zero particles normalized as

fq(s) =(s/(s 4))' 'ers'~'& sin3—~(s),

4 Y. S. Jin and A. Martin, Phys. Rev. 135, 81369 (1964).
5 K. Symanzik, J. Math. Phys. 1, 249 (1960), Appendix B.
s S.Weinberg, Phys. Rev. 124, 2049 (1961).
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so that the unitarity reads

Imf, (s)~&((s 4)/s)ti2I f,(s) I2

The inclusion of spin and isospin in our considerations
is rather straightforward. However, the extension of
our results to the case of unequal-mass scattering is not
possible, unless one is prepared to neglect completely the
well-known circular cut.

Our basic assumptions on the partial-wave amplitudes
are as follows:

(I) f&(s) is analytic in the twice-cut s-plane with
cuts (—~,0j and L4, co).

(II) f&(s) is bounded by a polynomial in arbitrary
direction in the complex s plane, i.e.,

If~(~) I «I~I"

(III) There are a Rnite number of sign changes of the
absorptive part on the left-hand cut.

(IV) For s-+4, f~(s)-+ (s—4)'.

Though none of these assumptions has been rigorously
proved, they are suKciently weak to give us a general
framework and to accommodate various models. (I)
has been proved in every order of perturbation theory~
and hence is a weaker assumption than the Mandelstam
representation. (IU) can be shown, at least for l~&2,
under the assumption of the one-dimensional dispersion
relation in 1. The assumption (II), in particular on the
left-hand cut, may rather be doubtful if one assumes the
Regge-cut in the / plane, which would give rise to the
behavior f( s, t) s~'.—There is no convincing theoreti-
cal argument to support assumption (III) except that
it is one of the weakest assumptions one can make about
the left-hand-cut discontinuity.

In what follows we shall work with the modified
amplitude

introduce a function

A(~)=(Z (~-x*)' ") 'G~(~),

where e;=+1 or —1 depending on whether s=x, is a
CDD or non-CDD zero of Gg(s) on the left-hand cut.
Thus we obtain

A(~) =Z (~-x')"4~(~) (4)

Notice that

and
Immit ~(s) ~& 0 for s~& 4 and s &~ 0

l~t, (~) I &el~I.+-~,

In addition, since —H '(x) is also a Herglotz function,

ImH(x)
dx

(1+x') IH(x) I'

where v is the number of CDD zeros (v,) minus the
number of non-CDD zeros (v„) of G~(s) on the left-
hand cut, so that

I=IJ 2P~ ~ (6)

For our discussion which follows, let us recall the
properties of the Herglotz function. ' A Herglotz func-
tion is a function analytic in Ims) 0 with ImH(s)) 0
for Ims&0. It admits the integral representation

1 " (1+sx)ImH(x)
H(s) =A+Bs+— dx (7)

(1+x') (x—s)
with

B~& 0, ImH(s) ~& 0
and

ImH(x)
dx

1+x'

rather than f&(s) itself. Suppose the left-hand-cut
d f (7) t f g th t f ( (

discontinuity

~4 ()=(1/2){4 (+')—4 ( —)) ( &o) C/I sl & IH(s) I
«'Is l

and
(10)

makes p, changes of sign (with respect to the sign of the
right-hand cut) at xt)x2) ~ ~ ~ )x„.By introducing a
new function

it is clear that

ImG~(s) ~& 0 for s&~4 and s ~& 0.

In general, the real part of the new function G~(s) will
have either positive or negative slope at s= x;. We shall
call those real zeros where the real part has positive
(negative) slope CDD (non-CDD) zeros. Let us further

' J. G. Taylor, Nuovo Cimento 22, 92 (1961); N. Nakanishi,
Phys. Rev. 126, 1225 (1962).' S. Mandelstam, Nuovo Cimento 30, 1148 (1963).

8= lim H( )/ s. s

III. HERGLOTZ DECOMPOSITIONS

Let the zeros of it ~(s) in the cut s plane, i.e., in the
interior of the analyticity domain, be s&, s&*, s2, s2*,

~r z„, s„(complex zeros) and sr&s2( ~ (sa (real
zeros). (Note that the analyticity does not put any
restriction on possible zeros on the cut. However, if one
considers, for instance, 4 an averaged function

e+d

A(~) =— A(~')d~'

9 J. A. Shohat and J. D. Tamarkin, The Problem of 3fomerits
(American Mathematical Society, New York, 1943).
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s
I

—"ImfI(s)
dS (23)

$
c and

H (s) = (rr (s—s;)(s—s;*) rr (s—s;)) 'f I(s) . (12) Isl" Imf (s)
dS ( ao .

(1+s') lfI(s) I'
(24)

Then it turns out that PI(s) is a Herglotz function
without zero. Hence from (10) it follows that By using the unitarity relation (2), which implies

I fI(s) I &1, we see that Eq. (24) entails

lslIvImfI(s)
ds ( c~ . (25)

1+ss

Clsl'~' '& l0 (s) I
&C'lsl'"'"'.

By comparison with (5) it is clear that

2P+q&~n+I l+1. — (14)
We now have the following three cases:

If there is an odd number of real zeros and si is a CDD
(non-CDD) zero, then s, is also a CDD (non-CDD)
zero and there are (q+1)/2 CDD (non-CDD) and

(q—1)/2 non-CDD (CDD) zeros. We consider the two
cases separately.

(2) q is odd and si is a CDD zero. Define

(a) X&~—1 In this case (23) implies that an un-
subtracted dispersion relation holds for fI(s).

(b) 1U=0. Since fI(s) is proportional to an P function,
from (8) it is clear that for fI(s) one subtraction is
sufhcient.

(c) IU&~ 1. Although (25) entails

Im fI(s)
ds (~ (26)2=2

with an arbitrary small 6, there will be no zeros on the where X is an integer, and thus from (8) and (9) it
cut at all. ) Following the discussion in Ref. 4, let us follows that
study the following three cases separately.

(1) q is even. In this case, remove all zeros and define ( ce

then Hs(s) can be shown to be a Herglotz function with
a zero at s= si. Thus we get

clsls+ s& l|p,(s) I
&c'Isis+,

~fI(s)
dSand together with (5), (27)

and hence no subtraction at least for the physical-cut
dispersion integral, in general it does not necessarily

(16) imply that

2p+q ~& Is+I —l+2.

(3) q is odd and si is a non-CDD zero. Define

(17)
where hfI(s) denotes the discontinuity across the left-
hand cut. This is due to the possible oscillation along
either of the two cuts, i.e., the blowing up of

&s(s) =((s-»)' ll (s-z')

&&(s—z'*) Z (s—s')) VI(s)' (1g)

lim supl fI(s)l

11II1 iIlfl fI(s) I

then Hs(s) is a Herglotz function and has a pole
ats=si with a negative residue and has no zeros.
Consequently

clsl "+ & I1t,(s) I
&c'lsl +

and by applying (5) we get

2p+q &~Iz+P —l.

(19)

(20)

fI(s) =R(s)&(s), (»)
where R(s) is an appropriately chosen rational function
of s and H(s) is a Herglotz function. Therefore, for
large s

(22)

By generalizing these results, the partial-wave ampli-
tude can be written as

and this kind of trouble cannot be avoided, unless
one assumes one form or another of the smoothness
condition.

For this reason in what follows we shall assume that
(V) fI(s) is a smooth function in s on both cuts.

As a definition of smoothness, we may take for in-
stance those conditions for the Sugawara-Kanazawa
theorem, ls i.e., that fI(s&ie) has a finite limit for
s —+ and the discontinuity across the negative cut
has a definite limit (finite or infinite) for s-+—ae.
Then one can show that (26) implies (27). Therefore,
under the assumption (U), in the case 1V~&1, i.e. , (c),
the dispersion relation for fI(s) does not require sub-
traction. On the other hand, we get from (22) that

c'Isl~+'~& IfI(s)l ~&clsl" '. (28)
ro M. Sngawara and A. Kanazawa, Phys. Rev. 128, 1895 (1961).
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However, since fi(s) needs no subtraction for 1V~&1

under the assumption of smoothness, that assumption
is inconsistent with (28). In particular, the cases 1V)1
will violate the unitarity condition Imfi(s) &~

I fi(s)l
as s —+Do, and those cases are physically not allowed.

(1) If q is even,

v—l—1 &~2p+q&~ v—1+1.
(2) If q is odd and si is a CDD zero,

v I& 2p+q&v —l+2—.

(3) If q is odd and si is a non-CDD zero,

v—I—2& 2p+q&v —l.

(32)

(33)

(34)

» E. C. Titchmarsh, The Theory of Fscrcctcows (Oxford University
Press, New York, 1943), p. 179.

IV. NUMBER OF ZEROS OF THE
PARTIAL-WAVE AMPLITUDE

As was mentioned in the foregoing section, it is an
extremely difFicult problem to relate the asymptotic
behavior in the complex direction to that along the cut,
unless one introduces one form or another of smoothness
condition on the behavior of the function on the cut,
i.e., on the boundary of the analyticity domain. Besides,
we question very much the usefulness of the dispersion
relation at all if there is such a pathologically divergent
oscillation. For these reasons, in what follows we shall
keep the assumption (V). By using unitarity and the
Phragmen-Lindelof theorem" it is then clear that

lf () I
« (29)

in every direction in the s plane. Hence the results on
the maximum number of zeros, i.e., (14), (17), and (20)
are valid with m=0.

Without losing generality, let us now impose a lower
bound which together with (29) gives

C'lsi "'&If(s)l«, (30)

where ~ is an arbitrarily small positive number. In
Kq. (30) / is fixed and finite, and the constant C' may
depend on /. If one wants to consider any faster decrease
of fi(s) in s, then one can certainly replace (30), for
instance, by

c'lsl "+'& Ifi(s) I &c, (31)

etc. Physically speaking, the bound (30) is general
enough to include the high-energy behavior of fi(s)
which follows from that of the scattering amplitude

f(s, t) in the near-forward region, i.e., f(s,t)=sf(t) or
f(s,t) =P(t)s t'i Lwith cr(0) =1j, which gives fi(s)

constant or fi(s) (lns) ', respectively.
Now let us compare the bounds (30) with those ob-

tained from the Herglotz decompositions, (13), (16),
and (19), with I=0. As the lower bound of (30) must
be smaller than the upper bounds given in those equa-
tions, it is clear that the following inequalities hold.

q is even

q iS odd and SI iS CDD

q is odd and s1 is non-CDD

v —l is even

2p+q=v —1

2p+q=v —k+1
2p+q =v —/ —1

v —l is odd

2p+q=v —3—i
2p+q=v —t

2p+q=v —l—2

Had we used the bounds (31) instead of (30), in the
lower limit of (32) through (34), we should only have
had to replace v —l with v —I—rm+1.

At this point we should remark that in Ref. 4 it has
been proved under the assumptions (I), (II), (III), and
the threshold behavior (IV) that tc —t~&0." A more
refined statement of this theorem is given by (14),
(17), and (20) in Sec. III. Under our assumptions

(I)—(IV), one can easily see that in general v —t~& —1.
The case v —l= —1, however, is not allowed under the
assumption (V), as is discussed below. Thus we have

p —l&~2v„. Note that p is the number of changes of
sign of Ag~(s), so that tt,fi(s) has ts or is&1 changes of
sign. We shall now discuss separately the possible num-
ber of zeros for the cases when v —l is even and when
v l is odd. N—otice that if v—/ is even (odd) then ts —I is
also even (odd). For instance, if v —I is even and q is
even, then from (32) it is clear that 2p+q= v —I, since
v —/~i is odd. Suppose v —/ is odd and q is even; then
2p+q= v —t&1, since v—l&1 is even. Hence from (3),
(4), and (13) one gets for large s

fi(s)- Isl "IP(s) I

where H(s) is an H function. If fi(s) lsl IH(s) I, this
is exactly the case (c) of Sec. III and hence should be
rejected. Therefore, 2p+q=v —3+1 is ruled out and
we are left with 2p+q=v —I—1. For the same reason,
the cases 2p+q=v —1+2 of (33) and 2p+q=v I of—
(34) are not allowed. By completing these arguments, we
obtain the results in Table I.

Before concluding this section, the following remark
should be made. If the partial-wave amplitude has
fewer zeros than shown in Table I, i.t automatically
follows that

I fi(s) I
&~I sl '. On the other hand, should

fi(s) have more zeros than shown in Table I, this would
imply that fi(s) violates unitarity.

V. SCATTERING LENGTHS AND SUBTRACTIONS
OF THE PARTIAL-WAVE DISPERSION

RELATIONS

In the previous section we have 6xed the total num-
ber of zeros of the partial-wave amplitude fi(s), for
given v of A&i(s) along the left-hand cut. Having fixed
the number of zeros, the Herglotz decomposition of the
partial-wave amplitudes fi(s) given in Sec. III is un-

ambiguous. For instance, if q is even and v —/ is even,

"It was also shown by P. Beckmann, Z. Physik 179, 379
(1964).

TABLE I. Total number of zeros, 2p+q, of f~(s) for given
v, where 2p and q are the numbers of complex and of real zeros,
respectively.
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q is even

q is odd and sI is CDD
q is odd and sI is non-CDD

v —l is even

fl(s) H&(s)

f((s} Hs(s)
f~(s) H, (s)

v —l is odd

f((s) s 'Hg(s)

fi(s) s 'Hs(s)
fi(s) s 'Hs(s)

TABLE IL Asymptotic behavior oi f&(s) =R(s)H(s) for given
H~(s), Hs(s), and Hs(s) are Herglotz functions defined in

Sec. III.

I

S-"0

Hi(S)

I
I I

I I I

I I

I I
I

sakXCCCS!8
I

I I
I

I I

I I
I

I I

l
I

I

I I

Hp(s)

S=O
I

I
I

I

I

I

I

HS(S)

I
I
I
I
I
I
I
I
I

S=4

then from Table I 2p+q= v —l. Hence from (3), (4),
and (12)

FIG. 1. The three types of the Herglotz function
appear in our discussion.

branch points is shown in Fig. 1.Thus we have

Ht(4)Ht(0) &0,
Ha(4) &0, H, (0)(0,
Hs(4) (0, Hs(0) &0, (3g)

where Hi(s) is an H function with no zeros. If q is
even and v —I is odd, then 2p+q= v —I—1 and one gets

where the sign of H;(4) is the same as that of the
scattering length defined by (37). Furthermore, it is
obvious that

where
H;(0)yt(0) &0, (39)

II (s—x;)"jHr(s) = s—'Hi(s). (36)

Sy completing these arguments, we obtain Table II, in
which the asymptotic behavior of f t(s) in diferent cases
is given. In connection with Table II, the following
remarks are in order.

(1) If ts l is even, th—en the partial-wave dispersion
relation may need one subtraction. Remember that
even p—l corresponds to even v —l.

(2) If ts —I is odd, then the partial-wave dispersion
relation does not need subtraction.

(3) From (1) and (2), it is clear that if fi(s) constant
or ft(s) 1jlns, then ts I must be—even. Thus, f(s, t)

sf(t) or f(s,t) P(t)seto implies that ts —t should be
even.

(4) The scattering length

TABLE III. Allowed cases.

a~)0, g~(0))0 or a~&0, pt(0)&0q is even

v&
l &

for
dd

v —l

a()0, y((0) &0

for v —l

g is odd and s~ ia non-CDD a~&0, P~(0)&0

v& for v —l

ai ——lim $4/(s —4)$'ft(s) (37) g is odd and s~ is CDD

has the same sign as that of H, (4). This is clear, e.g.,
from (35) or (36).

We shall now discuss the relation between the zeros
and the scattering lengths. These Herglotz functions
which we have introduced separately in Sec. II and in
Table II, and which appear in our discussion, are of the
following three types:

TABLE IV. Allowed cases for even l&2 when the
total amplitude has s, t, I symmetry.

and i = i, 2, and 3. Hence we get Table III in which the
allowed situations are summarized.

For l&~2, however, Table III can be reduced further
(see Table IV) by using a result obtained by Martin
and one of us": that ug&0. This conclusion is based on
the positiveness of the absorptive part Imf(s, t) and
all of its derivatives with respect to t in 0&~1&4 for a
completely (s,t,g)-symmetric amplitude. Thus, for even
l~&2, a~&0 should be ruled out. Hence the case with
odd q and non-CDD s~ can not occur. This is also true
for the I=O amplitude of mw scattering, as is shown in
the following section.

Hi(s): has no zero and no pole.
H2(s): has one CDD zero and no pole.
Hs(s): has one pole with negative residue and no zero.

q is even

q is odd, s1 is CDD
a()0, f((0}&0
u)&0, f)(0) &0

The behavior of these H functions between the two
"Y.S. Jin and A. Martin, Phys. Rev. 135, Bj.375 (1964); A.

Martin CERN report (unpublished).
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(1) no complex zeros and two real zeros;
2) a pair of complex zeros and no real zeros;

(3) apair of complex zeros and one CDD ze».

152

I

I

I

I

I

I

I

I

ap 0a &00

FIG. 2. The behavior of the s-wave amplitude between the two
branch points when the left-hand discontinuity makes two
changes of sign of the CDD type. O1 represents (p=, q= ),
0* (P=1, g=0), and Oa (p=l, g=1 CDD or non-CDD).

VI. THE S- AND P-WAVE AMPLITUDES

In this section, we shall apply the results obtained in
Sec. V to the s- and p-wave amplitudes.

A. The s-Wave Amplitude

For the s wave, the number of sign changes in Agp(s)
along the left-hand cut is the same as that of Afp(s)
From the discussions of the preceding sections, the
number v in Eq. (6) should be equal to or larger than
zero. This means that p &~ 2u . Notice that v, ~& v„.

(i) The case u=0. Then we have v„=v, =v=0. Here,
from Table III, only three situations are possible. For
ap)0, either 2p+q=0 or 2p=O with qcnn=1. For
ap(0 2P+q=0. Thus if the s-wave amplitude has no7

~ ~ ~ ~

sign changes of the discontinuity (with respect to the
unitarity cut) along the left-hand cut, the amplitude
can have no complex zeros except for at most one CDD
zero. The s-wave amplitude may in this case need one
subtraction, and will increase monotonically between
S=O and s=4. In particular, the solution should exhibit
ap —fp(0) & 0.

(ii) The case p=1. Then wehave v„=0 and v, =v=1.
A ain three situations are available from Table III.gain
For a&)0, 2P+q=O, and 2p+q=1, while for ap(0,
2P+ =0. Thus if the left-hand cut of the s-wave
ampiu e1't d has one sign change (with respect to t e

s and theunitarity cut), then it is a CDD zero of Gp(s), an t e
amplitude can have no complex zeros and at most one
CDD zero. The amplitude will need no subtractions in
this case, but will have the same behavior between s=
and s=4 as that of the case p=0.

(iii) The case u=2. Here we have either v„=v,=
or v„=0 and s,=2, so that v= 0 or v= 2. The case v= 0

=2 e have fouris the same as the case p, =0. For s =2, we hav
cases. Namely, for ap) 0, 2p+q=2 and 2p+1=3; and
for ap(0, 2p+q=2 and 2p+1=1. This situation is
explained in Fig. 2 and can be summarized as follows:

It should be emphasized that this result holds for
even v—l as well as for odd s —l, and is consequently
independent of the subtraction.

B. The p-Wave Amplitude

The left-hand-cut discontinuity Apr(s) for p wave
should have at least one sign change.

(i) The case @=1 for Pr(s) is exactly the same as
the case p, =O for the s-wave amphtude.

(ii) The case @=2pr(s) is the same as the case p, =1
for fp(s).

(iii) The case u=3 for pr(s) is again the same as the
case @=2 for fp(s).

C. The d-Wave and Higher Partial-Wave Amplitudes

As is clearly seen from the above discussion, P&(s)
can be discussed in the same manner as in the s wave
case. n generaI eneral the case p,

—l=0 for p&(s) will always
be the same as the case u=0 for fp(s), while u —=
for P~(s) will be the same as u= 1 for the s-wave ampli-
tude, and so on. We remark again that p —l~& 2v„and

However, as is mentioned in Sec. V, the scattering
lengths for /=2, 4, . are always positive if the total
amplitude has complete (s,t,u) symmetry. In particular,
it was shown in Ref. 13 that

A, (s,t =4)
ds

SL+1
(41)

or1=2, 4, etc.
We can also get similar results for the pion-pion

scattering case. By starting with a t-fixed dispersion
relation for Az(t, s) (I=O, 1, 2)

1 " A,z(t,s',u) 1 " A „z(t,s,u')
Az(t s) =— ds' +— du', (42)

T' 4 S —S 7I 4 I —Q

where, from crossing symmetry, "
A, '(t, s,u) =Q Xzz.A, '(s, t,u)

A „(t,s,u) = (—)z g Xzz A „z'(u, t,s),
II

(44)

'4 See, e.g., Kyungsik Kang, Phys. Rev. 134, B1324 (1964).

Fol +0(O

(1) np cpmplex zero and two real zeros;
(2) a pair pf cpmplex zeros and no rea»erose
(3) no complex zeros and one non CDD zero.

The s-wave amplitude in this case may need one su-
traction. The cases with more oscillations can be ex-
plored in a similar manner.
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we have the Froissart-Gribov representation" '6 for the
partial waves for /~& 2 and 0~& )&4. By taking t ~ 4 in
the representation

A zz(t) =
mk]' 4

S
dsQ&l 1+

I Z Xzz'A, z'(s, t,u), (45)
2kP) z~

VII. CONCLUDING REMARKS

Starting with general requirements of analyticity,
unitarity, temperedness, and normal threshold be-
havior of the partial-wave scattering amplitude, we have
fixed the number as well as the type of zeros of the
amplitude. This information is used to investigate the
high-energy behavior of the partial-wave amplitude.
Instead of assuming the left-hand-cut discontinuity
d f~(s) and the transmission factor rtt(s) as given, we
have assumed that Af&(s) has only a finite number of
sign changes along the left-hand cut, while the inelastic
eGects are included in the general unitarity requirement.
Our discussions are based on the Herglotz decomposi-
tion of the partial-wave amplitude, which is an ex-
tended version of the Symanzik theorem' in the twice-
cut plane. To determine the necessary number of sub-
tractions of f~(s) in the twice-cut plane, we are forced
to assume the smoothness of f~(s) on both right- and
lef t-hand cuts.

These rather general discussions have provided us
much useful information on the partial-wave scattering
amplitudes. The zeros of the amplitude have usually
been taken less seriously than its poles. We have
demonstrated the importance of zeros of the amplitude
in connection with its high-energy behavior. Moreover,
we feel it necessary to obtain information on the high-
energy behavior of the amplitude, so that we can write
down an appropriately subtracted (or unsubtracted)

"M. Froissart, Proceedings of the Ia Jolla Conference on
Weak and Strong Interactions, 1961 (unpublished).

IS V. N. Gribov, Zh. Eksperim i Teor. Fiz. 41, 1962 (1961)
LEnglish transl: Soviet Phys. —JETP 14, 1395 (1962)g.

we can obtain an expression for the scattering lengths,

P(l+1) 1 " ds
uP= — g Xzz~A'(s, t= 4), (46)

p(l+-,s) g~ 4 s'+' z

provided the s waves have normal threshold behavior.
From the positiveness of the absorptive parts and of
certain elements of the crossing matrix (Xzz.), we con-
clude again that a&

=' for l~& 2 is always positive. In a
similar manner, one can also get

g z=o+2g z=2) 0

which means a~ ='& —~a~
=' for /= 2, 4, . etc.

dispersion relation for the partial-wave amplitude. For
then, investigation into the conditions for the existence
and uniqueness of the solution to the partial-wave dis-
persion relation will be in order.

Zeros of the partial-wave scattering amplitude have
also provided the sign of the scattering length as well
as the behavior of the amplitude in the energy region
between the two branch points. This information will

will be useful when one deals with consistency prob-
lems. Thus, zeros of the partial-wave amplitude are
related not only to the high-energy behavior but also
to the low-energy behavior of the amplitude.

We mention again that if the partial-wave amplitude
has fewer zeros than shown in Table I, then the ampli-
tude will decrease faster than

l
s

l
', while if it has more,

then f&(s) will violate unitarity. There may of course
be some solutions which will still give a good approxi-
tion to the amplitude in the low-energy region even
if they do not satisfy our consistency conditions.

We remark that our assumption on the lower and
upper bounds on the partial-wave amplitude is quite
general enough to cover the cases that are consistent
with the known behavior and narrow diffraction peak
of f(s,t).

Our approach to the partial-wave amplitude reQects
the power and usefulness of Herglotz functions in dis-
persion theory. Since we have specified the zeros of the
amplitude which in turn give information on both the
high- and the low-energy behavior of the amplitude, we
are now prepared to proceed to the method of solution
of the partial-wave dispersion relations. '7

Note added szs proof: After submission of this paper
for publication it came to our attention that parts of
the results contained in this paper were also obtained
by T. Kinoshitz, Phys. Rev. Letters 16, 869 (1966).
We received also an unpublished report by A. Martin,
in which he proves fg(s))0 for 0&s& 4 by making more
elaborate use of the positiveness of the absorptive part
Imf(s, t). Hence, in Table IV, the case with q odd can
further be dropped. His study reveals that the s-wave

fs(s) cannot increase monotonically in 0&s&4. This
would imply that the cases with p=0 and p=1 for
fs(s) should be excluded. We thank Professor A. Martin
for informing us of his results.
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