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Particles and Sources
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It is proposed that the phenomenological theory of particles be based on the source concept, which is
abstracted from the physical possibility of creating or annihilating any particle in a suitable collision. The
source representation displays both the momentum and the space-time characteristics of particle behavior.
Topics discussed include: spin and statistics, charge and the Euclidean postulate, massless particles, and
SU3 and spin. It is emphasized that the source description is logically independent of hypotheses con-
cerning the fundamental nature of particles.

INTRODUCTION

HE particle is presently the central concept in
interpreting the raw data of high-energy experi-

mental physics. The discovery of the meson r)* (960
MeV) by studying mass correlations among 6ve 7r

mesons' is a recent example of the experimental pro-
cedure that defines a particle primarily by energy and
momentum characteristics. The latter aspect of particle
behavior is of such obvious significance that many theo-
retical studies in particle phenomenology concentrate on
it completely. But the particle has another, comple-
mentary, aspect —a degree of spatial localizability. Is it
possible to give a useful phenomenological definition or
characterization of particles that does not emphasize
unduly either of these complementary facets of the
particle conceptP

Any particle can be created in a collision, given suitable
partners before and after the impact to supply the ap-
propriate values of the spin and other quantum num-

bers, together with enough energy to exceed the mass
threshold. In identifying new particles it is a basic
experimental principle that the speci6c reaction is not
otherwise relevant. Then let us abstract from the physi-
cal presence of the additional particles involved in
creating a given one, and consider them simply as the
source of the physical properties that are carried by the
created particle. The ability to give some localization in

space and time to a creation act may be represented by
a corresponding coordinate dependence of a mathe-
matical source function, S(x). The effectiveness of the
source in supplying energy and momentum may be
described by another mathematical source function,
S(p). The complementarity of these source aspects can
then receive its customary quantum interpretation, as
illustrated by

S(p) = (dx)e-'&*S(x).

The source of a particular particle must also have the
multiplicity necessary to represent its spin and those
internal quantum numbers appropriate to the dy-
namical level of description that is used.

*Supported in part by the U. S. Air Force Ofhce of Scienti6c
Research under Contract No. A. F. 49(638)-1380.' G. R. Kalbtleisch et a/. , Phys. Rev. Letters 12, 527 (1964);
M. Goldberg et al. , ibid 12, 546 (1964). .

For simplicity, in the following we shall only consider
a restricted time scale such that the possible instability
of any particle is not significant. This restriction can
always be removed. Particles of zero mass will receive
special attention, and it is otherwise understood that
the mass does not vanish.

SPINLESS PARTICLES

where
(o+Io-)',

S=Sr+Ss

As a first step in supplying a quantitative framework
for the source concept consider a spinless particle of
mass m, without internal quantum numbers. We begin
with the vacuum state

I 0), and then let a weak source
operate in some space-time region. The probability
amplitude for the generation of a single particle in a
state specified by a small momentum range about the
momentum y will be written

(dl)
(1,I

o )s= & (d.)e-' *s(&),
(2s.)s 2P'

p'=+ (lr"+~')'"

which is an invariant expression if S(x) is transformed
as a scalar. The subscript on the vacuum state indicates
the time sens" this is the vacuum state before the
source has acted. The probability amplitude for the
inverse process appears as

—
(dy) 1

o, I 1.)'= (d*) '"s( ),
(2x)s 2p'

which refers to the vacuum state after the source, now

functioning as a sink, has acted to annihilate the par-
ticle. The two processes are related by the "TCI'"
operation of complex conjugation and space-time coordi-
nate reQection. The factors of i have been inserted to
make these expressions consistent with the further
restriction of S(x) to be a real function. The latter
property symbolizes the reciprocity between creation
and annihilation mechanisms.

These postulated representations of the creation and
annihilation aspects of a source can be united by con-

sidering the vacuum probability amplitude
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and 52, effectively localized in time prior to 5&, creates
a particle which is subsequently annihilated by 5&. The
notion of weak source, which remained unexplained
before, means that only single-particle exchange be-
tween the sources is numerically significan t. This is
expressed by the probability-amplitude composition law

&o+lo &s=(0+10 &"(o+Io &"+p(0+II.&"(1,lo )"

should deviate from unity by terms that are quadratic
functions of 5&. These effects are reinstated by writing
&0+Io &s as a functional of S, rather than of the con-
stituent sources S~ and 52. That is accomplished by the
expression

&0 Io )s—1+—'i (Cx)(dx')S(x)h (x—x')S(x'),

where

a.(x—*')=~(x'—*)
dp 1( )

eely(*
—x') +0y &O

(2m.)' 2p'

The function ~(x) is invariant with respect to the
transformations of the proper, orthochronous, homo-
geneous Lorentz group. The additional symmetry,

a, (-x)=S,(x),

is also conveyed by the statement of invariance under
the attached Euclidean rotation group (x~=ix').

The quadratic terms in 5& and 52 that appear in

(0+Io &s reproduce the structure of the product of
(0+ 0 &s' and &0+Io )s'. Furthermore, the property
that

(dp)—Rei+(x—x') = Re ~i@(x—x')

(2m)' 2p'

for all x—x', leads immediately to the necessary
relations

l&o+lo &Bl =I-pl&1, lo &sl,

o+

When the production source $2 and the d.etection
source S~ are located within certain macroscopic
volumes, the traj ectory of the exchanged, particle is

(Cl)=1+ (dx) (dx')iSg(x)
(2m.)' 2P'

Xe'&' "&iS,(x')

The second form involves a further, but temporary
simplification, which is to retain only con tributions
that are linear in each partial source. A vacuum ampli-
tude like (0+Io )8', which is restricted by the proba-
bility condition

o+lo & I +pl&1„lo&sl2,

correspondingly limited. All this defines a region associ-
ated with the specified particle. Outside that region
other independent acts of creation and, detection can be
considered, and similarly represented. Thus, the restric-
tion to weak sources, or single-particle states, is easily
removed subject to the limitation that the various
particles remain physically independent, in virtue of
their spatial separation. This situation is described by
multiplying the vacuum probability amplitudes associ-
ated with the various independent source pairs,

(oslo )s=g 1+-,'i (dx)(dx')S(x)h+(x —x')S(x')

To represent this as a property of a single source, uniting
the several spatially isolated parts, we have only to write

&0 Io &s=exp ,'i (—dx)(dx')S(x)h (x—x')S(x')

Xexp i (Cx) (Cx')S~(x)6+(x—x')S2(x')

=Et„!&o,l( )&"&(~)lo &".
x&o, lo )'

To identify the individual multiparticle probability
amplitudes, let us note that

(dx) (dx')S~(x) D, (x—x')S2(x') =P sS,.*eS2y
y

where

(cI)

(2n-)' 2p'
iS(p)

is just the quantity designated by &1„IO) in the dis-
cussion of a weak source. We now find that

&{~)lo ) =(o, lo )slI(is„)"/I ~„!y

Here is the simplest example of our answer to the

problem of giving a phenomenological particle repre-
sentation in which both localization and momentum
aspects receive proper attention. The corresponding
momentum-space formula is

(cp) 1
&0 Io &s=exp 'i S(—p—) S(p)

(2m)4 p'+m' —ie

which involves the limiting process e —++0.
It is a reasonable extrapolation to apply this result

under conditions for which the interactions among the
particles are still not significant but the particles need
not be macroscopically isolated, so that microscopic
quantum interference effects come into play. Consider
again a production and detection source 52 and S~,
respectively, and write

&o+ I
o-&'= &o+ I

o-)"
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and

(o l{n)& = (o+lo & II(is„*)-/L~, ~J"
The general expression for the vacuum amplitude is

taken to be

in which the possible values of each m~=0, j., 2,
Probability normalization conditions are satisfied in
consequence of the property

I (o.Io-&'I'= e~L-Z Is.l'3.

Then
s(x) ~ s(x+ x).

S„—+ e'~xS„

({~}lo&& e*»({~)lo )8,

which identi6es the total energy and momentum of this
state I"=Pe„ps.

PARTICLES WITH SPIN

The extension of the preceding discussion to include
particles with spin can be done in a variety of ways for
speci6c values. If we wish a uniformly applicable de-
scription, however, the unique source representation is
the multispinor. We consider sources Sr,...r„(x),where
each t „

is a four-valued Dirac spin index, and S has a
deinite symmetry pattern with respect to permutations
of the e spin indices. The totally symmetric choice
suKces for most purposes, but other possibilities will be
considered.

The significant conclusion is that the system under
investigation is a Bose-Einstein (B.E.) ensemble of
indistinguishable particles. It will be recognized that
this characteristic has been introduced implicitly by re-
garding the source function as an ordinary numerical
quantity. The latter assumption now emerges as the
mathematical representation of B.E. statistics.

Even though an application to spinless particles is
inappropriate, it can be appreciated that an analogous
representation of Fermi-Dirac (F.D.) statistics demands
that the source have such properties that (S„)s=o,for
all p. This implies that the source functions, S(x), of
F.D. particles are totally anticommutative quantities,
as realized by the elements of an exterior algebra. 2 The
general correspondence between particle statistics and
the mathematical nature of the source is thus ex-
pressed by

B.E.: Ls(x),s(x') j=o,
F.D. : {S(x),S(x')) =O.

Let us also note here a consequence of the implicit
reference to a source dehned in a certain spatiotemporal
region. Suppose the source is rigidly displaced, in the
sense that

(0+ I
0 &e= exp ',i (d-x) (Cx')S(x)G+(x—x')S(x')

In order that this source representation be an invariant
one, the matrix function G~(x) must have the trans-
formation properties

G+(x) =LE+(Ix)L,
where

L= II L.(i)

and each L„(l)produces the individual spin transforma-
tion that accompanies the proper orthochronous co-
ordinate transformation

We recall the transformation properties (the index s is
omitted)

LrPL=P,
I.~~ I.=t ~,

where the real matrices nI' and P are, respectively, sym-
metrical and antisymmetrical. In another notation,

The matrix function G+(x—x') must be constructed
by multiplying the invariant function I+(x—x ) with
matrices that satisfy the covariance properties of G+.
The result should describe a particle of definite spin and
parity in its rest coordinate system. As we shall verify,
this is accomplished by

The individual factors here are antisymmetrical under
transposition of the matrices, combined with the ex-
exchange of x with x', and

Gp(x' —x)r = (—1)"G+(x—x') .

Since this operation electively interchanges the two
source factors in the vacuum amplitude we learn that
even e demands B.E. statistics and odd e, F.D.
statistics. The polynomial factor of G+ is also repre-
sented by

(&1) 1x') x": G+(x—x') =i
(2s)' 2p'

xe' ' ' II Lv'(m —vp)j„.

s There is a related discussion of exterior aigehras in J We Proceed to identify single-Particle states, labeled
Schwinger, Proc. Natl. Acad. Sci. 48, 603 (1962). by momentum and spin, as implied by the effect of a
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weak production and detection source,

Z«, l 1..&"(1..I0 &"
yX

(dp) 1
iSi(—P)II I:v'(m —vp) j.S.(P).

(2ir)' 2P'

The individual Hermitian matrix combinations have the
projection property

h'(m —vp) j'= 2P'Lv'(m —vp) j
This permits us to write

Z«. l 1..)"(1,.I0-&"= Z 'S -).r,...r.'S.".r,...r. ,
t'X- "ge

where the two spinors are

(du) '" v'(m 7P)—
,(2P')" ' II, S(P),

(2m)' ~ 2p'

(du) -y'(m —yP)-

,(2P')" ' S(—P)II
(2n.)' g

s„(-i= 2'
In the rest system, p'= m, the projection factor -', (1+&')
selects y'=+1 for each of the ii Dirac indices, and the
source thus produces particles of de6nite parity. It is
purely conventional to have all values of y' be +1, and
this can be altered by rede6ning the source function with
suitable ys factors.

Now.„",let us consider a totally symmetrical spinor
source. In the rest system the restriction to y„'=+1,
a=1, ~ . e, electively reduces the source to a totally
symmetrical function"of two-valued spin indices, which
can be identi6ed with the eigenvalues of 0.3„.A totally
symmetric combination of m spins has a de6nite spin
angular momentum,

S= gQ.

(1„,lo ) =iS ...(+)

(0 I1„)=S

Thus, all possible half-integral spin values can be
represented by a suitable odd integer n, and all possible
integer spins can be represented by an even integer m,

except S=O. For the latter one has to take m=2 and
use an antisymmetrical spinor source. The relation be-
tween statistics and the even-odd. nature of e will be
recognized as the connection between spin and statistics.
Note that more complicated symmetry patterns give
equivalent descriptions, to the extent that a definite
spin appears in the rest system. Consider, for example,
m=3 with the requirement of antisymmetry in a pair
of Dirac indices. The latter contributes zero spin in the
rest system and we have a possible description of an
s= —,

' F.D. particle.
The individual single-particle amplitudes are easily

identified. If we use a totally syrrunetric spinor, for
example, the extreme values of the spin magnetic
quantum number correspond to identical choices for
the tz component spins, as suggested by

and the other states can be generated from these. There
is a simple relation between the two spinors S„(+&:

S (+i*
n u

This conveys the Hermitian nature of the matrices
&0(m —yp), and the reality of the source S(x). For B.E.
particles, the physically necessary property

I (0+ I
0-&'I'= expl —2 S.(+)"S.(+)i(1

is deduced on remarking that (e is even)

(dp)—ReiG+(x —x') =Re
(2ir)' 2p'

&(e' ( -*')II I 70( —pp)j„
which can be expressed as

—Rei (dx) (dx')S(x)G~(x —x')S(x')

=P S„(+)*S,(+))0

An analogous positiveness statement exists for F.D.
particles. Let e(x—x') state the algebraic sign of x' —x"
and, for xo—x"&0, consider the function (m is odd)

Reie(x x—')G+(x —x')—
(dp)

=Re e'"' *'II Lv'(m —7P)j.,
(2~)'2P'

which we shall de6ne by the right-hand side for all x—x'.
Then, if S&(x) is a real commu/ative spinor, we have

—Rei (dx) (dx')Sg(x)e(x —x')G+(x—x')S((x')

(+) Sy (+))0

CHARGED PARTICLES

The specification of the mass of a particle (stable or
unstable) defines it uniquely, within present experi-
mental knowledge, except when the particle carries
electrical or nucleonic charge. These are exactly con-
served quantities. The TCE theorem then assures us of
the existence of two particles with opposite charges,
and identical masses. This situation can be represented.
by supplying the real source function with another
index, upon which the appropriate charge acts as a
matrix,

(0
—i 't

The diagonalization of this matrix d,efines the complex
sources of charged particles.

The introduction of the antisymmetrical charge
matrix puts the connection between spin and, statistics
in a new light. .It should be evident that the construc-
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tion of G+(x—x') in the previous section was essentially
uniquely d.etermined. by the various space-time require-
ments imposed upon it. The resulting structure possesses
a symmetry that is specified completely by m, the
number of Dirac spin indices. But now we have the
option of inserting the Lorentz-invariant matrix l as a
factor in 6+, which would. alter the sylnrnetry and
destroy the spin-statistics connection. It is the physical
positiveness properties that enable one to reject this
possibility, and retain the correlation between spin and
statistics. That invites us to re-examine the physical
basis of these positiveness assertions.

We cannot improve on the B.E. situation in which
sources appear directly in probability statements. For
F.D. particles, however, the positiveness property
emerged as an algebraic observation without direct
reference to F.D. sources, which are a more abstract con-
cept. In this circumstance we must turn to the physical
system with which the source is coupled, . We shall be
able to treat both statistics in a unified way, however.
Let the real multicomponent source S(x) be coupled
to the Hermitian operators 4'(x), which we assume to
transform contragradiently to S(x) under Lorentz
transformations. It is immaterial for the following dis-
cussion whether F.D. sources anticommute or commute
with +(x). To have a uniform treatment of both
statistics we assume commutativity, and take the
source term in a phenomenological Lagrange function as

Z,.„„,=@(x)s(x)=S(x)e(x).
The action principle supplies the differential statement

~,(0, I0 )8=i(0,
I (dx)ss(x)e(x) Io )&

and the repetition of this operation gives

~"(0+Io-)'

=—(0+ I (dx) (dx')(bs(x)4(x)BS(x')4(x'))+ I
0 )8

apart from possible additional delta-function terms,
which do not contribute for @4''.Now we observe that

2 Re((+(x)@(x'))+)=({+(x)P(x')))

is a positive matrix structure. The positiveness proper-
ties we have noted thus emerge as necessary quantum
consequences of the coupling between source and
physical system.

EUCLIDEAN POSTULATE

lt is a remarkable fact that all F.D. particles carry
some kind of charge. The experimental proof of non-
identity between electron and, muon neutrinos' con-
firms an early suggestion4 that neutrinos would be no
exception to that rule. A representation of this reg-
ularity is given by the following abstract Euclidean
postulate: The vacuum probability amplitude must be
transformable into the attached Euclid. ean space in
such a way that the original time axis cannot be
identified. We first illustrate this for B.E. particles.

The basic Euclidean transformations are

i(dx) —+ (d4x) =dxt dx4,

p'= p.p.&o

The transformation of B.E. sources is taken to be

n

S(x) ~ expL:,'si(g y.s+1)]s~(x).
a=1

The product of the even number of y' matrices is sym-
metrical, and

—S(x)Lip„y„js(x)-+ S~(x)s~(x) .
For each spinor index ~, we define the matrices

rr„=expL ——,'s.i+7„'](—Z)y„expL:,'orig'„'j, p, = j. . 4

(dx) (dx')(~S(x) ~S(x')), which maintain the commutativity of those referring
to diferent indices. The new set has the algebraic

&& (0+ I (+(x)+(x'))+ I 0—) ~ property

We have not written out possible additional terms,
which occur when some of the components of 4'(x) are
explicit functions of S(x) or its coordinate derivatives.
The overt reference to statistics appears on writing

~.E.: SS(x)SS(x')
(bs(x) 8S(x'))p ——

F.D. : .(x—x') SS(x)SS(x').

A comparison with the general source representation
identifies the vacuum expectation values,

B.E.: —iG„(x—x')
((+(x)+(x'))+)=

F.D. : —ie(x—x')G, (*—x'),

s {+lo+") ~e" '

Each of the n„ is imaginary and antisymmetrical,
which places all of them on the same footing. The result-
ing Euclidean transformation of the vacuum ampli-
tude is

&o, lo )

exp —— (d4x) (d4x')Sa (x)Gs (x—x')Ss (x')
2

e G. Danby et al , Phys. Rev. Letter.s 9, 36 (1962).
J. Schwinger, Ann. Phys. 2, 407 (1957).See also K. Nishijhna,

Phys. Rev. 108, 907 (1957).This is the introduction of a leptonic
charge not related to neutrino helicity.
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where

Gg (x—x') =g (m —n„a„)„as(x—x') .

the function t"~ emerges as

G.(*-.)= —R Lt.r, ,:jR
&(g„(m—R—'(1/i) y„RB„)„A~(x—x') .

This is a Euclidean form in which all coordinate axes are
indeed indistinguishable.

There is an alternative version which is produced by
the further transformation

where

Sii(x) ~Q„Lexp(~imari(n5 —1))j„S~(x),

e5 ——n~n2o. 3O.4=0.5 =O,'5 T

Now the function

G~(x—x') =g (nsm+ini, Bi)„As(x—x')

5(x) ~ RSE(x),

is real. If the associated Euclidean sources are taken to
be real, so also is this Euclidean transcription of the
vacuum probability amplitude.

It is interesting to examine further the algebraic basis
of the Euclidean transformation, at least in the simplest
B.E. situation, m=2. Let n„,p=1 5 be a set of anti-
commuting matrices of unit square such that the
product n~ -n5 is the unit matrix. With the latter, the
five n„and the ten a„o.„,p, & v, comprise 16 independent
matrices. If there be e, symmetrical matrices among
the n„,and e,=5—e, antisymmetrical ones, the de-
composition of the 16 matrices into symmetrical and
antisymmetrical members is counted as

N, =1+n,+n,n, =10—(n, 3)'—
N~=n. +-',n, (n, 1)+-,'—n. (n. 1)= 6—+ (n. 3)'—

Two independent systems of this type comprise 256
matrices, which are equivalent to the full 16)&16
matrix algebra if there are just —, 16&(15antisymmetrical
matrices. This requires that E,X =60, or that

(n, —3)'=0, 4.

The first possibility, e,=3, e =2, is the one realized in
the Minkowski metric where the three symmetrical
matrices are —ill„k= 1, 2, 3, and the remaining two are
the antisymmetrical matrices y, —F5. The second
possibility contains two alternatives, e,=1, e,=4, or
e,=5, e =0. This is the Euclidean realization, in which
the n„,@=1 ~ 4, are antisymmetrical and e5 is sym-
metrical, or alternatively n„'=m„0.5, p, = 1 4 and
n5'=n5 are all symmetrical. Only in the Minkowski
metric, however, is any one set of 16 matrices equivalent
to a 4)&4 matrix algebra. The latter contains six anti-
symmetrical matrices, whereas the Euclidean realiza-
tions require ten such matrices.

We now consider both statistics. In response to the
Euclidean source transformation

The matrix factor —R~Lg„y„'jRmust be a, Euclidean
scalar. It is symmetrical for B.E.particles, and antisym-
metrical for F.D. particles. The matrices R '(1/i)y„R,
@=1 4, are required to have a common symmetry.
We shall let o,„,p, =1 4, specifically designate anti-
syrnmetrical matrices, and construct the alternative
symmetrical matrices as io.„n5.The appropriate Eu-
clidean scalar matrix must commute with the a„and
anticommute with the in„n5.The latter requirement can
be satisfied by the factor g„n5„,and either choice
requires the existence of a Euclidean scalar matrix that
commutes with all the e„andhas a definite symmetry,
as demanded by the statistics. The o.„„a=1. e
generate an algebra of dimensionality 16".If the latter
is the full 4"g4" matrix algebra, only the symmetrical
unit matrix can commute with all elements. This is the
B.E. situation. The antisymmetrical scalar matrix of
F.D. statistics can be realized only by adjoining such a
matrix, l, to the algebra generated by the o.„.The
necessity for this additional element is also evident in
the remark that 4X4 matrices do not permit a repre-
sentation of Euclidean symmetries.

A suitable Euclidean transformation matrix for F.D.
statistics is

R= exp[-,'ni(l g y„0+1)]

G~(x—x') = I g„(m—n„B„)„A~(x—x'),

which makes explicit the charge carried by every kind of
F.D. particle. The alternative Euclidean representation

GE (x x') = I—P„(num+in„8„)„h~(x—x')

is produced by the transformation

5~(x) —+ Q„Lexp(4i~i(n5—1))j„S~(x).

The new G~ function is imaginary. Nevertheless real
Euclidean source functions imply a real Euclidean
transcription of the vacuum probability amplitude, ac-
cording to the de6nition of complex conjugation in an
exterior algebra, '

(5(x)5(x'))*=5 (x')S(x)
= —5(x)5(x') .

MASSLESS PARTICLES

In order to deal with the special circumstances posed
by particles of zero mass, we return to the stage of
identifying single-particle states and consider, for m= 0,
the individual projection matrices

v'( vP)/2p'= 2 (1 iv~—~~) . —
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Here o~ is the component of e that is parallel to the
momentum of the particle. The isolated occurrence of
the y5 matrices demands a further speci6cation of
particle sources. It is suKcient to consider symmetrical
spinors that are subject to the single-invariant constraint

(

—p i75„(—1 S(x)=0..&N.=~ )

The latter requires that each ip5„have the same eigen-
value, which becomes the common eigenvalue of —0-„„.
This is the familiar statement that massless B.E. par-
ticles have only two helicity states, those for which the
component of angular momentum parallel to the linear
momentum equals &s, s=-', m. The photon and graviton
are represented by m=2 and m=4, respectively. In-
cidentally, the Euclidean version of the constraint is

A massless particle obeying F.D. statistics can be
described by a real source which is a symmetrical spinor
obeying one of the two constraints:

l Q its.——1 S(x)=0

ol -1 e
l Q ivy„+1 S(x—) =0.

In either situation each of the iy5„has the same eigen-
value, which is the common eigenvalue of —0-„„,and is
also equal to the eigenvalue of l, or —/, according to the
nature of the particle. A given particle has two helicity
states, of angular momentum &s, s=-,'e. The e and p
neutrinos, presumed to be massless, are represented by
the two alternatives available for v=1.

The Euclidean transcription of the F.D. constraints
requires an additional source transformation in order to
be compatible with the reality of Euclidean sources.
This transformation involves the fermionic charge
reQection matrix r~, a real symmetrical matrix, which
can be chosen as

while leaving unaltered the imaginary structure

Gs(x x') = t g„—(m„(3„)„hs(xx') . —

An alternative charge reAection matrix is ir~t'. With the
further transformation

Ss(x) ~ exp(-', ~r(l)Ss(x),

the constraint equations become

Lrq(1/m)g n~„&1jSs(x)=0

8U3 AND SPIN

The rapid increase in experimental information con-
cerning massive, strongly interacting particles has
brought a provisional answer to the long quest for a
particle classification scheme. It is supplied by the
multiplets of the internal symmetry group SU3. I et
the two types of three-valued unitary indices be
designated by u and u*. The various unitary multiplets
arelabeled by symmetrical functions of indices a&, a„,
and of indices u„+~*, - u„*,which are irreducible with
respect to contraction of an index of type a with an a*
index. Thus, the various particle sources can be indi-

cated by

S Q/
rl ra.))")~ s) ))„+) av (x~ ~) ~

It should be emphasized that the unitary indices are a
means of supplying the quantum numbers appropriate
to a given particle, which may still need to be identi6ed
through its mass value, and that no presumption exists
concerning the masses of the diferent particles which
are united in a particular multiplet.

As we have already remarked in connection with the
spin indices, there are alternative ways, of designating
sources, that employ more complicated symmetry
patterms. While an antisymmetrical pair of spin indices
is affectively inert, an antisymmetrical combination of
similar unitary indices is equivalent to a complex-
conjugate index. In this way, other symmetry patterns
can be reduced to the totally symmetric structures
(zero spin is an exception, of course). Several different
sources may appear in consequence of the reduction
process. The possibility thus suggested of a more in-

clusive classification can be illustrated by considering
symmetric functions of the combined indices

A=i; u A~=t, u*.

The generalized source

Sg)."g g„+)".A I (x) )

a symmetrical function of A1 A „,and of A „+&* A „*,
unites the sources of particles, with various spins and a
common parity, that belong to several unitary mul-

tiplets. Thus, the source with r=1, n=2, S~, , t.„,*,
describes spin 0 and spin 1 meson multiplets, each con-
taining a unitary octuplet and singlet. This source can
be applied to the well-established 0 and 1—mesons,
both of which form octuplet + singlet families. The
baryon multiplets comprised in St, , t, , t„,have spin
—,'and 2, forming a unitary octuplet and a decuplet,
respectively. The latter is applicable to the known

system of —,'+ baryons and ~3+ baryon resonances. These
wider classi6cations have been achieved by a combina-
torial union of spin and unitary indices. There is no
reference to a continuous group of transformations on
all the indices.
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CONCLUSION

The source concept emerges as a valid and useful
phenomenological particle description. It displays the
complementary aspects of particle behavior, and sup-
plies the connection between spin and statistics in a
simple and direct way. The sources also serve as carriers
of quantum numbers and give concrete expression to
family relations among particles.

There is, in this description, no commitment to any
specific view of particle structure. The extreme S-matrix
attitude can be introduced by insisting that no source
function S(p) is de6ned for momentum values that do
not obey —p'=rn'. But if it is considered meaningful to
de6ne S(p) over a wider momentum range, one has
admitted a concept of rnatter more fundamental than
that of the particle. It seems desirable to have a phe-
nomenological description of particles which is logically
independent of hypotheses concerning the deeper nature
of these objects. Such hypotheses may then be suggested
by the formal representation of observed regularities.

Pote added in proof The c. omplete independence of
the phenomenological source description from other
formulations needs more emphasis. The text contains
reference to the Geld-theoretic version of the TCP
theorem, and to operator-based positiveness properties.
Neither is required. The essential tool is the forrnal
expression of completeness for the multi-particle states
in the two forms

0 In)s(nIO )s 1
n

(o-I )'= (.I
o-)'*,

P (0+In)s(nI 0+)s 1
n

(n I 0+)s (0+ I
n

where e symbolizes the whole set of occupation num-
bers. Using the multispinor representation, which
uniGes all"spins and associated statistics, the considera-
tion of a production and detection source gives

(nIO )s=(0+IO ) g(iS„&)" ~/(n q!)'~'

(o+ I
n)'= (o+ I

o-)' ll'(iS.~*)"""/(n.~ ) '"

where II and H' refer, respectively, to some standard

multiplication order and its inverse. Here

-
(dy) (2m)"-'"

"*m. ')S(p)
(2')' 2p'

and

II(m —~p/2m) „=p u„,u„,*(IIp„o),

with
u~x (117~ )u~&, =4+.

It is the comparison of the two completeness expressions
that indicates the necessity for the general rule

(S(x)S(x'))*=S(x')S(x).

Then either form gives

0„10)sI' exp'& S„*s„,j.
The usual connection between spin and statistics assures
the reality of the combination

S(x) (11„~„0)S(x'),

which is the basis of the direct evaluation

I(0 I0 )sI'=expL —P S„*S

An attempt to reverse the connection between spin and
statistics by introducing an antisymmetrical matrix

q into the general source structure will now founder
on the contradiction between the direct evaluation,
which recognizes the indefinite nature of the q spectrum,
and the summation over all particle states, which in-
volves only the magnitudes of the q eigenvalues. Simi-
larly, any reference to internal properties is limited to
a symmetrical positive matrix which can always be
transformed into the unit matrix. Here is the assurance
that a charged particle has an oppositely charged
counterpart of equal mass.

The source representation of the invariance operation
designated as TCP combines space-time reQection with
transposition —the reversal in multiplication order of
all sources. The former is performed through the
attached Euclidean group and leaves the vacuum ampli-
tude unchanged, but at the expense of making half-
integer spin sources imaginary. The actual sign reversal
of a product of such sources is then compensated by
the transposition of the sources, in virtue of the con-
nection between spin and statistics.

%e have built the source description on a principle
of the unity of the source; sources that are effective in
diferent space-time regions are constituents of one
general source. Perhaps it should be pointed out that
only the two usual statistics are admitted by this
principle. In the consideration of a production and
detection source that leads to the identiGcation of the
particle states, it is necessary to give an ordered form
to the product of sources. This demands the existence
of relations of the type

S(x')S(x)=m(x)S(x')

which exhibit the algebraic properties of the source
function, and limit P to one of the alternatives, ~1.


