
PH YSICAL REVIEW VOLUM E 152, NUM B ER 4 23 DECEM BER 1966

Threshold Behavior of Partial-Wave Amplitudes in
Quantum Field Theory*

GERT ROEPSTORTP AND J. L. URETSKY

Argonne XaIionul Laboratory, Argonne, Illinois
(Received 17 June 1966)

We show within the framework of Wightman Geld theory and the Haag-Ruelle scattering theory that the
inelastic partial-wave amplitude for a scattering with two particles in the initial or Gnal state has the classic
threshold behavior T ~j' and under additional assumptions the phase shifts for elastic scattering obey
sin5~~k"+' in the low-energy limit.

I. INTRODUCTION

""T is generally believed that the interactions of
~ - nuclear particles are mediated by short-range
'nuclear forces so that their long-range interactions are
(neglecting Coulomb forces) dominated by the angular-
momentum barrier. As a consequence it has become an
article of faith among practitioners of phenomenological
(or S matrix) nuclear physics that elastic-scattering
phase shifts must have the threshold behavior'

t»~&-t|,"+'

for 6xed barycentric momentum k and suSciently high
orbital angular momentum /.

We all know, of course, that the "initial" rate of
growth described by Eq. (1) is predicted rigorously in
a model where the scattering is described by a Schro-
dinger equation with a suitably behaved potential. In
that case the long-range dominance of the angular-
momentum barrier may be exhibited explicitly. There
is, however, no assurance that such a simple model is
adequate to describe the interactions of nuclear and
subnuclear particles, and it becomes of interest to ask
whether Eq. (1) cannot be made to follow from more
general principles.

In order to answer this question we shall turn to
axiomatic 6eld theory on the grounds that it is the most
general predictive theory presently available. Our
intuition leads us to expect that the field-theoretic
equivalent of the short-range nuclear force will be the
presence in the theory of a 6nite gap in the mass spec-
trum or, equivalently, the absence of zero-mass par-
ticles. On the other hand, our experience with 6eld
theory suggests that even very obvious seeming results
can be obtained only as a consequence of rather delicat.
maneuvering. We would not have been amazed, there-
fore, to 6nd it necessary to impose additional restrictions
upon the theory (besides the existence of a mass gap)
in order to obtain the threshold behavior of Eq. (1)e

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

~ See, for example, the speculative remarks in Sec. IX of L. D.
Roper, J. M. Wright, and B. T. Feld, Phys. Rev. 138, 3190
(1965).

The purpose of the work described here is to see what,
if any, additional restrictions might be required. 2

The starting point for our deliberations will be the
Haag-Ruelle'4 scattering theory which was erected
upon the foundation of Wightman's relativistic quan-
tum 6eld theory. ' The relevant axiomatic framework
will be summarized at the beginning of Sec. III, but
we should like to remark at this point upon the dis-
tribution character of the Geld operators of the theory.
It will be recalled that the 6eld operators are conven-
tionally assumed to be operator-valued tempered
distributions. Although the temperateness assumption
is convenient, in that it results in a symmetry between
the con6guration-space and momentum-space behavior
of the 6eld operators (Fourier transforms of tempered
distributions are tempered distributions), it appears to
be devoid of physical content and we feel uncomfortable
in its presence. ~ It turns out that for our purposes we
can settle for the somewhat less restrictive assumption
to be made in Sec. III that permits rather wild behavior
at in6nite momemtlm of the Fourier transformed 6eld
operators. However, we are unable to say much
(in Sec. V) concerning the question of whether this
slight mathematical generahzat&on is of any physical
importance.

For our purposes it will be sufficient to discuss the
theory of the ubiquitous neutral scalar iield A(x). The
needed axioms and some of their consequences are re-
capitulated in Sec. III. Threshold behavior of produc-
tion and elastic scattering amplitudes is derived in
Sec. IV by making use of a Schrodinger-like represen-
tation of the relativistic scattering amplitude. In Sec. II
we review the derivation of Eq. (1) from the Schrodinger
equation, and in Sec. V we make some concluding
remarks.

mone of the authors, in company with many of his friends,
takes the viewpoint that Eq. (1) sNNst hold in any reasonable
theory, at least at sufBciently low energy.

s R. Haag, Phys. Rev. 112, 669 (1958).' D. Ruelle, Helv. Phys. Acta 35, 147 (1962).' For a review see R. F. Streater and A. S. Wrightman, I'CT,
Spil and Statistics, act Alt That (W. A. Benjamin and Company,
New York, 1964).

Reference 5, p. 98.
~ See also the remarks of K. Bardakci and B. Schroer, J. Math.

Phys. 7, 16 (1966).
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II. THE SCHRODINGER-EQUATION ARGUMENT

Consider the partial wave Schrodinger equation'

d' l(l+1)—« ' r+ +rt(«) —ks Ri(k,«) =0 (2)
dF

with a potential of finite ranger rQ, We recall that the
radial wave function E& is defined by requiring it to be
regular at the origin. Outside of the range of the
potential, the solution is a linear combination of spheri-
cal Bessel functions:

Ri(k, «) ji(k«) —tanli «ii(k«) . (3)

When k' becomes very small compared with the centrif-
ugal term E(1+1)« ', Ri must approach its k=0
form' («)«o)

Ri(0,«) = ai«'+bi«-'-'. (4)

Equating the right-hand sides of Eqs. (3) and (4) and
using the small argument approximations for the
spherical Bessel functions (valid for k«« l) leads us to
the desired result

(5):P,ya, )ksi+i
k/l~Q

unless a~ happens to vanish. H this does happen for
some l~& 1, then Ri(0,«) is square integrable so that Ri
is the wave function of a zero-energy bound state. If
aQ happens to vanish, we say that the s-amplitude has
a zero energy resonance.

We remark in passing that Carter' obtained the
threshold behavior, Eq. (1), under the less restrictive
assumption (and excluding the exceptional cases)

«si+sd«I V(.) I
& ~. (6)

Newton" showed that in the exceptional cases

tan8~ constant, k ~ 0 if aQ= 0,
k~~ 1 k~0 lf Qg=O.

The preceding discussion exhibits in a very trans-
parent manner the crucial nature of the requirement
that the potential be "rapidly decreasing" at large
distance. We see clearly how the rapid decrease permits
the centrifugal barrier to "take over" at large distance
and thereby determine the threshold behavior of the
scattering amplitude. However, the approach to be
taken in the present work will follow more closely along
the lines of a discussion given by Goldberger and
Watson" which it is instructive to reproduce. We write

SThe succeeding argument is patterned upon that given in
L. D. Landau and E.M. Lifschitz, Q44antlni Mechanics (Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts,
1958), p. 403.' It is easy to show that RI is an analytic function of k'.

"D.S. Carter as cited in Ref. 11, footnote 46."R.Newton, J. Math. Phys. 1, 3I9 (1960)."M. L. Goldberger and K. M. Watson, Collision Theory
Uohn Wiley fk Sons, Inc., New York, 1964), pp. 285—286.

the coordinate space representation of the T matrix
(r'

I
T

I r)=—T= V+ VI e(k) —H+ii))—'V, (8)
and, in the limit e(k) —+ 0, define

Ts lim——T—= (r'ITiiIr) (9)
e(k) ~Q

and

(«'I Ts'I «) = &&' && &4*(&')(r'I TsI r)F4(Q). (10)

It is then a trivial matter to show that
oo

Ti'(k) =- «"d«' «'d«ji(k«')(«'I Ts'I")ji(k«) (11)
Q

in the limit of vanishing k. If the integrand converges
with sufficient rapidity, it follows again from the small
argument behavior of the j&'s that

I Ti'(k) I
=—k ' sinai(k) —& const(k)". (12)

The di%cult part of the exercise is to determine the
convergence properties of the integral over («'I Ts'I«).
In Schrodinger theory, the rate of decrease of («'I Ts'I «)
for large r and r' is closely related to the rate of decrease
in the potential V(«), as given by the condition in
Eq. (6). In our work, however, similar properties will
be expected to follow from rather general assumptions
of field theory.

III. THE AXIOMATIC FRAMEWORK

In the course of the subsequent discussion we shall
be concerned with the Wightman field theory of a
neutral scalar field A (x). Its axiomatic framework is as
follows.

(A.) The field A(x) is an operator-valued generalized
function. Specifically, the Fourier transform A(p) will
be required to perform only upon test functions with
compact support in Euclidean 4-space. " This test
function space is referred to as K4. The, object A(i')=J'd'p A (p)iji(p) with rti&E4 is a well-defined operator
on a dense invariant manifold of Hilbert space K.
A(x) transforms under unitary representations of the
inhomogeneous Lorentz group in a manner befitting a
scalar field, namely, U(a,h)A(x)U(a, h) '=A(Ax+a).
The spectrum of the momentum operator P„is assumed
to lie in the forward light cone (positive energies). In
addition we shall insist that (except'for the vacuum)
there is a lowest mass m) 0 in the theory. Furthermore,
A (x) is a local field in the sense that'4

LA(x),A(y))=0, (x—y)') 0. (13)

"This is, matrix elements of A(p) belong to the set E4'. We
use the language of I. M. Gel'fand and G. K. Shilov, Generalized
Iiunctions (Academic Press Inc. , New York, 1964), pp. 3—6."The metric is z'=x x—(ztI)'. Equation (13) needs interpre-
tation since the set of test functions over which A(z) is defined
(the set Z of Ref. 13) do not permit localization of A(gi) and
A (ps) in disjoint space-like regions. What is meant by Eq. (13) is
the commutator can be made as small as we please by smearing
the A's with admissible functions that have suitably sharp peaks
at x and y.
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(B.) It is crucial to our later discussion that A(x) be
the interpolating 6eld corresponding to a mass that is
isolated in the spectrum. If that mass is" m (the lowest
mass), this condition may be stated concisely in the form

&o I A(*)A(y) I
o&=~-'(x—y)

+ &~(/)~s+(x y)-(14)
2m

We shall be working with the bona fide-operators

B(x)= d4y P (y—x)A(y) (15)

B(f,,t) = dsx f (*)~Z(x)I*.=1,

where f,( )xis a solution of the Klein-Gordon equation
for a particle of mass nz with p-space support in E3
(assumed compatible with the support of p). However,
in Inost of the subsequent discussion we will work in
the limit

where g(p) has support in a suitable (for our later
purposes) compact region of p space and also —ps
restricted to a small region in the vicinity of the discrete
mass m'. The requirement of compact support in y
space is not necessary to the remainder of the argument
and is invoked only to emphasize that temperateness of
A (p) is not needed. We may also define the one-particle
projection operators,

RIld

(IV') lim )x(~(out~P( —x/2)Bt(x/2))2))0)=0, (19')

for all E, where ~in) and (out~ denote, respectively,
any in-state or out-state, and

(CI —m')B(x) =J(x) .
We note from (I) that P(x) annihilates the vacuum.
Thus, to prove (IV), we write

(0) B(x/2)J(—x/2) ) in) )
'& (in~ in)

)((0i B(x/2)I(—x/2) Jt(—x/2)Bt(x/2) i 0) (20)

by virtue of Schwarz's inequality. But the cluster de-
composition theorem' states that the limit

lim (0
~ (x/2) J(—x/2) Jt(—x/2)Bt(x/2)0)

=(0IB(0)B'(0)lo»«ol~(0)~t(o) lo) (21)

is approached faster than any inverse power of x'.
Evidently,

(o I ~(0)»(0) I
o= o, (22)

which proves (IV). The proof for (IV') is similar. Since
(IV) does not depend on the particular choice of the
in-state, it holds equally well in the sense of distributions
for states with sharp momenta.

IV. THRESHOLD PROPERTIES OF
RELATIVISTIC AMPLITUDES

f .(x) ~ (2~)
—s/s(2to )

—/ g4ye
At this point we are prepared to consider the T

matrix between a two-particle initial state and an
arbitrary final state of de6nite momentum. It is a
well-known consequence of the properties listed in the
preceding section that the T matrix may be written
in the form

and merely assure the reader here that the limit has
been taken with due care.

As a result of the preceding assumptions, the following
statements are all known to be true.

(I) Bt(x)
~
0)CH[y~, QJ the space of single-particle

spinless states of mass ns. 4

(II)Bt(y, ,t) i O)

i(~.,p)f'(~. 1)~'(p) Io)=—IA) (1g)
(2' )1/2

is independent of t. Here at(y) is a free-particle creation
operator.

(m) hm p Bt(y/, t)~0)

flu)= IA' ' j' ex) where ex=I
Eouti

exists as a strong limit in 3C.

(IV) lim [x) ~(0]B(x/2)J(—x/2) [in)=0, (19)
V'(l;qtqs) =—(27r) (4M,M,)

—/s dax

4'1( lt Mt) ' 2 (f; qtqs)
=+i(2~)'"(2~1) "'&'(~r—&,)(f ~

At(0)
~ qs), (23)

where use is made of the one-step reduction formula.
The factor @1 is included to account for the fact that
the interpolating fields B;(x) are obtained by con-
volution with the test functions p, (x—y). As long as
p;(q, &o) does not vanish in the region of interest to the
subsequent discussion, the factor P brings about a
completely trivial complication which will be ignored
for the sake of conciseness. Note that the fields 8;
are labeled by their test functions p;.

Denoting by 1 the coefficient of the 8 function in
Eq. (23) and making use of the Eq. (18) we may write

"Equation (14) represents a nonessentiai simplification of the
spectral conditions. The discrete mass could have an arbitrary
value m'~& m. ln general the lower bound of the integral is m, and
in fact, assume m'&m when considering exothermic production
processes.

+exp(i//2 x)&o.(f ~
At(0)Bst(x)

~ 0) . (24)

In the barycentric system with total initial energy E;,
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in P and x (see Appendix) we find that

limp ' liiilk '1'$(p, kpE) =L(2l+1)!!7 '
g-+0 Ig -+0

X P'+'dg x"+sdxX(~~ 7' i~ x) & ~ (32)

and therefore,
V'g(k, k,E)=O(k") . (33)

sinb~ k"+'.
k~o

(36)

Just as in the discussion in Sec. II we must now
consider the posibility that the Eq. (36) may not hold
in certain (we may hope) exceptional cases. The point is
that in general we have to expect that ((~ T@!x) and
the offshell extrapolation 1'i(k, k,E) are distributions
in the energy E so that our result holds rigorously
only for a smeared object like

9'i(k,k,f)= dE f(E)V'i(k, k,E) . (37)

Thus, if 9"i(k,k,E) happens to have a pole at threshold
energy the threshold behavior will be modihed, so that

lim k "'1' (k k 2(m'+k') '")& ~
I 0

(38)

for some m~&21. As in the case of potential scattering,
this will be connected with the appearance of bound
states at threshold energy. We oGer no proof that such
a pole must be of Grst order, if any. However, if the
imaginary part of the scattering amplitude has a prob-
abilistic interpretation, i.e., is a positive measure, the
worst singularity can only be

V'i(k, k,E)
E—Ee—ig

for E=Es l ~& 1 (39)

which yields n~=2l —1, since

$21+1
)2/ —I

2(ms+ks)iis —2m —sr) & s m

In any case we want to emphasize that a deviation from

Assuming that the off-the-mass-shell amplitude 9'i(k, k,E)
is Gnite at the threshold energy ED=2m, we arrive at
the desired result:

9'i(k k 2(m'+k'))'"=O(k") (34)

Finally in order to relate the result of our discussion
to the behavior of the phase shifts we remark that

iv'i(k, k,Es) =—4k 'Lexp(2ibi) —1j, (35)

where 8i is the usual (possibly complex) scattering phase
shift. Thus, we have shown that in axiomatic Geld
theory (subject to the following remarks),

the "usual" threshold behavior, Eq. (36), is of somewhat
accidental nature even in Geld theory.

V. FINAL REMARKS

We began this work with the conjecture that our
desired result, Eq. (36), would follow from the assump-
tion of a finite "gap" in the mass-spectrum (absence
of zero mass particles). This, we supposed, is the field-
theoretic way of saying that the operative forces act
only over Gnite ranges. As a consequence of the mass-
spectral assumption we got property IV in Sec. III
and, as expected, the threshold behavior followed in
quite a straightforward manner.

It is well to remind ourselves, however, that there
is at least one other very important assumption that
has to do with the distribution character of our Geld
operators underlying our result. Property III of Sec.
III is derived' under the supposition that products of
field operators behave as (operator-valued) tempered
distributions in x space. Our slightly more general
assumption concerning the 2(p) is harmless" insofar
as property III is concerned, but one is left to wonder
about the significance, if any, of this p-space freedom.
In particular, one might wish to proceed to the case
where the Gelds are localizable in x space, thereby
interchanging the roles of A(x) and A. (p) in our as-
sumption (A), Sec. III. In this case we would lose the
strong convergence property III, gaining at the same
time an exponential rate of approach to the cluster
decomposition limit" in property IV. We ask again
whether these very mathematical considerations have
anything to do with physics or whether they merely
reveal our inadequate ability to describe the real
world in mathematical terms. "

Let us close by remarking that the question of pro-
ceeding to the local limit in x space is not without
interest in the present context. We have some pre-
liminary indications that the sharper version of the
cluster-decomposition theorem" adds enough to our
knowledge of threshold behavior to permit continuation
of the partial wave expansion to unphysical angles.
If our present understanding is correct, the continuation
will permit extension of the region of analyticity in

"See Ref. 13. Under our assumptions the A(x) are defined on
the set of entire functions that have rapid decrease on the real
axis and (at most) exponential growth away from the real axis.
The limitation on the rate of growth of A (x) for real argument is
the only tempered distribution property that is invoked in the
proof of the cluster decomposition theorem and the asymptotic
condition in Ref. 4. That is why our slightly more general de6nition
of the A(x) causes no diificulty with statements (III) and (IV)
of Sec. III.

'H. Araki, K. Hepp, and D. Ruelle, Helv. Phys. Acta 35,
164 (1962).

20Let us recall that the Froissart-Greenberg-Low bound on
the rate of increase of total cross-sections at high energy makes
use of temperateness in p space. Thus, it would appear that
experimental violation of this bound could most easily be explained
by dropping the assumption of temperateness as we have done in
the present work. We refer, of course, to the work of M. Froissart,
Phys. Rev. 123, 1053 (1961) and O. W. Greenberg and P. E.
Low, ibid 124, 2047 (1961). .
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momentum transfer, at low energies, to the point where
a pole could occur corresponding to the particle with
lightest mass that is exchanged. The continuation does
not seem to depend upon the existence of any dispersion
relations for the scattering amplitude or upon crossing
symmetry, in contrast to the recent work of Martin. "
We hope to present the detailed results in a forthcoming
paper.

APPENDIX

The statement that ()j Ta'jx& decreases rapidly in
both p and x requires additional justification because
of the limiting process 3ie ~ oo in Eq. (30). In order to
discuss this it is convenient to rewrite the second Eq.
(30) in the form

It is more tedious to show that the integrand in
Eq. (A3) decreases rapidly for large

l gj. We begin by
considering the matrix element

(0 j Bi(fi,&)B3(f3',&) j gig3, in)=—(c"(&)
l in), (A5)

where B(f', t) = U(a)B(f, t) U(a) ' and U(a) is the trans-
lation operator. Taking note of statement III, Sec. III
and applying the Schwarz inequality leads to the result
that

j(c"(~)jgig3in& —(fi f3'injgig3, in)j

dg—(I (N)lin)
dQ

V'(p, k; E)=—iE(2')' lim e'F33 d'ri d3$ d'x & llin&lj dill —(c"(N)ll (A6)
BN

xexp( 3P &—)(Ol B3(v+$/2)B4bl 5/2)

Sit(—x/2)B3t(x/2)
l
0&e'~'* (A1)

where the effect of the differential operator in Eq. (30)
is determined by inserting expansions in intermediate
states. By translation invariance, this may also be
written in the form

9 (p,ki E)= —3E(2ir)' lim e
—' 3o d'ri d'( d'x

gp ~oQ

However, it was shown by Haag' that jl(d/dl)(C'(I) jj
vanishes for large I at least as fast as u ' '. Thus, using
the cluster-decomposition theorem and Eq. (22) again
we find that the right side of Eq. (A6) vanishes for
large jal faster than any power of jaj '. On the other
hand the (inl in) matrix element on the left side of Eq.
(A6) is also rapidly decreasing in

l al since it is just a
product of Fourier transforms with respect to a of test
functions. We have shown, therefore, that

xexp( —3p &)«I B3(&/2)B4(—5/2)~i'(n —x/2)
»m Iajo(C"(t)lin&=0, g=0, 1, ~ ~ ~,

I ~i ~~ (A7)

XB3 (ii+x/2) l0&e' '*. (A2) and we can pass to the (distribution) limit of sequences
of wave packets f; and g; to make the same assertion

Finally, we note that we may take the limit indicated concerning
in Eq. (A2) provided that E is the energy corresponding
to the relative momentum k. The result is

d'x d'y expj —i(pi x+p3.y) $(go.g,

V'(p, k; E) d3t

Xexp( —3'p $)(OjB3($/2)B4(—t/2) )in), (A3)

where
l in) represents an asymptotic state of momentum

We first show that the integrand in Eq. (A2) is of
rapid decrease in x in the limit ice ~~ (it clearly is for
finite ice). To see this we need only remark that

l
»m e'E"'(B3(k/2)B3( 5/2)~i'(v —x/2)B3'(n+—x/2) &o l

gp~00

& lj(ol B (P/2)B (—q/2) II

lim 3jit(g —x/2)83t(ii+x/2)
l 0&jj . (A4)

The 6rst norm on the right is bounded. The second norm
is independent of ii and decreases for large

l xl faster
than any power of

l
x

l

' by virtue of Eq. (22).

"A. Martin, Nuovo Cimento 42Ae 930 (1966).

X (0 l Bi(x—a)B3(y—a) l in) =—(2ir) 3ErE 8(pi+p3)

Xeep[e(ee —E)e,]fde& e"e

x (0 l Bi($/2 —a)B3(—t/2+a) l in), (As)

where x—a means x—(a,0), etc. In the last equation we
have passed to the "barycentric" and relative coordi-
nates ii and g. The Lorentz frame was chosen so that
the total momentum of the state jin) is zero and energy
E; whereas Ef is the energy component of pi+ p3 and
A= pi —p3. Noting, finally, that the sequence (in a) of
quantities represented by the integral in (AS) tends to
zero faster than any power of

l al ' for arbitrary k, we
may assert the same for the Fourier transform with
respect to k thereby achieving the desired result.

lim j pl "(OjBi(g)B3(—t) j in&=0. E=O, 1, ~ ~ . (A9)
tel ~~


