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Spin-Matrix Polynomial Development of the Hamiltonian for a
Free Particle of Arbitrary Spin and Mass*
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The Hamiltonian and other relevant physical operators for a free particle of arbitrary spin and mass,
based upon the generalized Foldy-Wouthuysen transformation, are developed in terms of the spin-matrix
polynomials. The general theory of these polynomials, given in an earlier paper, is reviewed brieQy. It is a
general feature of these expansions that the number of terms is determined by the spin of the particle, but the
coefjcients are spin-independent. The massless limit is examined in some detail and the invariant metric
operator is discussed.

A. INTRODUCTION
' 'N an earlier paper' (hereafter referred to as I) a
~ - technique was developed for the expansion of an
arbitrary analytic function of a spin matrix in terms of
spin-matrix polynomials (SMP). These polynomials are
so constructed as to incorporate the Cayley-Hamilton
theorem. Therefore, for fixed spin s the expansion is
automatically given as a polynomial of degree 2s in the
spin matrix, since the SMP of higher degree then vanish
identically. In I, the rotation operator for arbitrary but
fixed spin was derived as an application of the technique.
It is the purpose of this paper to apply the technique to
the derivation of the Hamiltonian and other related
operators for a particle of fixed, but arbitrary, spin and
mass following the theory of Good, Hammer, and
V/eaver. ' In Sec. 8 the equations based upon the results
of I are given in order to establish a modified notation.
In Sec. C the explicit forms of the generalized Foldy-
Wouthuysen transformation and its inverse are given,
together with the Hamiltonian and polarization
operators. Finally, in 'Sec. D the massless limit is
examined and the invariant metric is given.

B. EXPANSIONS IN TERMS OF THE SMP

The SMP defined in I may be conveniently written in
terms of Appell's' symbol as

Ws„+I(s)= (s—e,2e+ 1),
which are applicable to integral spin, and as

Ws„(s)= (z—e+-'„2e), (2)

which are applicable to half-integral spin. The Appell
symbol of Eqs. (1) and (2) is defined as

(a,k)=a(a+1)(a+2) . (a+k —1), (3)

for integral k and complex a. When k is a negative
integer, —~, the symbol is not defined for a=1, 2, , a.

*Work was performed in the Ames Laboratory of the U. S.
Atomic Energy Commission. Contribution No. 1934.

t NASA Fellow.' T. A. Weber and S.A. Williams, J.Math. Phys. 6, 1980 (1965).
~ D. L. Weaver, C. L. Hammer, and R. H. Good, Jr., Phys. Rev.

135, 8241 (1964).' P. Appell, Compt. Rend. 90, 286 (1880).

152

The Appell symbol satisfied the following useful
relationships:

(a,k+1)= (a,k) (a+k, 1),

(a,k) = (—1)'/(1 —a,—k),

(a,k) (b,e—k) (a+b,e)
Z
p-p (1,k)(1,e—k) (1,e)

(4a)

(4b)

(4c)

An arbitrary analytic function is decomposed into its
even and odd parts and expanded in terms of the SMP
as

f.()=f (0)+Z ( ) W ()
e=o

fp(s) = g b(e)Ws~I(s),

(5a)

(Sb)

which is suitable for integral spin, while for half-integral
spin we have

f.(s) = Z ~(e)WI-(s), (6a)

fp(s) = P P(e)sWs„(s).
n-0

(6b)

Using the ascending diGerence operator of unit step,
it was shown in I PEqs. (9) and (1/) j that

(—1)P
b(e) = P fp(e —k).

p~ (1,2e+1—k) (1,k)

It is also possible to include in these coeScients an
arbitrary constant c. This is accomplished by rewriting
Eq. P) as

a (—1)P
be= pe —k

p~ (1,2e+1—k) (1,k)

( )
fo(e k) (g)-

p=s+I (1,2e+1—k) (1,k)

2n+1

In Eq. (8), replace k by e k in the firs—t sum and by
e+k in the second. Then, by noting that 1/(1,—1)=0,
and that fp denotes an odd function of its argument,
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one may write Eq. (&) as

2k( 1)n+1+ih

b(n)= Q fo(k).
a=i (1,n+1—k) (l,n+1+k)

theory is relativistic and therefore the rest mass is
defined by the usual E'=p'+mo. In Eq. (13) the
quantity 4 is the sign operator +1, and the matrices P
and e are of order 2(2s+1), being given by

Finally, from Eq. (4c) this may be written as ~0 1~

&1 Oi
(14a)

c(—1)"
b(n) =

(2n+1) (1,n+1) (1,n)

m+1 2k(—1)"+'+"

Z [f.(&)—3, (9)
4=4 (1,n+1+k) (1,n+1—k)

where c is an arbitrary constant. The proof that the
added and subtracted terms in Eq. (9) are equal is
somewhat involved, and is given in the Appendix.

In a similar manner we find

c( 1)~+i
a(n) =

(1,n+ 1) (1,n+ 1)

1(s 0 i
s&0 —si

(14b)

and

s=sn. p/p, (15a)

8=tanh '(p/E).

Then, Eq. (13) may be rewritten as

S= cosh (8so)+ sinh (8zo) .

(15b)

(16a)

In Eq. (14b), s is the spin operator (s„s„,s,) and if, js
obvious that sn p/p has the same eigenvalues as s p/p.
We define

a(n) = c8„o

2 (—1)"+'+' The time-independent operator, obtained from this by
replacing 4 by p, has the same effect as Eq. (16a) when
operating upon the rest-frame wave functions. ' Since

X[f,(k) —f,(0)+cj, (10) [s,pj+ ——0 and p'=1, it is clear that Eq. (16a) with 4

replaced by P may be written as

~i (2k —1)(—1)"+'+"

[f.(k—l)-cj, (»).=i (1,n+1—k) (1,n+k)

2c(—1)"
p(n) =

(2n+ 1)(1,n) (1,n)

2 ( 1)++1+4

+ g Lfo(k ——:)—cj (»)
4=i (1,n+1—k) (1,n+k)

C. APPLICATION TO PARTICLES OF
ARBITRARY SPIN AND MASS

Apart from a multiplicative constant, the generalized
Foldy-Wouthuysen transformation operator S, which
eGects the transformation from the rest to laboratory
frames, is given by Weaver, Hammer, and Good' as

S= exp[s444 y/p tanh '(p/E) j, (13)

where s is the magnitude of the particle's spin, y is its
momentum with magnitude p, and E is its energy. The

S= cosh(8s) —P sinh(8s) . (16b)

Since S is not unitary in the usual sense, we formally
write its inverse as

S '= [cosh(8s) —P sinh(8s)) —',
ol as

S—'= cosh(8s) sech (28s)+P sinh(8s) sech(28s) . (17)

Then, in terms of 5 and S ' the Hamiltonian for a
particle of arbitrary spin is given by

H/E= SpS—',
which we may write as

H/E= tanh(28s)+p sech(28s) .

In the following, we shall restrict the discussion to
the expansion in SMP of tanh(28s) for the case of
integral spin and merely state the remaining results.

We shall for the moment regard s as a complex
variable. From Eqs. (5b) and (9) it follows that

c(—1)" +i 2k(—1)"+'+'
tanh(28z) = Q +p [tanh(28k) —cj W'4~4.

~=o (2n+1) (1,n+1) (1,n) 4-i (1,n+k+1) (1,n+1—k)

Then from Eq. (15b) we have
exp8= (E+p)/m

so that
(g+p) 44 m44

ta,nh(28k) = (e'44 e'"')/(e 44—+e 444) =
(E+p)44+ m44

(19)

(2o)
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To separate out the terms which are mass independent we set c=1 and using Eq. (21) find that Eq. (19) becomes

( 1)n n+1 4k(—1)"+" ~4k
tanh(28z) = P +Z Wg„+g.

(2n+1)(1,e+1)(1,n) k-1 (1,n+k+1)(i,e+1—k) (E+p)4k+m4k
(22)

By similarly expanding the other functions of interest for both integral and half-integral spin and by employing
the expansions for cos(8z) and sin(8z) as given in I, we find for integral spin

L2(&—m)/ ]"+' (p/m)L2(& — )/ ]"
S=1+P zW2.+1(z)—P Z W2 +1(z),

n-o (1,2n+2) n~ (1,2e+1)

(—1)n+' n+1 2(—1)n+k+' (g+p)2k+ msk
S-'=1+g + Q Pm (8+p) ]' zW2~1(z)

n=o (i,e+1)(1,e+1) k=1 (1)e+k+1)(1,n+1—k) (g+ p)4k+ m4k

(23a)

and

2k (—1)n+1+k (g+p)2k m2k

+PE Pm(&+p)]" W2 +1(z), (23b)
k=1 (1,n+k+1) (1,e+ 1—k) (E+P)4k+m4k

( 1)n 4k( —1)"+" m4~

H/E= g +Z W2„+1(z)
n=o (2n+1) (1,n+1) (1,e) k=1 (1,e+1+0)(1,e+1—k) (8+P)4"+m4k

( 1 )n+1 n+1 4 ( 1 )n+k+1 m2k (++p)2k
+e 1+2 +2 zW2~1(z) . (23c)

(1,e+1)(i,e+1) k=1 (1,e+1+k)(1,n+1—k) (E+p)4k+m4k

For half-integral spin the corresponding results are

$(/+ m)/(2m)]1 ~2p(/ —m)/m]n L2(g —m)/m]n+»2
W2 (z)—PE zW2. (z),

(1,2e) (1,2n+1)

(2k —1)(—1)"+'+'
L (g+.p)2k—1+.msk —1]

S-1= p p [m(Z+ p)]k '12- W2 (z)
n-o k-1 (1,e+k) (1,n —k+1) L(g+p)4k-2+m4k —2]

(24a)

and

2 (—1)n+1+k++1 $(g+ p)2k —1 m2k —1]
+PE Z Lm(E+P)]k '~' zW2„(z), (24b)

=o k=1 (1,n+k) (1,e—k+1) L(g+p)4k —2+m4k —2]

( 1)n+1+k

zW2„(z)

(2k 1)( 1)n+1+k 2m2k —1 (g+p)2k —1

+eZ E W2„(z) . (24c)
n~ k=1 (i,e+k) (1 e—k+1) (E+p)4k '+m4"—

2(—1)n n+1 2m4~ —'
H/E= P

(2e+1)(1,e) (1,n) k=1 (1,e—k+1)(i,n+k) (8+p)'" '+m'~'-

If s is actually a complex variable, the upper limit of
the sum on e in Eqs. (23) and (24) is oe. For
z= s(n p)/p, it is unnecessary to specify the upper limit
because of the termination property of the SMP.

Mathews4 has obtained a series expansion of H/E in
terms of projection operators derived from the in-
Gnitisimal generators of the Poincare group. His result
can be shown to be equivalent to that given in Eqs.
(23c) and (24c) by expanding the projection operators
in terms of SMP. The coeKcients in the expansion of

H/E in terms of projection operators are also spin
independent but the explicit form of a given projection
operator depends upon the spin.

The polarization operator 0 is defined by

O=SPs5 '. (25)

Since s p commutes with S, the projection of 0 onto the
momentum direction is particularly simple and may be
written as

' P. M. Mathews, Phys. Rev. 143, 987 (1966). 0.p = —yszH (z)/E. (26)
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Here, ys in the representation of Eqs. (14) is given by Apply S to t,& given by Eq. (30) and one has

Se,I,= [cosh(8k) —y5 sinh(8k) jv, g, . (36)(—1 0

0 1i
(27)

But by using Eq. (20) we have, for example,

cosh(8k) = —', (e"+e—")
=-'f[(E+p)i 3'+[(E+p)/ 3 ') (3&)

If one uses Eq. (23c) or (24c) for H(s)/E in Eq. (26),
the resulting expression for 0 y will be of one higher
degree in s=s(a. p)/P than is necessary. This can be
remedied by application of the recursion relationships

s'Wg„+g(s) =W2„+3(z)+(v+1)'W2„+g(s), (28a)

It then follows that

S" = '([(E-+P)l~h"+[(E+p)l~)
v—~[(E+p)/mj'+y [(E+p)/~j ")-.„,

s'W2„(s) = W2„+2(s)+ (u+-,')'W2„(s) . (28b)

Using Eqs. (28), it is a simple matter to express 0 p m ~1 —H( &5)[( +P)/ j
the standard form of Eq. (5) or Eq. (6); the result will +(1+F5)[(E+p)/vs' —~)z,„. (38)
not be given here. Thus

D. THE MASSLESS LIMIT

pea= &'4k ) (29)

and a polarization eigenvalue equation

Ps p'4k= k'e'ea ) (30)

where we have taken the polarization axis along the
momentum direction. The laboratory-frame eigen-
functions follow from the v, & by the application of the
generalized Foldy-Wouthuysen transformation S. In
the massless limit, however, S as defined by Eq. (13)
does not exist, but m'S does. Therefore, the laboratory
functions are taken to be

tp, p=tÃ Ss~k) (31)

Let the eigenfunctions for a particle of arbitrary mass
be denoted by v, & in the rest frame. The v, & satisfy an
energy eigenvalue equation

4"=-: {(1—v.)[(E+p)/ ~

+(1+v )[(E+p)/ $-"},. (39)

Now, in the limit as m ~ 0, it is clear that only the
terms with k =&s are nonvanishing. Therefore we have
in the limit

4.~=~3(2P)'[(1—75) ~~..+(1+75)&k,-,)~.k (40)

which agrees with Good, Hammer, and Weaver. '
It is to be noted that this result can also be derived

by using the explicit form of S in terms of the SMP. In
that case, the only polynomials which remain in m'S
after the limit is taken are the projection operators for
the states k= &s.

For other than the massless limit, Eq. (39) gives the
helicity states, that is, states with the polarization
along the direction of momentum. It is a simple matter
to construct states of polarization along other than the
momentum direction. For example, if N, I, is defined by

which are well dined even in the massless limit. One
cannot, however, perform the inverse transformation
back to the rest frame after the limit is taken, since the
inverse m '8 ' does not exist in the limit.

To demonstrate that in the massless limit the wave
functions have only two components we shall use the
functional form of S given by Eq. (16). It will be
convenient to change from the variable s=se p to the
variable x=ps p. These are related by

Pule Buck y

Ps eu, ~=ku, ~,

where e is some arbitrary direction then clearly

"~1—~(~~0)&.a,
where

E(, )= "

(41)

(42)

is the rotation operator for a rotation of q = cos—'(p ~ e)
about the direction pX e; i.e., a rotation from pola, riza-
tlon along the p direction to polarization along the e
direction. Under the generalized Foldy-Wouthuysen
transformation, R becomes SRS '. Therefore, states of
polarization along 8 may be written in terms of the
helicity states, given in Eq. (39), by

(32)v5P
Then we have

cosh(8s) = cosh( 8y5Px) = co—sh(8x), (33)

where we made use of the facts that the hyperbolic
cosine is an even function of its argument and that
[7&P,x)+——0. Similarly,

sinh(8s) = —sinh(8y5Px) = —7' sinh(8x) . 34

Then, from Eq. (16) we have finally

S= cosh(8x) —y5 sinh(8x) .

4'.q(p, s,e) =SRS 'f, s(y, s,p). (44)
( )

The SMP expansion of R has already been given in
One can use the functional form of H given by

(35) Eq. (18) to show that in the massless limit the effective
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Hamiltonian may be written as

H= —Vss p/s. (45)

As is evident from Eq. (40), the eigenfunction decom-
poses into two functions, each having 2s+1 components
and from the form of Eq. (41), the 2s+1 square
Hamiltonian is s p/s.

To derive Eq. (45) we shall use the polynomial form
of H rather than the functional form. In particular, we
shall illustrate the proof by doing explicitly the case of
integral spin. From Eq. (23c) using Eq. (32) we have
in the massless limit

We have used plane waves to investigate the massless
limit. In the more general case, one would want to work
with properly normalizable wave functions which may
be written as'

it(r, t)= (2s) '~'m' d'pE 'Q A, g, (p)S(,p

XexpLi(p r—eEt)], (52a)

or defining the rest-frame function C (r,t) by

C (r,t) = (2s.) '" d'pE 'I' Q A,s(p)s, I,

( 1)n
&IE=Pvs 2 Ws~t(x)

~-s (2n+1) (1,n+1) (1,n) we have
Xexpgi(p r—eEt)], (52b)

P(r, t) =E '"m'SC (r, t. ), (52c)

Since x and y5 anticommute we have that

( 1)n+i

+P +~ x s"+t(*) ' ( ) which is properly defined even in the massless limit.i,n+1 i,n+1
For each fixed spin, then, we can define an inner product

Thus

&/E(i~vs) s..+.

LW&.+t(x),vs]+= 0,

LxWs„~t(x),vs]= 0.

(47a)

(47b) This specifies a positive definite Hilbert space, and
furthermore this inner product is Lorentz invariant. As
shown in Ref. 2 this inner product is written as

(—1)-W,.+,(s)= ~pvs(i~vs) Z &e,ge
~~ (2n+1) (1,n+1) (1,n)

(—1)"+'sWs~t(s)
+P(i~vs) 1+Z t), ,p, . (48)

-s (1,n+1) (1,n+1)

A little algebra using Eqs. (2) and (4) shows that

(p(l) g, (n)) m—ss ds&1t, (i) E(S-&)tS—
&1t,(~) (54)

so that m s'E(S ')&S ' plays the role of an invariant
metric operator. Although m 'S ' does not exist in the
limit as m ~ 0, this invariant metric must, as may be
readily displayed. From Eq. (17) we have immediately
that

(—1)"Ws„+t(s) =1,
~=() (2n+ 1)(1,n+ 1)(1,n)

8—=m "E(S ') t(S ') =m "Esech(28s) .
In passing we note that since

(55)

and
(—1)"+' W ( )

-s (1,n+1) (1,n+1)
b)

we have

so that

P, tanh28s]+= 0,

[H,P]+=2E sech(28s),

(56)

(57)

Therefore we have

or
&/E(1~ )vs.s,+.=Pvs(i~vs) (~& .+.)

II/E(1~»)s„~,=pv, (iwv, ) (x/s)s, ~,

=Pvs(*/s) (i~vs)s, + ~ (50)

Thus, when operating upon f,s the effective Hamil-
tonian in the massless limit is

It is easy to express the metric 8' in terms of SMP by
noting that sech(28z) appears in the Hamiltonian given
in Eq. (18) with the coefficient p. Thus, in terms of
SMP, sech(28s) is just the factor multiplying P in
Eqs. (23c) and (24c).'

Recently, it has been showns that the metric $H,Pf+
gives an invariant integral by using the fact that the
wave function f satisfies the Schrodinger-Klein-Gordon
equation and the assumption that the Hamiltonian II

(51)H= pPVsx/s= —Vss p/s. ' Matthews has also noted that 4 is proportional to the coefBcient

It i i to ot th t f o l eplaces x b of t) in ff. See P. M. Matthews, Phys. Rev. 145, 985 (1966).t is amusing to notice t a i one mercy reP aces x y 'D. Shay H. S. Song, and R. H. Good Jr., Suppl. Nuo&s in Eq. (46), Eq. (51) immediately follows. Cimento 5, 455 (1966).
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is Hermitian in the usual way. That B is Hermitian is
apparent from our representation in terms of SMP.
Furthermore, Eqs. (55) and (58) establish the
equivalence of the metric $H,P)+ and the metric
m "E(S ')t(S ') used in Ref. 2.

The metric for the case of the massless limit,

(59)

First the summation is changed to go from 0 to e and
Eq. (4b) with a= n+3 is used to eliminate (—1)~.

2(k+1) (—1)~

D=g
~=0 (i,n+2+k) (i,n —k)

~ 2(n+3, k)(—2—n, —k)(1,k+1)
(A2)

(1,n+2+k) (1,n —k) (i,k)
is particularly simple in that it contains no matrices.
In deriving this result, one must use the fact that k can»om Eq. (4a) one obtains

have only the values &s in this limit. (1,n+2+k) = (1,n+2) (n+3,k), (A3)

E. CONCLUSION

We have shown how the Hamiltonian and other
relevant physical operators for a free particle of arbi-
trary spin and mass may be formulated in terms of the
spin matrix polynomials. The principle advantage of this
formulation is that while the number of terms in the
expansion is determined by the spin, the coeKcients are
spin-independent. The massless limit becomes particu-
larly simple in that after the limit is taken only those
SMP which project out the states of & helicity remain
in the transformation.

The SMP have of course been developed for the cases
of a single 6.xed value of spin. Thus, they are applicable
to problems involving a single representation of SU(2)
or R(3). It is interesting to speculate about the use of
suitable generalizations of these polynomials to prob-
lems involving higher groups wherein a single irreducible
representation of the group may contain several
irreducible representations of SU(2).
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APPENDIX

In order to complete the derivation of Eq. (9) it is
necessary to show that

2k( —1)~+'

(—2 —n, —k) = (—2—n, —n)( —2—2n, n —k), (A4)

and from the definition of the Appell symbol

(1,k+1)= (2,k). (A5)

Making these substitutions, Eq. (A2) can be written as

2 (—2—n, —n) ~ (—2—2n, n —k) (2,k)D—
(i,n+2) ~=o (i,n —k) (i,k)

2(—2—n, —n) (—2n, n)

(1,n+'2) (1,n)
(A6)

the summation following from Eq. (4c). Next using
Eq. (4b) we set

( )
(—2n, n) =

(1+2n,—n)
(A7)

and

to obtain

( 1)n
(—2—n, —n) =

(3+n,n)
(A8)

(A11)

(A12)
we have

D=2$(i,n+2)(1,n)(1+2n, —n)(3+nn)j —'. (A9)

Now setting

(n+3,n) = (2n+2) (2n+1) (n+3,n —2), (A10)

and applying Eq. (4a) twice

(n+3,n —2) (1,n+2) = (1,2n),

(1,2n) (1+2n, —n) = (1,n),

&=i (1,n+1+k) (i,n+1—k)

(2n+1) (1,n+1) (1,n)

D = 1L(2n+ 1)(n+ 1)(1,n) (1,n)j '.
Then Eq. (A1) follows with the substitution

(A1)
(n+1) (1,n) = (1,n+1) .

(A13)


