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able because of its classical nature and an uncritical
application of the correspondence principle. If the
renormalized momentum is taken as the quantum
counterpart of the classical momentum, all these dif-
6culties are resolved.

V. SUMMARY

It has been shown that care needs to be exercised in
discussing the classical limit of quantum electro-
dynamics. For vacuum phenomena, the photon density

must be large and the frequency must be low, though it
is not well known how the frequency must decrease as

the density increases, for Maxwell theory to be valid.
In the presence of electrons, forward scattering of
photons introduces a new class of renormalizations,

account of which must be taken in interpreting the
results of classical calculations because no counterparts
of these renormalizations exist in the classical theory.
When these renormalizations are included, a number of

apparent discrepancies between classical and quantum
calculations are removed.
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We have measured the diR'erential and total cross sections and polarization of the Z' from the reaction
e. +p ~Z'+E' with 1170-MeV/c pions incident on the Alvarez 72-in. hydrogen bubble chamber. Using

524 single-h events (where the only visible decay is that of the h from the decay y' ~ 4+y), 138 single-K'

events (where only the X decay is visible), and 256 double-vee events (where both h and E' decays are

visible), we and the coeifrcients in the Legendre expansion of the differential cross section do/dQ=AePe

+AqP~+AsPs to be Pe=19.68+0.60 pb/sr, Aq= —0.04&1.20 pb/sr, and As=14.54&1.60 pb/sr, cor-

responding to a total cross section 0.=247~10 pb. No polynominals higher than P2 are needed. Using both

single-tt and double-vee events, we 6nd the coetficients in the polarization expansion Pzdo/dQ= ,sinez-
(B~+B2cossz) to be B~=—9.98~8.29 pb/sr and Bs= —35.45&21.88 pb/sr. In both angular-distribution

and polarization studies a single-A. event is statistically equivalent to about one half of a double-vee event.

I. INTRODUCTION

E have measured the angular distribution and
polarization of the Z' in the process

sr +p —+Z'+K',
Z' —+ A.+7,

(1a)

(1b)

using 11"/0-MeV/c sr incident on the Alvarez 'l2-in.

hydrogen bubble chamber. We use 256 double-vee

events where both the K' and the A decay visibly via
the charged modes

and
K' —+ sr+1 sr

A-+ p+sr .
(2)

(3)

We also use 524 single-A events where the decay (3) is

observed, but (2) is not, and 138 single-K' events where

(2) is observed and (3) is not. All', three types of events

are used to 6nd the angular distribution, and both
double vees and single A.'s are used to Gnd the Z

polarization. We extract from the data a maximum

amount of information on the Z polarization. Our

method can be applied in other reactions involving

polarized, Zo's.

*This work was done under the auspices of the U. S. Atomic
Energy Commission.

In a later paper we shall present our results for
sr +P~ Z +K+ at the same momentum. We defer

until then a comparison of the experimental results
for z- +p ~Z'+K', m. +p ~ Z +K+, and sr++ p ~
X++K+ with the predictions of charge independence. '

II. SELECTION OF EVENTS

Events corresponding to Z' production must be dis-

tinguished from the topologically similar events resulting

from A production via the reaction

sr +p~h. +K'.
Whenever there is a visible Eo decay both 2' and A.

production are kinematically overdetermined. We then

use the 6tting program rACKA. GE and select events on
the basis of Xs. For these events (single K's and double

vees) there is no ambiguity between Z' and A production.
' For earlier experimental results on X+X production at pion

momenta near 1 BeV/c, see F. S. Crawford, Jr., R. L. Douglass,
M. L. Good, G. R. KalbQeisch, M. L. Stevenson, and H. K. Ticho,
Phys. Rev. Letters 3, 394 (1959),which includes earlier references;
J. A. Anderson et at. , in Proeeef&tgs o/ the 1NZ Irttermatiortal
Conference on High-Energy Physics at ChES, edited by B.Ferretti
(CERN Scienti6c Information Service, Geneva, 1962), p. 270;
R. Kraemer et al., ibid. , p. 273; J. R. Albright et al. , ibid. ,
p. 276; F. S. Crawford, F. Grand, and G. A. Smith, Phys. Rev.
I28, 368,(1962); Y. S. Kim, G. R. Burleson, P. I. P. Kalmus, A.
Roberts, and T. A. Romanowski, ibvid 143„1028 (1966). .
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Fio. 1. Square of the missing mass recoiling against the ob-
served h., for double vees treated as if they were single A.'s. Un-
shaded events peaking at m'=m'(E') are obtained from 812
double-vee events from A —X' production. Shaded events are 426
double-vee events from Z' —E production. The rectangular dis-
tribution labeled m'(K'+y) is the theoretical distribution in m'
for 426 Zs —E' events at 1170 MeV/c, ignoring efiects of measure-
ment errors.

The single-A events are treated separately. The pro-
duction vertex can be fitted with one constraint (1C) for
the A production; it cannot be fitted for Z' production
because of the lack of knowledge of the momentum of
the gamma ray from the Zs decay, reaction (1b). We
proceed as follows.

(A) We fi.t all single-A events to the production reac-
tion (4). If X'(1C) for reaction (4) is less than 8.6, the
event is accepted as a A production. ' Some good Z'-
production events are lost by this procedure. To esti-
mate that loss, we study our fitted double-vee Z'-
production events, which we kmom are Z' and not A

production. Fitting these double vees as if they were
single A.'s, we 6nd that (4.3+1.6)% fit reaction (4) with
X'(1C)(8.6. These would be lost if they were single
A's from Z production.

(B) The remaining single A.'s with Xs(1C)&8.6, are
mostly but not entirely due to Z production; they are
slightly contaminated by A-production events. We esti-
mate this contamination by studying our fitted double-
vee A.-production events, which we keom are due to A

production. We fit them as if they were single A' s. We
Gnd that (1+1)%of them have X'(1C)&8.6, and would
therefore be included among our Z' candidates if they
were single A.'s. Our subsequent procedure I paragraphs
(C) and (D)) reduces this contamination to (sr&is)%.
Since we have 1500 single A's with X'(1C)(8.6, we ex-
pect approximately 8&8 contaminating A-production
events in our sample.

(C) We calculate the invariant missing mass m re-
coiling against the observed A. For A production m'
should, in the absence of measuring errors, correspond

'Experience has shown that for a correct hypothesis the x'
distribution for PAcKAGE fits to 72-in. chamber events agree with
the theoretical x' distributions for the appropriate constraint
class, provided the theoretical values of I' are multiplied by 2.
Thus our 1C cuto6 at x'=8.6 corresponds to a theoretical x'
of about 4,3,
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Fxo. 2. Square of the missing mass recoiling against the observed
h., for single-A events that do not fit h.—E production. The rec-
tangular curve labeled (IP+y) is the expected distribution for
Z0 —Eo production, neglecting measurement errors; the smooth
curve has the resolution in m' folded in. The resolution function is
taken to be the en~ distribution for A.—E production of double-
vees treated as single A.'s, i.e., the unshaded distribution of Fig. 1,

to the m' of a E, m'(E )=0.248 BeV . For Z produc-
tion, m is the invariant mass of the system Es+y,
where the gamma ray is from Zs-+A+&. At 1170
MeV/c incident-pion momentum m'(K+y) can vary
between the lower and upper limits 0.286 and 0.388
BeV'. Between these limits the distribution dE/d(tn')
is flat. (This can be shown to follow from the facts that
the decay Z' —+ A+& is spherically symmetric and that
the pion beam is monoenergetic. The spherical sym-
metry follows from parity conservation, which is
assumed to hold because the Z' decay is electromag-
netic. ) We illustrate these two distributions in m' by
treating all of our double vees (both A and Z' produc-
tion) as if they were single A' s. The results are plotted
in Fig. i.

(D) For all single A's with X'(1C)&8.6 we calculate
m' and plot the result in Fig. 2. The square distribution
is that expected for Z' production in the absence of
measurement errors. The smooth curve is obtained by
folding the square distribution with the resolution func-
tion. For the resolution function we use the experi-
mental distribution in tn' for fitted double-vee A—

production events, treated as if they were single A' s;
i.e., the distribution centered on m'(Es) in Fig. 1. Of
the single A. 's with X'(1C)&8.6 we accept as
production events those with m' greater than m'(Ks).
We believe that the ten shaded events in Fig. 2, which
have nz'( m'(K'), are due to A. production with
X'(1C)&8.6. Correspondingly there should be approxi-
mately 10~3 contaminating A's in the accepted region
m'&m'(K').

I This substantiates the estimate, made in
paragraph (B), of 8&8 contaminating events. $ We
do not expect and do not find any single-A events
that have X'(1C)&8.6 and have m' very close to
m'(K'). For example, single-A. events with m'= m'(E')
must have X'(1C)=0. Furthermore, most (70%) of the
A-production events have a calculated standard devia-
tion in nz' of less than 0.01 BeV', according to our study
of double vees. Thus we expect a hole in the distribution
of Fig. 2, with width of order 0.02 BeV' and centered at
m'(E'), corresponding to the removal of events with
X (1C)(8.6. Finally, we may notice in Fig. 2 a slight
depletion in the m' distribution near the lower end of the
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expected distribution for Z -production events. We
believe this depletion corresponds to the 4.3% loss of
good Z"s that have X'(1C)(8.6 discussed in para-
graph (A).

The (corrected) numbers of events are related to these
quantities by

D=&&z&~,
K =EBrr(1—Bi),

The above selection procedures for Z'-production
events yield 426 double vees, 582 single A.'s, and 187
single E's. These numbers are reduced by 6ducial-
volume criteria to 256 double vees, 524 single A.'s, and
138 single K's. (The largest fiducial loss results from our
demand that a single A travel at least 0.8 cm before it
decays; for a double vee or single K we demand that
the Ko travel at least 0.8 cm before it decays. ) In cal-
culating physically interesting quantities each event
(i) carries a weighting factor b;&~1 that includes all

fiducial corrections as well as correction for the attenua-
tion of the pion beam in the chamber. %e choose the
decay 6ducial volume larger than the production 6ducial
volume so as to avoid fluctuations from accidentally
large values of b;. The weighted or "true" number of
events E is given by

A =EBg(1 Brr—),
which can be solved, for

Brr D/(D——+A), .

Bs D/(D——+K),

E= (D+K)(D+A)/D.

Inserting results (6) into Eqs. (7) yields

B~=0.401+0.018,

Bg=0.657&0.025,

S=1901+78.

(7a)

(7b)

(7c)

(8)

(9)

(10)

Single E's:

Single A.'s:

E=261.4&23.4,
h.=747.9+32.7.

(6b)

(6c)

IIL BRANCHING RATIOS AND
CROSS SECTIONS

The three results D, E, and A. are used to Gnd the
more interesting quantities E, JBE, and 8&, where E is
the "true" number of Zo-production events (1), in-
cluding all visible and invisible decays, and where BE.
and J3~ are the branching ratios

and
Bir=—I'(Ki' ~ z+s —)/I'(all K )

B,= r(A ~P~-)/1(ail A).

g=g b.~[g b. ]isl s

=E.b.(b)&[X.b.(b')j'", (5)

where the sums extend over the observed events i= 1
to 1V,b„. The brackets ( ) incan an average over the
data. )We use weighted counts as in Eq. (5) not only
for the entire sample, i.e., to obtain absolute cross sec-
tions and branching ratios, but also for subsamples used
to find angular distributions and polarizations. g For the
entire sample we find for double vees, single E's, and
single A' s, respectively, the values (b)=1.76, 1.74, and
1.29, and (b')'~'= 1.85, 1.84& and 1.30.

The weighted number of single-A. events is further
corrected by subtracting a fraction 10/582 of con-
taminating h.-production events [see paragraph (D)]
and by adding a fraction 0.043 of good Z"s lost because
they had X'(1C)(8.6 for the h.-production fit [see para-
graph (A)j.After correcting for scanning efficiencies of
0.972 for double vees and 0.929 for single vees, we ob-
tain the corrected numbers of Z'-production events:

Double vees: D= 501.2&30.7, (6a)

Our branching ratios (8) and. (9) are in fair agree-
ment with current world averages B(Ki)=—2Brt=0.685
&0.010, and B~=0.663&0.010.'

From our result (10) and our pion track length we ob-
tain the total cross section at 1170 MeV/c:

o.(z- p —+ ZoKo) =247&10pb.

IV. ANALYSIS OF ANGULAR DISTRIBUTION

A. Double Vees and Single X's

We write the differential counting rate dE~ for Z"s
produced at p in dp in the Legendre polynomial expansion

diaz= N(p)dp = s [A oPo+A tPt(p)+AsPs(p)]dlj, (12)

where p, =—~.Z=—cos8~ is the cosine of the angle between
the incident pion direction ~ and the produced Z direc-
tion Z in the c.m. system. For double vees and single
E's, p, is known for each event. Ke find the coeKcients
in Eq. (12) by the method. of least squares using weighted
counts as given by Eq. (5). Redefining the coeflicients
in Eq. (12), we write the absolute differential cross sec-
tion [normalized to our integrated-cross-section result

(11)j in the form

do/dQ, =A oPo+ A tPt (p)+A sPs(lz) .

We find from the double vees and single E's

A o= 19.68&1.03 pb/sr,

A i——3.06%2.01 pb/sr,
and

(13)

(14a)

(14b)

,A=1 .39+7.25p7b/sr, (14c)

with X' probability 64%. No polynomials higher than

Ps(p) are needed.

'A. H. Rosenfeld, A. Barbaro-Galtieri, W. H. Barkas, P. L.
Bastien, J. Kirz, and M. Roos, Rev. Mod. Phys. 37, 633 (1965).
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FIG. 3. Schematic diagram in velocity space for the production reaction m +p ~ Z'+E', followed by the decays Z ~ A.+& and A. ~
P+m. . The dots labeled lab, c.m. , x- „Z, X, A. and pQ y correspond to the rest frame of the target proton, the c.m. frame for the
production reaction, and the rest frames of the incident pion, the produced Z' and E', the A. from Z' decay, and the proton from A

decay. The unit vectors labeled &, Z, and A. correspond to the direction of the velocity of the incident pion, the Z', and the h., all with
respect to the c.m. frame. The unit vector q is along the velocity of the A, in the Z frame. Each unit vector is uniquely dered only
in the Lorentz frames which it "connects. " (For example, 8 is along the h velocity in the Z' frame, or along the negative of the Z' ve-
locity in the it frame, but is not uniquely defined in the c.m. , lab, or n;„ frames. ) The angles o., p, and y are defined by cosa=2 h.

(in the c.m. frame), cosp=A 8(h. frame), and cosy= q Z(Z' frame). Since we are dealing with relativistic particles, ~the Euclidean
relation p=o+P does not hold; therefore we call the diagram "schematic. " The angles 8s and 8& are defined by cos8x=@=8 Z (c.m
frame), and cos8&=—iix=8 A(c.m. frame). The right-handed Cartesian coordinate system 9, g, s can be defined in the ZD frame by
9=~ x=n and y = s &&1.Here n is a unit vector normal to the production plane and dedned in the c.m. ,lab, and Z' frames. In the c.m.s—,x—n, an y —z . er
system it is given by n= (8XZ)/~ 8&(Z!. Spherical coordinates for the unit vector j are defined in the Z' frame. The polar axis is s,
the polar and azimuthal angles are y and p. Further relationships between the angles are given in the Appendix.

Az ——(2I.+1) Pz{p)dlVz. (15)

In the method of moments we replace the integrals in
Eq. (15) by sums over weighted counts. We thus de-
fine "experimental" values of A& by

(16a)Ap=g b;=E,

and
Ai ——3 Q b;P;(fr~), (16b)

As ——5 g b;Ps(ja;), (16c)

with standard deviations and correlations given by
generalizing the expression for the error in Eq. (5);

B. Sing1e A.'s

For the single A's it is convenient to use the method of
moments described below to Gnd the coeKcients AI,
corresponding to Eq. (12). By multiplying Eq. (12) by
Pr, (p) and by integrating over p, from —1 to +1, we
project out the coe%cient Ag'.

for example, by inspection of Eq. (16), the off-diagonal
error 8A&8A2 is given by

bAibAs=15 Q bPPi(p, )Ps(p;), (17)

with similar expressions for the other elements of the
error matrix.

For single-A. events we cannot determine p, =—cos8q.
Therefore we cannot apply Eqs. (16) directly. How-
ever, we can determine cos0q —=pq—=x A, where 0~ is the
angle between the incident-pion direction x and the ob-
served lambda direction A in the c.m. system of the
incident pion and target proton (see Fig. 3).Now, es and
0~ are merely the polar angles of the incident-pion direc-
tion x in two different spherical-polar-coordinate sys-
tems in the c.m. frame; as such, they are related by the
addition theorem for Legendre polynomials, namely,

z (I.—m)!
Pz(px) =Pi(cos~)Pz(p)+2 Z Pz"(I )

m=i (L,+gg)!

)&Pr,"(cosn) cost m(-', ir —p)), (18)
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where )x is defined in the c.m. frame by cosn =—h. 9, and

p is the azimuth of the unit vector X in the coordinate
system of Fig. 3 in both the Z' and c.m. frames. Note
that n is a function only of p, the polar angle of the h,

direction in the Z frame, for a given Z' speed in the c.m.
system. (The dependence is given explicitly in the
Appendix. ) The factor (-,')r—p) in the azimuth argu-
ment of Eq. (18) is the azimuth of the pion, ~~m, minus
the azimuth of the lambda, p, in that spherical-polar-
coordinate system in the c.m. frame defined by the con-
ditions that the polar axis be S=Z and that the vector
m be in the y-s plane with positive y component. Defini-
tions of angles and coordinate systems are discussed in
the Appendix.

Now let us define coefBcients AI, ', in terms of which
the lambda angular distribution can be expressed in a
form analogous to Eq. (12). By analogy with Eq. (15)
we define

I I I I I 'I i I I "I

30

. ..cn 20

Cy

b
IO—

0 I I I I I I

-1.0 - 0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
COS ez

I I

0.6 0.8 I.O

FIG. 4. Angular distribution for Z production. The data points
shown are obtained from the single E's and double vees only. The
smooth curve and its error band are obtained from the best-Gt
parameters, using all of the data including single h.'s.

A r,
'= (2L+1) P—z, (IIg)dNJ) ) (19)

and

Az'= (2L+1) Pr(cosu)Pz(IJ)de J, . (21)

Now inserting Eqs. (20) and (12) into Eq. (21) and using
the orthogonality of the Legendre polynomials, we

obtain

mr here
A I,'= AI,IJ.,

d(cosy)
Ir, = Pr, (cosn)

2

(22)

(23)

Note that the Il, are purely kinematic integrals de-

pending only on constants of nature and the incident
beam momentum. Kinematic and geometric relations
used in the calculation of the I~ are given in the
Appendix.

Then by defining "experimental" values of the Al, '

)in strict analogy to Eqs. (16)7 by

Ap'=Q b;Pp(IJ)g;) =N,
Ar'=3 2 &'Pr()t)~')

(24a)

(24b)

where the differential distribution dS~ of A s arising
from Z 's produced at p in dp and decaying into solid
angle dQ& is given by

dQ~ dP d(cosy)
dNg N(y)di)) = N——(IJ)dlj, .—(20)

4x 2m 2

The distribution N(p)dp is given by Eq. (12), and the
factor dQ&/4)r expresses the spherical symmetry of the
decay Zp —+A+y. Using the results from single X's
and double vees, we assume that no polynomials higher
than P2(p) are needed. Then upon inserting Eqs. (20)
and (18) into Eq. (19) and integrating, we note that all

terms in the sum over m have a factor cosLm(-', )r—g)7
which integrates to zero in the p integration. Thus the
only remaining term is

and

Ap= 19.68+0.75 pb/sr)

A r =—2.14&1.54 pb/sr,

(25a)

(25b)

Ap ——15.66&2.07 pb/sr. (25c)

Within the statistical errors, the results (25) obtained
for single A's agree with the results obtained in Eq. (14)
for double vees and single K's. We combine (14) and
(25) by least-squares analysis to obtain our 6nal result
for the entire sample for the differential cross section,
Eq. 13:

A p
= 19.68+0.59 pb/sr, (26a)

A r =—0.04&1.19pb/sr, (26b)
and

Ap ——14.39&1.58 pb/sr,

with o6-diagonal errors given by

8A p8A r =+0.056(pb/sr) '

8A p8A p =+0.298(pb/sr) ',
and

5A rBAp= +0.017(pb/sr)'„

(26c)

(27a)

(27b)

(27c)

Ap'=5 Q M'u(p~. ) (24c)

we can calculate experimental values of the desired
quantities Al. from the calculated quantities II, and
the measured Ar, ', using Eq. (22).

For an incident-pion momentum of 1170 MeV/c, we
find Io= i, Ii= 0.96i, and I2 ——0.884. Note that in the
limit of zero gamma-ray momentum, or of infinite Z'
momentuIn in the c.m. system, the direction of the
A in the c.m. system would be that of the Z', whence
pq—=p. In that case we would have n =—0 and then Il,=—i
for all L, so that Al. '=—AL, , as expected.

We now redefine coefficients AL, so that they cor-
respond to the absolute differential cross section (13),
normalized to the total cross section. The single A' s
alone then give
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The angular-distribution data from single K's and
double vees and the smooth curve corresponding to the
complete sample are shown in Fig. 4.

Px= —(Pz j)t7 (30)

where j is a unit vector along (or opposite to) the direc-
tion of the gamma ray in the Zo frame. We choose j
opposite to the gamma-ray direction, along the direc-
tion of the h., as shown. in Fig. 3. Combining Eqs. (28)
and (30) we have

Ptt ———Pz(fl g)tf, (31)

where P~ is a function of cos8~—=p. The relevant Lorentz
frames are more thoroughly discussed in the Appendix.

Consider any collection of E lambdas, with polariza-
tion expectation value Ptt, decaying via A~ p+sr
Let unit vector k be the direction of the decay proton
in the A frame, and let dQ~ be the corresponding ele-
ment of solid angle. Then the angular distribution of
decays is given by'

dN=(N/4sr)[1+trsPtt k]ding, (32)
'R. Gatto, Phy. Rev. 109, 610 (1958); N. Byers and H.

Burkhardt, ibid. 121, 281 (1961); G. Snow and J. Sucher, Nuovo
Cimento 18, 195 (1960); R. H. Dalitz, Strong Interaction I'/zysics
and Strange Particles (Oxford University Press, London, 1962),
Chap. XII.

~ T. D. Lee, J. Steinberger, G. Feinberg, P. K. Kabir, and C. N.
Yang, Phys. Rev. 106, 1367 (1957).

V. ANALYSIS OF X' POLARIZATION

We consider a sample of Z"s with polarization ex-
pectation value Pz given by

Pz ——Pz@, (»)
where I'z must lie between —1 and +1, and 8 is a unit
vector. Because parity is conserved in the strong pro-
duction process sr +p —+ Zs+Es, ff must be perpendicu-
lar to the production plane. We can thus take

a= (wX~)/[~XZ( (29)

as shown in Fig. 3.
We now derive an expression for Ptt, the polarization

expectation value of the daughter A from the decay
Z -+ A+y. The component of P» along the line of flight
of the gamma ray must be opposite (and equal in magni-
tude) to that component of Pz. This is because in any
eigenstate of the system the gamma ray must have an
angular-momentum eigenvalue of &1 along its line of
flight. Thus, for this component of J(y) =J(Z') —J(A)
the eigenvalue combinations &1= (+s)—(W rs) are
allowed, whereas the combinations (%s)—(&s)=0
are forbidden. Since for each allowed eigenstate the
components of J(A) and J(Zs) along the gamma-ray
line of Qight are opposite, this also holds for the ex-
pectation values P~ and Pz. As for the components of
Px perpendicular to the gamma-ray line of fhght, they
are proportional to the expectation values of the gamma
ray's electric and magnetic 6elds. These components can
be shown to average to zero in our experiment. Finally
we can write4

A. Double-Vee Events

We choose d=g. Then Eq. (35) becomes

dN=-', N[i —crttPz(t1 t7)(j k)]d(j k). (36)

We now specify the sample F in more detail. We 6x
the Z'-production angle ez. Then Pz(tt) is fixed. Because
of the spherical symmetry of the Z' decay, events will
be distributed un. iformly in 8.j between —1 and +1.
(We verify this, within statistics, in Figs. 1 and 2.)
Thus Eq. (36) may be written

d'N=-'N[1 —crxPz(fl j){jk)]d(j k)d(fl g), (37)

where E~ is a function of p, and where Sis the number of
Z productions at p, within soxne interval in p, .

We now use the method of moments to 6nd I'z(ts)
We multiply Eq. (37) by the projector (8 tf)(j k) and
integrate over 8 j and j.k. Each integral of the 6rst
term is zero, and each integral contributes a factor ~2

to the second term. Thus we have

(& g)(y k)d'N= —N,Z,/9. (3S)

In the nmthod of moments we replace the double in-
tegral on the left side with a sum over weighted counts.
Thus we have

NottsPz 9Q b,(8—.j);(j k);——. (39)

The standard deviation is given by

8(NcraPz) =9[2 b's(f1'g) s(j'k) s]' ' (40)
'Equation (33) is obtained by averaging the results of J. W.

Cronin and O. E.Overseth, Phys. Rev. 129, 1795 (1963) with other
results compiled in Ref. 3. The positive sign for 0fg corresponds to
the conventions we use in Eq. (32). Physically, it corresponds to
the fact that the decay protons prefer positive helicity.

where
try =+0.66 (33)

is the decay-asynunetry parameter. ' Inserting Eq. (31)
into Eq. (32) we obtain

dN= (N/4sr)[1 —crttPz(8 j)(j k)]dQy. (34)

In our applications of Eq. (34) we use spherical polar
coordinates to describe k. The polar axis is along an
as-yet-unspecifted direction a. We integrate Eq. (34)
over the azimuth of k about d. (We want to choose d
so that this integration does not discard useful decay-
asymmetry information. ) Then Eq. (34) becomes

dN=-'sN[1 —nttPz(8 g)(tf. d)(d k)]d(d k). (35)

From Eq. (35) it is apparent that the choice Q=g pre-
serves all of the decay asymmetry. Any other choice re-
duces useful information by the factor (d j). For the
double vees, j is known, and we naturally choose 6=j.
We also use the single-A events, where j and 6 are
not known; in that case we cannot choose 4=g. It then
turns out that the choice 6=f4, with A'tt =—(rrXA)/
~vrXL~, yields the maximum decay asymmetry infor-
rnation. (Single h. 's are discussed in Sec. B below. )



STUD Y OF s. + p-+Zcs+ Es AT 1170 Me V/c

1V(fs)Pz(Is) dls =-,' sin8z(Bt+Bsls)dls.

Thus Eq. (37) becomes

d'A
=-'1V( )

dpd(fl q)d(q k)

(41)

—g'ng sin8z(Bt+Bsls)(6 q)(g k) . (42)

We use Eqs. (39) and (40), renormalized to cross sec-
tion instead of counts, to calculate the experimental
points in the histogram shown in Fig. 5.

From the results of our study of the angular distribu-
tion, we believe that we need consider only S- and I'-
wave production of Z"s, since we need only coefficients
through A2. %e wish to find the appropriate parameters
for the Z' polarization times differential cross section.
We again use the method of moments. In Eq. (37) we

specify E in more detail as the number of Z' produc-
tions with a given value of cosa' =—p in dp. Thus we re-
place 1V in Eq. (37) by 1V(Is)dls, where N(fs) dls, is the same
as the Legendre-polynomial expansion Kq. (12), with
coefficients Ar, given by Eqs. (26). Similarly we replace
1VI'z in Eq. (37) by an expansion for 1V(fs)Ez(Is)dfs, with
coeKcients Bj.and J32, given by'

I I I

20

-20—N

-30—

I I I

-I.O -0.8 -0.6 -04
I

-0.2 0.0
Cos eg

*I
I I

0.2 04 0.6 Q8 I.O

Finally we rede6ne 8~ and 82 in terms of polarization
times absolute differential cross section (instead of times
counts), and also set ns ——+0.66. Then Bt and Bs are
dined by

FIG. 5. Polarization times differential cross section for Z0 pro-
duction. The data points shown are obtained using Eqs. (39) and
(40) with double vees alone. The smooth curve with the error band
is obtained from the best-fit parameters, using all of the data in-
cluding single A' s.

d0
Ez(Is)—= s sln8z(Bs+Bsp) .

dQ

Our object is to determine Bj and 82. First we multi-

ply Eq. (42) by the projector (I1 q)(q k) and integrate
over f1 q andq k from —1 to+1.Asin our derivation of

Kq. (39), each integral of the 1V(Is) term is zero, and each
integral contributes a factor s to the nss term. The right
side of Eq. (42) becomes —(1/18)nq sin8z(Bt+Bsls). To
obtain the Bj term, we multiply by sin8z and integrate
over cos8z =—Is from —1 to +1.s The term Bsls vanishes
in this integration, and the integral of sin'0~ gives a
factor 4. After these three integrations the right side of
Eq. (42) becomes —(2/27)nstBt. In the method of
moments we interpret the left side of this triple integra-
tion as a sum over weighted counts. Thus

—nqBt ——(27/2) g b;(sin8z);(fl q);(q k);, (43)

(45)

Our results for the double vees are

Bt —12.77&12.42——sssb/sr

Bs —67.21&30.41——Isb/sr.

(46a)
and

(46b)

with a correlation error

(46c)bBrbBs ——+76.28(Isb/sr)'.

B. Single-A. Events

For a single-A. event, j is unknown. Therefore,

j cannot be chosen as the polar axis 0, along which
to measure the A-decay asymmetry. The Z direction
Z is also unknown. Therefore, we cannot choose 6 to be
I1—= (n X&)/ts XZ ~. The only observable directions
(aside from k, the direction of the decay proton) are s-,

h., and B~, where we define

n&=(~X&)—/~ 8XA( . (47)

The asymmetry term in the distribution function Kq.
(35) is proportional to (n q)(q rs)(a, k). Since fl and q
are unknown, it might seem that the single A. 's are use-
less. However, from Fig. 3 we see that

fl q= sing cosslss, (48)

where cosy=—q Z and cosset—= (q z) sing. In the Appendix
we show that, although sts is indeed completely unknown,

y is known for each event. If we can choose 6 so that
q a contains the factor cos@, then (ff q)(q d) contains
cos'p. In dealing with the complete sample we can then
replace cos'sos by its average value of —',, which follows
from the spherical symmetry of the Z decay. The

with a standard deviation analogous to Eq. (40).
Similarly, to determine Bs we multiply Eq. (42) by

the projector Is sin8z(ss q)(q k) and integrate over Is,
fl q, and q k. The 1V(Is) term again integrates to zero,
the Is integral gives a factor 4/15, and the A. q and q k
integrals each give ~~. Thus

—nstBs ——(135/2)p b,ls;(sin8z), (fl q), (q k);. (44)
7 If the weight factors b; were all equal or were independent of

production and decay angles, we could simplify Eq. {40). Suppose
all b; were equal to unity. Then Eq. (40) would become b(Nss+Pz)
= 9Ns "((n sI)'(4 k)')'" where N Zbs, and ( )=denotes an average
over the distribution, Eq. (37). Then we would have ((n q)'(Pj k)')
= ((n 4) )((sf sk)') = (-,') (-,'), Dividing by N, we would have

ussPz= (9/N)Z(n s1);(s—f k);&(9/N)s". We may note that if in-
stead of 8=g we had chosen 8=n in Eq. (35},we would have, in-
stead of Eq. (37), d'N= &N[1—ups(n. g)s(n. k)]d(n. k)d(n .4).
After integration over n 4 this becomes dN=-', N(1 —-,'a~Ps(n k)]
Xd(n k) The method .of moments would then give rss,Pz-
= (9/N)Z(n k);%(27/N)"'. We see that the choice d nis=
equivalent to discarding —,

' of the counts.
The weighting factor sin8z is not necessary. It serves to reduce

the expected error by an amount that depends on the angular dis-
tribution. In our experiment it reduces the calculated error by
about 10%.
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I.O tion, and the 8& term acquires a factor 4. The cosp
integration gives a factor

0.6

0.2
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I]=
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sins' sin'Pd(cosy) =0.4986 (53)
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FyG. 6. Polarization of Z 's. The smooth curve and error band
are obtained from the best-Qt parameters, i.e., by dividing the
values from the smooth curve of Fig. 5 by those from Fig. 4. The
data points shown are obtained from the double vees alone, using
Kqs. (39) and (40) for each histogram interval, and dividing by
the number of weighted events in the interval.

d.A „=~lV(p) —i srrq(sin'8z/sin8i, )
d(p)d(cosy)d(nq k)

X (Bi+Bsp) sing sinP(i4 k) . (51)

choices et=sr, or a=A., or any linear combination of
them, do not introduce a factor cosP, and therefore the
decay asymmetry along these directions averages to
zero in the integration over the unobserved angle p.
The choice d=i1& does yield the desired factor cosg
and is the only possible successful choice. In the Appen-
dix we show

g Bg= sln8g slilP cosp/sin8g, (49)

where p is defined by cosp—=A j in the A frame. Note
that p depends on y alone for a given beam momentum.
The dependence is discussed in the Appendix. Inserting
Eq. (48), Eq. (49), and a=ital.q into Eq. (35) we obtain

de/d(iiq k) =st/1 —rrsEz(sin8r/sin8q)

X (sing sinp) cos'p(i1i, k)j. (50)

We now specify E in more detail. Because of the
spherical symmetry of the Z' decay, the probability foi
a decay with given g in ~ and cosy in d(cosy) is
1/(4ir)~d(cosv). Introducing this distribution into Eq.
(50), we integrate P from 0 to 2m and replace cos'P by
its average value of —,'. We introduce iV(p) and 1'z(p)
as previously defined in Eqs. (12) and (41). Then Eq.
(50) becomes

at 1170 MeV/c. ' Thus the right side of Eq. (51) inte-
grates to —(1/9)IinqBi. In the method. of moments we
interpret the integral of the left side as a sum over
weighted counts. Thus we have

--.B.=(9/1.)Z f.(g.);.
In order to determine Bs we multiply Eq. (51) by the

rojectorp
g2—=coseggy (55)

and integrate over p, 8q k, and cosy. In the Appendix
we show that

cos4= p, cosa+sinn sin8q sing. (56)

In the integration over P the sing term in Eq. (56)
integrates to zero. The remaining term, p, cosa, con-
tains the known factor cosa and the factor p,, which pro-
jects out the 82p, term in the p integration. After the
triple integration the right side of Eq. (51) thus becomes—(Is/45)ngBs, where

1
I2——

2
cosn sin p sinspd(cosy) =0.4735 (57)

at 1170 MeV/c. ' Thus we obtain

—&~Bs= (45/Is)Z &'(gs); (58)

Finally we redefine Bi and Bs as in Eq. (45), and set
nz=+0.66. Then our results from the single A's are

(59a)Bi= —10.75+11.34 pb/sr

Bs=—0.42&32.20, pb/sr,

with correlation error

(59b)

and
Bi=—9.98&8.29 pb/sr

Bs=—35.45&21.88 pb/sr,

(60a)

(60b)

8Bi8Bs=—27.16(pb/sr)'. (59c)

The results (59) obtained from single A's agree within
their quoted errors with the results (46) from double
vees. We combine (46) and (59) by least-squares analy-
sis to obtain

with correlation error
Our object is to determine B~ and 82. To determine B~

we use a projector g&, defined in terms of quantities
measurable for each event:

&Bi&Bs=+11.57(pb/sr)'. (60c)

A

gi= sin7 sinp sin8q(i1g. k) .
We multiply Eq. (51) by gi and integrate over p, , cosy,
and ns. k, all from —1 to +1. In the i4 k integration,
the 1V(p) term vanishes and the asymmetry term ac-
quires a factor 3. The 82 term vanishes in the p integra-

' We may note that in the limit of zero gamma-ray energy, or of
in6nite Z' c.m. momentum, we have P =y (see Fig. 3). In that limit
the integral (53) is (8/15) =0.5333.

» In the limit of infinite Z' momentum we have ~=0, and then
I2 ——I1——8/15.

In Fig. 5 we show our polarization results. The smooth
(52) curves correspond to Eq. (45), with coeKcients given by
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(60). The data points shown are taken from the double
vees alone and are obtained in each histogram interval
by using Eqs. (39) and (40). The smooth curve with
error band shown in Fig. 6 is obtained by dividing the
curve for Pz(li)do/do by that for do/dQ. The data
points are obtained as in Fig. 5, dividing by the number
of weighted events in each histogram interval.

APPENDIX: GEOMETRICAL QUANTITIES

Figure 3 is necessarily schematic. We emphasize that
angles whose cosines are de6ned as the dot product of
two unit vectors are each defined in. only a single
Lorentz frame. The unit vectors x, A., Z, and j are each
de6ned as the vector momentum of the particle in the
appropriate Lorentz frame divided by the magnitude of
that vector momentum. A given unit vector can be de-
6ned in any frames connected by Lorentz transforma-
tions along its direction. For example, the unit vector
Z is de6ned in the c.m. Z', and E frames. Thus Z is
along the Z momentum, yz(c.m. ) or yz(Ep), or opposite
to the K momentum, along —yir(c.m. ) or —yir(Z'),
where the relevant Lorentz frame is indicated in
parentheses.

The angle p is accordingly de6ned in the Z' frame by
cosp—=Z j.The angle n is de6ned in the c.m. frame by
cosa—=Z A. The angle P is defined in the h. frame by
cosP=—h. .j.

Directions i and j are defined in both the c.m. and Zo

frames, and the azimuth p (Fig. 3) has the same value
in both frames. This is seen as follows. We define
z (c.m.)—=Z(c.m.). We define y (c.m.) to be along the
component of incident pion c.m. momentum that is
perpendicular to z. We then define a(c.m.)—=g&&9.
When we transform from the c.m. to the Z frame, the
incident-pion momentum component perpendicular to
Z is invariant and is used to defiee the g direction in the
ZP frame. Thus g is the same physical direction in each
frame, namely, the direction of the incident-pion vector
momentum component perpendicular to Z. The l
direction is then given in the Z' frame by jXa. The
azimuth P gives the angle between 2 and the component
of A. momentum in the c.m. that is perpendicular to Z.
This component is also Lorentz-invariant under trans-
formation from the c.m. to the Z' frame, so that $ is
also invariant.

We now discuss the geometrical quantities used in the
determination of the angular distribution by means of
single A.'s. By Lorentz transformation of the A. four-
momentum from the Z' frame to the c.m. frame, we
have

sponding t»~(Z) =p~(Z)/Ez(Z) =0.06'72. Also

pg(c.m.)= [Eii(c.m.)'—m~'$'i p, (A3)

where mq is the mass of the A.
After insertion of Eqs. (A2) and (A3) into Eq. (A1),

cosa is written explicitly as a function only of cosy,
constants of nature, and quantities depending only on
beam momentum. Then this expression is used in
evaluating the integrals Il., Eq. (23). Integrals Ii and
I2 were evaluated on an IBM-7094 computer. The re-
sults are Ip ——1 (by inspection), Ii= 0.961, and I&——0.884.

Next we discuss geometrical quantities needed for the
polarization determinations. In Eq. (28), Pz is defined
in the ZP frame, hence n means 8(Z). In Eq. (31), g
occurs twice, once as de6ned in the Z frame, once in
the A frame. (The A polarization Pp is defined in the h.
frame. ) Thus Eq. (31) means

P.(A)= -~.[~(Z) y(Z)jy(A).

In Eq. (34) the product (4 g)(g. $) means

(~ i)(0 &) =[~(Z) g(Z))[j(A).&(&)j
The first factor in Eq. (AS) is given by

6(Z) j(Z) = sing cosp,

(A4)

(AS)

(A6)

where y and p are defined above. Note that both factors
in Eq. (AS) are defined according to the discussion in
the first paragraph of this Appendix.

For single-A. events h. is known for each event, but
Z is not, so that @ is unknown. However the polar angle
7 is known. It depends only on pq (c.m.), which is
measurable for each event, and Pp, which is given above.
This is seen by combining the longitudinal component of
the Lorentz transformation above, Eq. (A1), with the
transverse component, namely,

pii(c.m. ) sino. =pii(Z) sing, (A7)

and eliminating the angle n. Then cosy is given in terms
of quantities known or measurable for each event. Thus
cosa also is measurable for each event.

Next we derive Eq. (49), which means (in accordance
with the discussion above)

j(A) .8q(A) = sin8z sinP cos$/sin8~. (AS)

Thus we have
(A9)

The vector j is de6ned in the A frame as the negative of
the direction of the Z:

and
p~(c.m.) cosn=vppii(Z) cosy+gp&~(Z), (A1)

0(A) & (A) = —y. (A) & (A)/p. (A). (A10)

Ei,(c m )=ypEi, (.Z)+. qpPq(Z) cosy,

wjth yp ——(1—pp') 'I' and rg=yppp, where pp=0. 19116
is the velocity of the Z' in the c.m. system for incident
pion momentum of 11'/0 MeV/c; Eg(Z) and p~(Z) are
the constants of nature 1117.9 and /S. 1 MeV, corre-

We now transform from the A frame to the c.m. frame.
The direction 8~ is perpendicular to the relative velocity
of the A. and c.m. frames. Therefore from Lorentz in-
variance of the transverse momentum components we
have —yz(A) 8~(A) =—yz(c.m.) Bii(c.m. ) . (A11)
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But we have as follows from the Lorentz invariance of the transverse
momentum components of pz in the transformation
from the c.m. to A frame:

flA c.m. =—s- A Ir A = Ir A sin8A A12

pz(c.m. )=pz(c.m. )z. (A13) Pz(c.m. ) sinn= Px(A) sinP. (A18)

We also have (see Fig. 3)

A= 9 cosa+sinrr(r cosp+If sing),
so that

Combining Eqs. (A10) through (A16) we obtain

eh. cThe expression in square brackets involves quantities
known or measurable for each event. It is equal to sinP, which is Eq. (56).

Combining Eqs. (A17) and (A18) we obtain Eq. (A8),
i.e., Eq. (49). Also we see from Eq. (A18) that the angle

Ir = z cos8z+It sin8z, (A14) P also depends (through n) only on the angle y, constants
nd of nature, and the beam momentum, and is conse-

(A15) quently measurable for each event. (Note that the
Euclidean relation that seems implied in I'"ig. 3, namely

z (IrXA) =—sin8z»net cos4. (A16) p=y —cr, is not valid due to its non-Lorentz-invariant
nature. )

Lastly, we derive Eq. (56). By definition cos8A

[p ( ) /p (A)] c p stn8 / In8 (A17)
——Ir (c.m. ) A (c.m. ). Then Eqs. (A14) and (A 15) give

= osn cos8E+ sinn sin8z, sing, (A19)
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Reactions &—
p ~ Hyperon+Meson at 3.g GeV/c

BIRNINGHAII-GLAsGow-LQNDGN (I.C.)-OxFQRD-RUTHERFGRD CQLLABGRATIDN

(Received 4 April 1966)

A study has been made of some of the quasi-two-body Anal states (in which one of the particles is a
hyperon) produced by 3.5-GeV/c Z mesons on protons. The analysis has been performed with 31()OOO

photographs taken in the 81.-cm Saclay hydrogen bubble chamber. The cross sections for most of the reac-
tions are lower than have been observed at lower incident momenta. Many of the reactions are characterized
by a forward peaking of the production angular distribution of the 6nal-state meson, but in a few cases a
signi6cant backward peak has been observed. Decay distributions of unstable particles have been
investigated to obtain more information about the production processes. The FI*+(1385)decay is consistent

6nal state being produced by E'* exchange, but in the case of the production of vector mesons,
it is diQicult to draw any conclusion concerning the spin of the exchanged particle. An enhancement was
observed at 1645 MeV in the Z+7I.+ system. It is dif5cult to interpret this in terms of the decay of the
neutral FI*(1660).

1. INTRODUCTION
' &IESPITE intensive theoretical and experimental

studies, the subject of the production mechanism
of elementary-particle reactions at medium and high
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energies is still far from being completely understood.
It is clear that experimental data are required for a
large number of di6'erent reactions over a wide range of
incident energies, and with high statistical accuracy.
Io this article we describe some of the features of the
interactions of 3.5-GeV/c E mesons with protons.

Some results of this experiment have already been
published in two articles; one' on the discovery of the
E*(1400) and the other' on a determination of the
parity of the I's(1660). In this paper we present results
on two-body channels involving a strange baryon. An

nois); L. Lyons, J. H. Mulvey, A. J. Qxley, and C. A. Wilkinson,
Department of Nuclear Physics, University of Qxford, Qxford,
England.

C. M. Fisher, E. Pickup, L. K. Rangan, J. M. Scarr (present
address: Brookhaven National Laboratory, Upton, New York),
and A. M. Segar, Rutherford High-Energy Laboratory, Chilton,
Berkshire, England.

I M. Haque et a/. , Phys Letters 14, 33.8 (1965).' A. Leveque et al. , Phys. Letters 18, 69 (1965).


