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we use Glauber's I" representation' for the density
operator:

with the choice

I f)= 't'&-L(~t n—s*)' (—~ n—.)'3 ln).

p= P(n) in)(ni d'n=-
h

P(n) i n)(ni dp'dq'.
Substituting the result for

i f(n*)
i

' just obtained into
Eq. P.9) of Glauber's, we obtain

Kith the I' representation and a few steps of manipula-
tion, we can show that

(q' —q p)'(p' —p p) 'P(n) dp'dq'& 0,

(AP') s(Aq')'= hs+-
h

where the equality holds if P(n)=P(n ns)—=(lt/sr)

( & )s(p& p )sp(n)dp&d ~ X&(q' qe—)3(p' p,—) Th.erefore, (t)p')'(Aq')'&it'andthe
equality (minimum) holds if the state immediately be-
fore the ideal simultaneous measurement is a coherent

Now, we comPute f(ne) by Eq. (4.11) of Glaubers" state, i.e., if P(n)=8'(n —no) or P= ino)(noi.
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It has been argued that the positive-frequency part of the quantized electromagnetic Geld is the "observ-
able" that one would most naturally associate with field measurements using quantum photodetectors.
However, since it is possible in principle to make field measurements via the process of stimulated emission,
the question of the possible solutions of the characteristic-value equation for the creation operator uf is
examined. Various proofs are given to demonstrate that the characteristic kets of af are not physically
admissible states of the radiation Geld. The possible existence of other useful basis states besides ~n), ~n),
and states generated from these by unitary transforrnations is then considered. It is shown that when
certain restrictions are placed on the correspondence between Hermitian combinations of the arbitrary
non-normal operators k and kt and the harmonic-oscillator variables a, p, and H, then the only possible
basis states are the coherent states ~n) and the number states

~
n). A X-dependent variation on the photon

annihilation operator e is also considered. Its characteristic states for —1&X&1are derived, and shown to
form a complete set.

I. INTRODUCTION

'HE recent development' ' of a quantum-mechani-
cal theory of optical coherence has demonstrated

the utility of the characteristic states of the non-
Hermitian, non-normal boson annihilation operator a,
the quasiclassical or coherent states. For a single-mode
radiation. field the coherent state vector in) satisfies
the characteristic value equation,

Gn=nn,
with n as its corresponding complex characteristic value.
Although the in) states are not orthogonal, that is,

l(nil) I'=exp( —ln —Pl'),
' R. J. Glauber, Phys. Rev. Letters 10, 84 (1963).' E.C. G. Sudarshan, Quantum Optics, Lecture &Votes (University

of Bern, Bern, Switzerland, 1963).' R. J. Glauber, Phys. Rev. 130, 2529 (1963).' R. J. Glauber, Phys. Rev. 131, 2766 (1963).' K. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963).' L. Mandel and E. Vfolf, Rev. Mod. Phys. 37, 231 (1965).
" U. M. Titulaer and R.J.Glauber, Phys. Rev. 145, 1041 (1966).

they can be normalized to unity, (nin)=1. The in)
states also constitute a basis for the representation of
arbitrary states and operators of the radiation field
since the nonorthogonal projection operators in)(ni
satisfy a completeness relation of the form'

1
in)(n i

d'n= 1,

where d' n= d( Re n) d(Im n) is the real element of area,
and the integration extends over the entire complex
plane. Because of their nonorthogonality, expansions in
terms of coherent states are in general not unique unless
additional restrictions are placed upon the expansion
coefficients. 4 In contrast to the infinite complete se-
quence of occupation-number states

l rt), rt =0, 1, 2,
~ ~ ~ ~ which form an orthonormal basis for the field
state vectors, the basis formed by the i n) characteristic
states constitutes a complete nondenumerable infinity
of normalized characteristic vectors which are not

s J.R. Klauder, Ann. Phys. (N. Y.) 11, 123 (1960).
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linearly independent. It is possible, at least in principle,
to extract from the continuous set 0., discrete subsets of
complex numbers o.„,m=0, 1, 2, , ~ such that the
vectors

~
n„& span the Hilbert space of the

~ I& states if
the subset n„ is convergent. In this sense the coherent
states are "super-complete. " The physical significance
of the coherent states is evidenced by the fact that the
observed Poisson counting statistics of an unimodal
amplitude-stabilized laser and the interference fringes
and beats'~" produced by the superposition of two
independent laser beams can be explained by assuming
that the ideal laser field is represented by a pure co-
herent state or by a random-phase ensemble of coherent
states. "'4 A theoretical analysis" also shows that a
pure coherent state is one possible solution of the non-
linear equations of motion describing the interaction of
the laser source and its emitted radiation field.

It should be noted that the basis formed by the
coherent states will be the "natural" basis to use in
quantum electrodynamics, not only in optical-coherence
theory but in all problems in which the number of
photons involved is not well-defined. In optical-coher-
ence theory the number of photons emitted by a typical
radiation source is both very large and not well-defined,
so that the coherent states ~n& with ~n~'))1 are the
states which have the appropriate classical limit in the
sense that they minimize the uncertainty product Ankle
and hence correspond to states of the field with a well-
defined phase. "However, the coherent states are also
useful in situations in which the number of photons
need not be large. For an application of these states to
the infrared-divergence problem in quantum electro-
dynamics, see Ref. 17.

The fundamental importance of the characteristic
states of the annihilation operator in optical-coherence
theory arises from the fact that a measurement of the
moments or correlations of the field by photoelectric
detectors is accomplished by the annihilation or absorp-
tion of the field's photons by the atomic detectors or
counters. In this sense, the operator a is sometimes
referred to as an "observable, " and the theory is
formulated using the coherent characteristic states of
this "observable" as a basis. It is well known that non-
Hermitian operators cannot be associated with any
physical observables of a quantum system since their
characteristic values are complex and the measurement
of their real and imaginary parts are, in general, incom-

' K. E. Cahill, Phys. Rev. 138, B1566 (1965)."J.S. Armstrong and A. W. Smith, Appl. Phys. Letters 4,
196 (1961);Phys. Rev. Letters 14, 68 (1965)."G.Magyar and L. Mandel, Nature 198, 233 (1963)."M. S. Lipsett and L. Mandel, Nature 199, 553 (1963)."T.F. Jordan and F. Ghellmetti, Phys. Rev. Letters 12, 607
(1964)."R.J. Glauber, Quantum Optics arid Electrorlics, Les IIouches,
1964 (Gordon and Breach Science Publishers, Inc., New York,
1965), p. 171.

'5 R. H. Picard and C. R. Willis, Phys. Rev. 139, A10 (1965)."P. Carruthers and M. Nieto, Phys. Rev. Letters 14, 387
(1965).

"V. Chung, Phys. Rev. 140, 1110 (1965).

patible. The radiation-field quantities actually measured
in the laboratory are the photon-counting rates which
are proportional to transition probabilities such as
~f(li'IE' '(r, &) Ill'r&grIE'+&(r, t) Ill')=(ll'IE' &(r, t)E&+&

X(r,t) ~p;&, where ~&ft;&, fear) are the initial and final
states of the interacting field-detector system. The true
observable is then the Hermitian positive-definite prod-
uct E E+ and (P; ~

E E+~ P;& defines its expected value
when the system is in state f;. With the state of the
system defined by the density matrix p=Z,

~ f;&P,Q;~,
where I'; is the probability that the system is in the
state ~P;&, the counting rate, or the expected value of
the observable E E+, is proportional to the trace
Tr(pE E+).4 E+(r,t) the positive-frequency part of the
electric field at the space-time point {r,t} is directly
proportional to the set of annihilation operators {a&, ,i}
which characterize the field in the plane-wave expansion

E&+&(r t) = Q (sr»s)'f'a&, &,ef, &e'f"'
,

""& (4)I.@2 Ik, X~

ak, q is the photon annihilation operator associated with
the wave vector k and polarization index X=1, 2, ef, , &,

is the complex unit polarization vector satisfying the
usual transverse field relations

and {k,'A} is the set of all the modes contained in the
normalization volume L'. For a multimode radiation
field, Eq. (1) becomes

so that the multirnode coherent state defined by
~
{n&,&,})

=gfp, if ~
Qg, ),& is a characteristic state of E f+& (r,t);

that is,

(7)
and

where

Although the usual quantum-mechanical optical de-
tector operates by stimulated absorption of photons, it
is also possible to make field measurements via the
process of stimulated emission, that is, by using an
amplifier as a detector. It is therefore of interest to
inquire into the possible existence and properties of the
characteristic states of the creation operator at. This
problem is considered in Sec. II, where it is shown that
the characteristic states of at are outside the Hilbert
space of the radiation field state vectors and hence are
not physically admissible states of the radiation field.
In Sec. III, the possible existence of other bases for the
field besides the ~n& and )I& and their unitary trans-
formations is considered. A variation on the creation
and annihilation operators a, a is treated in Sec. IV.
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II. THE CHARACTERISTIC STATES OF
THE CREATION OPERATOR

adjoint of the dehning equation of the annihilation
operator

The complete sets of normalizable characteristic vec-
tors ll) and lrr) of the number operator X and photon
annihilation operator u are equally acceptable coordi-
nate systems for the Hilbert space of the state vectors
of the electromagnetic radiation field. The characteristic
states of the creation operator u~ are not physically
admissible states of the radiation field, since the char-
acteristic vectors

l
p))" of at,

"lp)&= pl p)&

and
(~l p&) = (~!) I /p. (ol p)&,

(g f)1/2

lp»=«lp»E

a
l e)=m'I'ln —1),

we And the recursion relation

p(nl p)) =~'~'(~ —1l p&).

Applying Eq. (18) fs times we have,

(17)

(19)

(2o)
are not normalizable, and lie therefore outside the
Hilbert space spanned by the basis ll) or let). This
statement is a result of the following considerations:
Since Eq. (10) with P=O is not compatible with the
delning equation for the photon creation operator

~t
l ~)= (~+1)'I'l ~y1), (11)

when fs=0, it is obvious that the state l0)) does not
coincide with the vacuum state defined by a

l 0)=0.
A more serious difhculty is made evident by evaluat-

ing the expectation value of the operator aut in the
state ( 0));

((olcott lo)&=0=((ol {1+ate)10))
= ((0l 0»yllol 0&lls.

(12)

In the positive-definite metric space spanned by the
lfs& states, both terms on the right-hand side of the
last equation are non-negative. The only possible solu-
tion then of Eq. (12) is

(13)
Moreover, since

~ s l0»-=s &a lo&-)+Pe &lo»-=Ps &lO)&-, (14)

we see by comparison with Eq. (10) that the state
l p))

with p arbitrary is related to the state l0)) by the
relation

The norm

(&pip»= I(olp» I'2
lpl ns

(21)

rs'6= pA,
Cs2 (x

lt. (x) =(x[u)= exp —
l

(2~xs')'~' (2xs i
rr;= Imn, (23a)

diverges for all finite values of p and the lp)) states
cannot be viewed as physically admissible states of the
radiation field.

It might also be of interest to inquire into the co-
ordinate and momentum spaces representatives of the

l p) vectors. Expressing the operators u, at in terms of
the one-dimensional harmonic-oscillator observables x
and p, we have

a = t i/(2mku)'ls j(P—imcox), (22a)

at = $ i/(2mb(v)"—' j(p+irruux) . (22b)

The wave functions ip (x) and lp~(x) are solutions of
the linear first-order di6erential equations of the opera-
tors u and ut,

lp»= -&.I0», (15)

indicating thereby that Eq. (10) does not have any
non-null solutions. '

The nonexistence of the lP)) states may also be
veri6ed directly by assuming the expansion

(x„„-p+l —pl;
(2 *')'" k2,

P;= ImP, (23b)

where xs= (fs/2moi)'ls. ss While the normalized wave
functions f (x) are the well-known minimum uncer-
tainty wave packets of a 2xoo. displaced harmonic
oscillator ground. state and thus have a Gaussian
probability density dependence, the non-normalizable

l p)) states in the position (and momentum) representa-
tion display a divergent behavior of the supposedly
oscillating mass of the abstracted linear harmonic
oscillator.

lp&)=ZI &( lp»

to be valid. %e calculate now the expansion coeS.cient
(Nlp) by taking the scalar product of both sides of
Eq. (10) with the bra vector (e l

. Using the Hermitian-

' Clearly, the fs(x) function is not a square integrable one, and
the coefBcient (2mx02) '/'e i'" is introduced here for reasons of
symmetric appearance only and is in agreement with Eq. (32b)
below for X= l.

ts The kets (P)) differ from the kets (n), even when n=P The.
notation ()) is to point out this distinction. It should be noted
also that the kets ~a) and )n), when n =I+jO is a real number,
are not the same. While the former are orthogonal to each other,
the latter are not."If one considers an indefinite metric space, however, both
eigenvalue equations, (1) and (10) may be satisfied simultane-
ously; see M. G. Gundzik, J. Math. Phys. 7, 641 (j.966).
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III. POSSIBLE BASIS STATES FOR THE
RADIATION FIELD

We have noted in Sec. I that an arbitrary state of
the radiation field may be referred to the ~n) or ~tr)

coordinate system. Other bases may of course be formed
by means of unitary transformations; for example, the
state D(n) jst), where D(u)=e t *a is a unitary dis-
placement operator in the complex n plane, is a char-
acteristic state of the Hermitian operator (ut —tran) (u —n)
with characteristic value I, that is,

(ut —n*) ( —n)D(n) i tt) = ttD(n)
i
I). (24)

Equation (24) can be easily verified as follows. The
characteristic value equation of the number operator
E=a a ls

u'u)N) =st its). (25)

Multiplying Eq. (25), from the left, by D(n) and by vir-
tue of the unitarity of the D(n) operator, D(n)Dt (n) = 1,

D( )utuD'( )D( ) im)=ttD( ) its). (26)

Using the Baker-Hausdor8 identity,

D(n) =exp(o.ut —n*u)
=exp(nut) exp( —tr u) exp( ——', ~tr~'), (27)

we have

D(n)utuDt(a)=exp(nut) exp( —rr*u)utu

)& exp(n*u) exp( —nut) . (28)

From the commutation relations of a and a~ it can be
shown that

exp( —tr*u)utu exp(n*u) = (ut —ne)u, (29)

exp (nut) (ut ct*)u e—xp( —rrut) = (ut rr*) (u—ot), —

and Eq. (24) follows.
The question now arises as to the possible existence

of other useful bases for the radiation Geld besides

~tt), ~tr) and states generated from these by unitary
transformations.

First, let us consider possible bases formed by the
characteristic states of Hermitian operators which char-
acterize the radiation field. Classically, the basic ob-
servables are the electric and magnetic Gelds at each
space-time point {r,t), E(r, t), $(r, t), and the field en-

ergy H= tsJ'(Es+B')dr. Quantum-mechanically, only
values of E and 8 averaged over finite regions of space-
time have a physical meaning in the sense of being
measurable quantities. ""However, although this difB-

culty can be circumvented by formulating the theory
in terms of the "smeared" Gelds which are well-defined
Hermitian operators, the real spectra of these operators
are continuous and their characteristic states lie outside
the Hilbert space spanned. by the ~ts) states. This is
strictly analogous to the difhculty with the character-

"N. Bohr and L. Rosenfeld, Kgl. Danske Videnskab. Selskab,
Matt. Fys. Medd 12, 8 I'j.933},Sec. II."J.8jorken and S.Drell, Rdate tstt'c QNantlrN Ftdds (McGraw-
Hill Book Company, Inc. , New York, 1965), p. 36.

istic states of the position operator in ordinary quantum
mechanics. Hence, if we restrict our attention to the
basic Geld observables of the free radiation Geld and
functions of these observables, then the only complete
set of characteristic states are those belonging to the
number operator E. Next, let us suppose that there
exists a non-Hermitian field operator b whose char-
acteristic states ~y) form a basis for the field. The
simplest forms of Hermitian operators which can be
generated from b and its adjoint bt are (b+bt), i (b bt)—,
and b~b. If we require that these fundamental operators
be associated with the linear harmonic oscillator ob-
servables, x, p, and H, or equivalently, with the field
observables E, 8, and H, since each normal mode of the
radiation field has the same quantum-mechanical struc-
ture as the one-dimensional harmonic oscillator, 23 then
it follows that b must be equivalent to the annihilation
operator u, so that

~ y) —= ~
n). For, if (b+bt) is equivalent

to x within a constant, then b= u, and —i(b —bt)=—p;
btb= Hand —~p)=—~n). The possibility that b=ut must
be ruled out since we have seen that the ~P)) states are
not physically admissible. The correspondence (b+bt)—=p, i (b bt) =x,—amou—nts to a relabeling of the x and
p variables and leads to no new result. The only possible
correspondence btb—=x implies a Hamiltonian which
leads to incorrect equations of motion for x and p.
Therefore, under the assumption that the basic operator
triplet (b+bt), i(b bt), an—d btb corresponds to x, p,
and H, the only possible useful basis beside the char-
acteristic number states ~tt) are the coherent states
~n). If we place less restrictive conditions on b and
consider in particular non-normal operators, e.g., b

=(x+iP'), then the situation becomes much more
diflicult since no spectral theorem exists for this class
of operators. Indeed, there was no other u priori reason
to expect the set of characteristic states of the annihila-
tion operator to be complete, apart from the fact that
the positive-frequency part of the electric field E&+&(r,t)
appears to be the "observable" one would naturally
associate with Geld measurements using photodetectors
at optical frequencies (see Sec. I).Despite the fact that
the possible existence of other overcomplete" families
of states cannot be ruled out in principle, the ~n) and

~
n) bases seem to be the only one useful in all theoretical

and applied considerations of the radiation Geld.

IV. A VARIATION ON THE PHOTON CREATION
AND ANNIHILATION OPERATOR a, a~

In the previous section it was shown that with the
restriction placed on the correspondence between simple
Hermitian combinations of a non-normal operator b,
whose characteristic kets form a basis for the radiation
field, and the harmonic oscillator variables x, P, and H,
there are no other useful basis states besides ~tt) and
~n). This restriction is a severe one, however, and we

» G. Barton, Ietroductiorl to Adlnced Field Theory gnterscience
Publishers, Inc. , New York, 1963),p. 118.

'4 J.R. Klauder, J. Math. Phys. 4, 1055 (1963).
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might note that it is possible to generalize the definition
of the annihilation operator Eq. (22a) in a relatively
simple manner and thereby define a new non-normal
operator A whose characteristic functions computed
below form a basis for the field for all values of a
dimensionless parameter ), in the range 0&)«1.'" We
define the new operators A, A~ as follows:

It is of interest to note that the characteristic states
of the operator A form a complete set, in the sense that
the unit operator can be represented as an integral over
all the projection operators of the 7 states, for all values
of ), including those negative values for which f~(x)
is not a square-integrable function. To prove this point
we may write the analogous equation to Eq. (3),

A = (i/(2mI//d)"')(p iX—mo/x) 1 (30a)

At= $ i/—(2m/fro/)'/'$(p+i) mo/x) (30b)

1
I v)(v Id'v= 1,

xA
(33)

where X may vary continuously from —1 to +1.When
) =1,A, A~ reduce to the annihilation and creation
operators a, at. Considering Eqs. (22a) and (22b) the
operators A and A~ can be expressed in terms of the
usual photon annihilation and creation operators a
and 8 )

with the integral extending over the whole complex
plane p. Multiplying the last equation, from the left by
(x l

and the right by l
x'), we obtain,

1
(xl*')=~(x—*')=—(xl 7)(~l x')d'7, (34a)

XxA=-',
l (1+X)u+(—1+A)atj, (31a)

or
At=-',

l (—1+X)a+(1+X)atj. (31b) 1
P„*(x')P,(x)d'7= 8(x—x') .

xA
(34b)

Substitution of expression (32b) for p~(x) into Fq.
(34b) factorizes the integral on the left-hand side of
the equation into integrals over all real and imaginary
values of y,

4 ~*(x')4'(x)d'7=
mA (2~Axes)'/s

-g—g' 2

The commutator
l A, Atj=X follows directly from the

last equations and La,at]=1. For X=1, A coincides
with e and only the characteristic kets of A exist (see
Sec. II). For lt= —1, A ~ —at and only the character-
istic bras exist. For 'A=O, A is the anti-Hermitian
operator —,'(u —at), and therefore has both bras and kets.
These results have been noted previously. The charac-
teristic kets of A also exist for 0(X&1.The normalized
wave function f~(x) is a solution of first-order char-
acteristic-value equation of the operator A,

and
(32a) Xexp — (x'+ x")

4xo'
exp

(x) (x l ~) ~
—pa~/x~ —x(x/sso-r/x) & ~

2' $0
7;=Imv. (32b)

The last expression of f~(x) coincides with formulas

y. (x), y, (x) for ~=~1.
'5This form of the operator 2 was suggested to one of the

authors (E. A. M.) by Prof. R. J. Glauber.

x—x
X exp i v; ld~;, (35)

xs i
7,=R.ey, y;= Imp.

It is easily seen that the last integrals lead to the delta
function 5(x—x'), proving thereby the completeness
relations (34b) or (33).


