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The state of a quantum-mechanical system after a simultaneous measurement of conjugate variables such
as coordinate and momentum is derived. In the case of the minimum-uncertainty, or ideal, simultaneous
measurement, the state of the system after the measurement is a coherent state corresponding to that
representing a minimum-uncertainty wave packet. An operator formalism to describe simultaneous measure-
ments of noncommuting observables is introduced which parallels that familiar for a single measurement,
and an expression for the joint probability distribution predicting the results of an ideal simultaneous
measurement is derived and applied to the example of a harmonic oscillator. It is found that the minimum
uncertainty in a simultaneous measurement of noncommuting variables has two causes: (1}the unavoidable
perturbations introduced by the measuring process, and (2) the unavoidable lack of precision in the state of
the system itself. For position and momentum measurements, these two independent uncertainties con-
tribute to give a net minimum uncertainty of Aq'd p'= h. It is also shown that the formalism of simultaneous
measurement leads to a well-de6ned quantum-mechanical phase space.

INTRODUCTION

'HK formalism of the quantum theory has long
made use of the concept of the ideal accurate

measurement of a single physical variable. That this
concept is a mathematical idealization which cannot be
realized in practice has long been recognized. ' Although
the subject of simulatneous measurement is of some in-
terest since the introduction of quantum theory, only
recently, with the advent of the laser and the possibility
of optical communication systems where the quantum
eGects on the accuracy of measurement play a role, has
there been any real need to investigate the practical
consequences of this mathematical idealization. In par-
ticular, since in communication systems one usually
makes a simultaneous measurement of both amplitude
and phase or other quantities from which these two
variables can be inferred, one would like fully to under-
stand the quantum-mechanical consequences of a simul-
taneous measurement of noncommuting observables.
The uncertainty principle which immediately comes to
mind when simultaneous measurement arises, actually

' P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford
University Press, London, 1958), pp. 48-99.

sheds very little light on the subject, for it is concerned
with two separate ideal single measurements applied to
separate members of an ensemble of identical systems.
In order to treat the problem of simultaneous measure-
ment of noncommuting observables, one needs to de-
velop a formalism and an interpretation as has been
done in the case of single ideal measurements. In par-
ticular, one needs to know the state of the system after
a simultaneous measurement has been carried out.
Recently, Arthurs and Kelly' have considered this prob-
lem using the approach of von Neumann. They allow
two meter systems to interact with the system under
observation and then apply an ideal single-variable
measurement to each of the meters. With certain as-
sumptions as to the initial conditions of the meter sys-
tems, their result is equivalent to the special case of the
"ideal" simultaneous measurement developed here.
Once having obtained the state of the system corre-
sponding to an ideal simultaneous measurement, we can
in the usual manner de6ne the probability of a simul-
taneous-measurement result in terms of the overlap of
this state with the actual state of the system.

' E. Arthurs and J. L, Kelly, Jr., Bell System Tech. J. 44, 725
(1965}.
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IDEAL SINGLE MEASUREMENTS

The practical unrealizability of the precise single
measurement comes about in several ways. First, such
a measurement would require an infinite amount of
precision and from an information-theory standpoint
would require an infinite amount of information. More-
over, a precise measurement of one variable leaves the
value of its conjugate variable completely undeter-
mined. Thus a precise measurement of position leaves
all momentum values equally probable or, conversely,
a precise measurement of momentum leaves all loca-
tions of the system equally probable. Neither of these
conditions is physically realistic, the first because of
limitations of energy; and the second, of size. In prac-
tice, when one makes a measurement of particle mo-

mentum, for example, he knows the particle is at least
located in the laboratory and indeed, in the vicinity of
the measurement apparatus. Or, if a measurement of
particle position is made, one knows that the particle
cannot have indnite energy, and in fact, the possible en-

ergy range of the particle is invariably delimited by the
response characteristics of the detector. These consid-
erations suggest that in actuality, all measurements are
simultaneous measurements of noncommuting observ-
ables. The nearest approach to a single measurement
would then be a simultaneous measurement in which
one variable is rather precisely measured while the other
variable is determined only inaccurately.

In order to point up the parallel formalism of a simul-
taneous measurement of noncommuting observables de-
veloped here, we shall reproduce some of the postulates
of quantum mechanics as they refer to measurement of
single observables. First, the act of measurement of a
real dynamical variable $ which results in a measured
value $' forces the system into the state

~
$'), an eigen-

state of the variable $ having an eigenvalue equal to the
measured result. Second, the probability interpretation
of the quantum theory postulates that the probability
of a measurement of the variable $ yielding a result $'

given the fact that the system is in a state ~P) is pro-
portional to

~
&$'~f)

~

'. In terms of the description of the
system by a density operator p, this probability is pro-
portional to &$'

~ p~ $'). For simplicity, we shall limit our
discussions to a system characterized fully by its posi-
tion variable q and conjugate momentum P, and develop
the formalism of the simultaneous measurement in terms
of these variables.

THE STATE OF THE SYSTEM AFTER A
SIMULTANEOUS MEASUREMENT

In order to develop a formalism for the simultaneous
measurement of noncommuting observables, let us first
investigate the state of the system after a simultaneous
measurement of position and momentum has been made.
We shall adopt the technique of Jaynes, ' whereby we

p E. T. Iaynes, Phys. Rev. 106, 620 (1957).

These operators are reminiscent of the familiar anni-
hilation and creation operators, since La,a'tj=1. The
resulting density matrix may be written in one of sev-
eral forms, such as.=hL(»)'(~q)' —:h'j-"'

)(exp
Apl q lLpkq+ —'6)ln2h»dq —oh

X
I +I
fq qo

' t'P —Po-

&aq &»
p=

d,phq+'sh

»Aq+-', h~
Xexp —

~

ln ~(at —u*)(a—u)
Aphq —s hl

h
p= X exp — (at —u*)(a—u)

»Aq+ ~s h hphq+ ~~ h

develop the "unbiased" description of the system ob-
tained by maximizing the system entropy (minimizing
the information content) subject to our knowledge of
the system.

YVhat do we know about the system after the simul-
taneous measurement of p and q? First, we know the
measured values Pp and qp. Moreover, since the simul-
taneous measurements cannot yield precise knowledge
of both P and q, we know there must be some uncer-
tainty 2 p and Aq. Presumably, the particular form of
the measuring apparatus sets» and hq. We shall see
later that for the ideal simultaneous measurement, what
is important is really the relative accuracies of the two
measurements, that is, the ratio of » and Aq.

Our problem then is to maximize

S=—k Trplnp,

subject to the constraints

&P)=TrPI =Po
(q) =Trqp =qo,

&(P-P.» =T (P-P.)"=(»),
((q qo)') =T—r(q qo)'I = (~—q)'.

The last two equations de6ne what we mean by hq and
».By the method of Lagrange mutlipliers, one can im-

mediately determine that the density matrix p which
describes the state of the system after the simultaneous
measurement must be of the form

p= exp(Xp+Xgq'+4q+Xop'+X4P) .

The coeKcients are evaluated in Appendix A by making
use of two new operators

a= (2') "'(q+iPP),
at= (2AP) '7'(q —iPP),

where
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or

where

p= ln)(nl

I4-)= I ),

cn =nn.
The coherent state ln) is the familiar minimum-uncer-
tainty wave packet,

0-(q') = I:2~(~q)
XexpL —(q' qp)' 4/(hq—)'+iq'pp/A j

This result is that arrived at by Arthurs and Kelly' by
quite different means.

3. If the simultaneous measurement is carried out
with less than ideal accuracy, that is, if ApAq) s A, then
the state of the system after the measurement is a mixed
state and must be described in a statistical manner, as
by the density operators given above. The entropy 8 of
the system right after a simultaneous measurement is

4 H. HeBner and Vil. H. Louisell, J. Math Phys. 6, 4'l4 (1965).
~ R. J. Glauber, Phys. Rev. 131, 2'766 (1963).

Here n=(2Ap) 't'(qp+ippp), and in the last equation
for p the symbol K means' that, in the expression which
follows, the u or "annihilation" operators all operate to
the right of all u~ or "creation" operators.

Several important conclusions may be drawn from
these results.

1. From the derivation of p in Appendix A, we see
that the requirement that the density matrix be posi-
tive-deinite demands

d phq) -', A.

This is the uncertainty principle, but with a subtle dif-
ference. The familiar derivation of the uncertainty
principle determines the minimum product in the uncer-
tainties of two separate single measurements, one of
momentum and the other of position, made on separate
elements of an ensemble composed of identical systems
each in the same state. The present statement should
be interpreted differently. It asserts that the most ac-
curate knowledge of the state of the system after a si-
multaneous measurement is that for which hpAq=-', A.

It does not refer to the accuracy of the measurement
itself, for that depends upon the initial state of the sys-
tem, but rather to the accuracy of our knowledge of the
state of the system subsequent to the simultaneous
measurement. The details of the measurement appara-
tus set the ratio hq/hp, that is, how accurately the
state is known in the position variable relative to the
Inomentum variable, and they also set the value of the
uncertainty product hpAq consistent with Aphq)-, 'A.
Hereafter, we shall refer to the measurement which
yields the minimum uncertainty in knowledge of the
subsequent state, i.e., Aphq= pA, as an ideal simlltan
cols measlrememt.

2. Immediately after the ideal simultaneous meas-
urement, the system is in a pure coherent state. ' As
shown in Appendix Ii, when hpdq= ~i A

then

d,pLLq+ s A—ln(1 —e "); X=ln-
hpAq —sA

THE IDEAL SIMULTANEOUS MEASUREMENT

From the results above, we can develop a formalism
to describe the simultaneous measurement which paral-
lels in most respects that of the single measurement.
Since the state of the system after a simultaneous meas-
urement of p and q is the eigenstate ln) of the operator
a= (2Ap) ' 't(q+i pp) having an eigenvalue n= (2Ap)

—'t'
X(qp+ippp), we can look upon the operator a as de-
scribing the simultaneous ideal measurement of q and

p by an experimental apparatus which distributes the
relative accuracies of the two variables given by
P= hq/hP. Then, after a simultaneous measurement of

q and p resulting in values qp and pp, the system jumps
to an eigenstate of the variable a belonging to an eigen-
value n equal to the measured values. This result paral-
lels the formalism of the single measurement except that
"observables" for simultaneous measurement are no
longer represented by Hermitian operators.

In accordance with the fundamental probability in-
terpretation of quantum mechanics, we postulate that
the probability E(q', p') of an ideal simultaneous meas-
urement which yields the values q' and p' is propor-
tional to (q', p'lplq', p'), wehre we use the notation
l
q', p') to represent the coherent minimum-uncertainty

wave packet previously symbolized by l n), for which

al q', p') = (2Ap) '"(q+ipp) I
q', p')
= (2Ap) "'(q'+ipp')

I
q', p').

By demanding

I'(q', p')dq'dp'= 1,

In the case of an ideal measurement, i.e., APhq = s A, the
state after the measurement is a pure coherent state,
and the entropy after the measurement is zero, which is
the smallest value an entropy can have. The applica-
tion of the variational procedure for an ideal simultane-
ous measurement is clearly a singular one. The pure
coherent state obtained from this procedure for the
ideal case, i.e., Aphq= ~sA, can, however, be regarded as
a limit approached from the results when ApAq exceeds
—,'A. The real reason for this singularity comes from the
fact that the entropy for any pure state is zero; thus the
maximization is unnecessary and the constraints alone
determine the state after the measurement. In fact, if
one limits himself to the systems describable by pure
states, then the state that the system is left in after an
ideal simultaneous measurement —just as in the case of
the precise measurement —can be obtained from the
necessary and sufhcient condition that it satisfy the
constraints qp pp and hphq=-', A. It can be shown that
this condition also leads to the same coherent state.
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FIG. f. A schematic for
the simultaneous measure-
ment of the x-component
electron position and mo-
mentum.

state under investigation. The second is that the Ineas-
urement process itself produces unavoidable inaccura-
cies, by forcing the system into an eigenstate of the
operator under observation. In the case of the ideal
simultaneous measurement of position and momentum,
these two independent uncertainties contribute to give
a net minimum of d p'Aq'= A.

we find
~(q'P') =h '(q' p'It Iq', p'),

(~P')'(~q')'= (P' —Po)'(q' —qo)'I'(q', P')dP'dq'= &'

This is, as expected (See Appendix C), the minimum
possible value, since the state immediately before the
repeated measurement is a Ininimum wave packet.
What is perhaps unexpected is that the minimum of
hp'hq'= A differs from, and in fact is exactly twice, the
minimum of Aphq= 2A. To understand this difference,
we emphasize that Aphq and Ap'hq' have quite different
meanings. The former refers to the accuracy to which
a quantum state may be specified, and the latter is a
statistical measure for the outcomes of the ideal simul-
taneous measurements on an ensemble of identical sys-
tems. Ep'hq' should take on larger values than Aphq,
since there are two sources of uncertainty associated
with the statistics of a measurement. The first of these
is the uncertainty inherent in the specification of the

or, for a system in a pure state IP),

~(q', P') =h 'I( q'P'l4) I'.
We may now determine the probability that, having

once made an ideal simultaneous measurement which
yielded the result (qo, po), an immediately repeated ideal
measurement gives the simultaneously measured values
(q', P')

~(q', P') =h '(q', P'I &(expL —(~'—~*)(~—~j) I
q'P')

= h ' exp( —L(q' —qo)'/2'
+ (P' Po)'/2(&/P) j) ~

This joint probability distribution has certain familiar
and certain unexpected features. First, as expected, it
shows that the probability distribution is a joint Guas-
sian distribution, with the measured results being most
probably qo and po, as just previously measured. The
fact that the outcome of the second measurement is not
precisely determined differs from the case of a single
measurement, where physical continuity requires that
immediately repeated measurements yield the same re-
sults. This difference is not surprising, since complete
accuracy in determining two conjugate variables in a
measurement is impossible.

The variances of this probability distribution for the
results of an immediately repeated ideal simultaneous
measurement are such that

A THOUGHT EXPEMMENT

Since any measurement (including a so-called "pre-
cise measurement") is in practice a simultaneous meas-
urement, all the thought experiments described in ele-
mentary quantum-mechanics texts can be modified to
measure both p and q simultaneously. Such modifica-
tions are of course very elementary and perhaps trivial,
once pointed out. A brief example may nevertheless be
justified here to help clarify some points in this paper.
Suppose a beam of electrons is moving in the x-s plane
with its z-component momentum p, precisely given.
The x-component electron position q and momentum

p, are to be measured by the apparatus shown in Fig.
1.The apparatus consists of a diaphragm D with a slit
de at a=0 and an oscilloscope screen S at s= l. Both
the diaphragm and the screen are perpendicular to the
s axis. It is obvious that the x-component electron posi-
tion q, can be determined by the position of the slit
with uncertainty hq, ~hx. The x-component electron
momentum will be determined by the location of the
bright spot on the screen where the electron impinges,
1.e.)

=p. ' =p. pz
d=— = t, or p, =——d.

m p./m p. t

The uncertainty of the x-component electron mo-
mentum hp, comes from two sources: (I) the wave
nature of the electron, which gives approximately A/d, x
due to the scattering from the slit, and (2) the addi-
tional uncertainty due to the response of the screen,
hs. Therefore, 0q ~Ax, hp A/Ax+As. The apparatus
then measures both q, and p, simultaneously with un-
certainties Aq, and Ap, specified. In principle, we can
make As= 0 and thus have an ideal simultaneous meas-
urement with hphq~A. The relative uncertainty p in
this case can be controlled by the size of the slit, i.e.,

p= ~q./~p -~x/A/~x= (~x)2/A.

If Ax is made zero, P is zero, and we approach the pre-
cise position measurement. If A is also zero, the measure-
ment is then classical.

MEASUREMENT PROBABILITY

Suppose a quantum-mechanical system is subjected
to an ideal simultaneous measurement at an initial time
t=0 with known results qo and po, and thereafter re-
mains undisturbed until a time t when another ideal
simultaneous measurement of p and q is made. What
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are the probable outcomes of such a measurement?
%e may answer that question using the results just
developed.

Immediately after the initial measurement, the sys-
tem is in the coherent state

I qs, ps) and is described by
a density operator p(0) which may be written

/(0) =
I qs, po)(qo pol =&(expI: (~t ~s*)(«o)j)

Subsequently, the system evolves according to

iA(dp/dt) =Pe,pj,
and at time t is described by p(t) The .joint probability
density describing the probability of a second measure-
ment at time t resulting in values (q', p') is

P(q', p', t) =& '(q', p'I p(t) I
q', p')

This probability density parallels the familiar classical
probability density. Thus, the concepts of phase space
and indeed the other classical statistical-mechanical con-
cepts may be employed. The single distinction is that
the quantum system is unperturbed, i.e., unobserved,
between measurements. The measurement at time t,
the probable results of which are described by P(q', p', t),
when actually carried out will disturb the system so that
a new probability density must be calculated to deter-
mine the probable results of yet another measurement.
Thus, given the state of the system at an initial time,
the results of a measurement at a subsequent time de-
pend upon whether or not an intervening measurement
has been made. The probability distribution represents
a simple Markov process, however, depending only upon
the results of the Unmediately preceding measurement.

An alternative description of the joint probability
density of measured results is the characteristic func-
tion de6ned by

C(g, g,t) = P(q', p', t)exp/i(&q'+r/p') jdq'dp',

or alternatively,

P(q', p', t) = C(p, g, t)expl —i(gq'+ r/p') jd]dr/.
(27r)'

which, when the initial state represents the result of an
ideal simultaneous measurement, further simplifies to

c(p,&,t) =(q„p, le .& &e- *.«&Iq,p, )
=(qo,pol '"""'"""'Iq,p )

Xe~I —;A(~'/p+p&')j.
AN EXAMPLE

It is instructive to consider a simple example of the
foregoing results. Consider a simple harmonic oscillator
of unit mass described by the Hamiltonian

g(& —& (ps+ ~sqs)

Suppose that at t= 0 an initial ideal simultaneous meas-
urement was performed yielding values qs and ps. With
no intervening measurement we wish to infer the proba-
bility distribution of the resu1ts of a subsequent ideal
simultaneous measurement to be carried out at time t.
The Heisenberg equations of motion yield the familiar
relations

q(t) = q cosset+ (p/o/) sino/t,

p(t) =p cosgt o/q sincut. —

Upon substituting these values in the previous expres-
sion for C(&,r/, t) and using the eigenvalue property of the
coherent states Iqp pp) we 6nd that the characteristic
function is of the form

C(g, r/, t) =exp[i(m, &+m„q)

where
k(~s'5'+7 .~k—n+~ p'n') j

ms = qs cosrot+ (ps/n/) sino/t,

m, =p, cos(A—
Mqp sin&et,

o s'= s API 1+cosso/t+ (1/P'(0')sin'rot j,
'A,„=A P(1/Pro) Po/ jcoso/t sinro—t,
o„'= (A/2P)I 1+cos'o/t+P'ru' sin'o/tj.

and where a and a~ are dined as before. The calcula-
tion of the characteristic function is simpli6ed if it is
carried out in the Heisenberg picture, to give

C(g, r/, t) =Tre~o'"e ~*~t'"p(0)

Thus

=Tre& e—&" tp(t),
where

' C. Y. She, Stanford Electronics Laboratory Report No, 64-
074, Stanford University, 1964 (unpublishedl, C(k, n, t) = expLi(kqo+ nP )—k'(AP) —~'(A/P) j

Analternativeexpressionmaybedeveloped forC(), r/, t) This form of the characteristic function immediately
by recognizing that shows that the probability of measuring q' and p' at

(2Ap) $ / s ( + pp) I p ) I p )(2Ap) r / s( /+ pp/)
time t is a joint Gaussian distribution with a mean value
of q' equal to es, and of p' equal to res„, and with corre-
sponding variances of o,' and o-„' and covariance X,„.

1 Several points are worth noting. First, the mean

C(g, r/, t) = (q',p'I e &* tp(t)e&
I
q', p')dq'dp' values of the measurement are identical to the classical

2zh values. In addition, the probability of measurement
reproduces itself each period. Thus when the second
measurement occurs an integral number of periods after
the initial measurement, the characteristic function
reduces to
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appropriate to a probability density of

&(q' p' t) =& '& —i:(q'—qo)'/2@+ (p' —pe)'/2(&/P) 3}.
This is precisely the expression previously derived for
the case of a second measurement immediately follow-

ing the 6rst.
One also notes that when the second measurement

follows the first by a half-period (or by an odd-integral
multiple of a half-period) the result is identical except
that the mean values are reversed in sign. One further
notes that whenever the second measurement follows
the initial measurement by an integral number of
quarter periods, the covariance becomes zero and the
results of the second measurement are uncorrelated
with one another.

Finally, it is interesting to observe the result of de-
manding that the ratio of the measurement uncertain-
ties be such that P = 1/o~. Under this condition, the fol-
lowing apply: (a) The covariance is zero and the meas-
urement results are uncorrelated; (b) The total uncer-
tainties of both q and p are independent of time and be-
come siinply A/oi and Aor, respectively; (c) The measure-
ment operators a and a~ become identical to the usually
defined annihilation and creation operators; and (d) The
uncertainty in the oscillator energy splits equally be-
tween the variables q and p, and it takes its minimum
value of one quantum, that is,

can be de6ned means that the concept of phase space
can be carried over directly into quantum mechanics
with the quali6cation that a point in phase space repre-
sents the result of a measurement, but does not repre-
sent the state of the system.
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APPENDIX A: THE STATE OF THE
SYSTEM AFTER A SIMULTANEOUS

MEASUREMENT

We have seen that maximizing the entropy subject
to the constraints

(p)= po

(p') =po'+(~p)'
(q') =qo'+(~q)'

demands a density matrix of the form

p =exppe+ liiq'+ X2q+ Xsp2+ X,p$.

i
i ((pm) (p)2)+&2((q2) (q)2)$

PHASE SPACE

By de6ning
a= (2Ap)-'"(q+ipp),

at= (2')-"'(q—t'pp),

We have de6ned, for the case of two canonically con-
jugate variables q and p, a probability density P(q', p', t)
which determines the probability of a simultaneous
measurement yielding values q' and p' within a range
dq' and dp'. This function is completely analogous to
the classical probability density and, in fact, reduces to
exactly the classical form as Planck's constant is made
to approach zero. Nonclassical conjugate variables such
as spin may also be treated in this same fashion. That
is, given two conjugate variables (&,~t), the state of the
system i

$', ii') after a simultaneous measurement may
be found by the maximization-of-entropy approach and
the resulting probability density function is given by

and recognizing
La,at) =1,

the density matrix may be placed in the form

p= exp[ po pi(at n—*)(a n—)), —

where now the five constants pe, pi, P, Ren, and Imn
must be determined from the constraints. This may be
done most easily by placing p in normal form, 4 so that
all u operators operate to the right and all u~ operators
operate to the left. The trace may then easily be taken
using a complete set of coherent states' in') and the
completeness relation

1
i
n')(n'

i

d'n'= 1.

where E is the constant of normalization. Gordon~ has
derived the simultaneous-measurement state for the
case of spin variables by a diferent method and 6nds it
similar to the minimum-uncertainty wave packet or co-
herent state obtained for position and momentum
measurement. He also arrives at an expression for the
probability density of simultaneous measurement
equivalent to that presented here.

The fact that a joint probability density function
representing the measurement of conjugate variables

r J. p. Gordon (private communication).

1
Tlp=-

7r

(n'i p&"&
i
n')d'n'

expLpe+ (e "'—1)(n'*—n*)

X(n —n)]d'n'=e"'/(1 —e»)=1.

Thus in normal form, p becomes

pt"&=X{expge+(e»—1)(at—n*)(a—n))},
and the trace of p which must be unity is
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ren h ve the property'
or

rent states av ert

(~In) = expL —4 I&I
'—4 n v

a
'

uivalent to the pure co-that this is equiva enWe wish to show a
' '

uiva en
herent state

1
(Aq)'=— n)d nkhP(«p' +pc'+2c cp+pl

Thus we find

x —at —n*)(a—n)7} I 8)
—-'I I'—ll 'I — "™I l»=&. l~("pl - ~

= exp —
o 'r —

o

Icto ( )+ ( ) 2+2 t (")c

+2ctBp(") c)c p

i, we findor, letting n=x+oy,

and

v — —-'I ~ I

'——:
I

~
I

'———. v —
2

'—lnl'+v*n+n*8.61 )( l~)=exp( ——. ~ ——:

o expressions are equal for aSince the two ex
conclud

hP
(A )'=—(1—e

2.
o 2 e l41+172x'—2y'+2(x'+y e—

—a'-n') (a-n) 7}= ln)(nlp= X(expL' —(af—n a—n

e "'—1)(x'+y') 7dxdyXexpL(e» — x

= —,'AP(1+e-»

e method we obtain8 the same ine iny e ine

t e r nt that the densitymui
p

-definite muspositive-d s

1—e»

(~p')'(~q')'= (pf )'(q' —«)'&(q', p dqd .

Eq,' ')=h '(q'p'lplq'

VALUE OF 4p'xq'
SIMULTANEO

E MINIMUM V
FOR THE IDEM.

MEASUREM

ossible value ois the minimum pos
'

To prove that
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we use Glauber's I" representation' for the density
operator:

with the choice

I f)= 't'&-L(~t n—s*)' (—~ n—.)'3 ln).

p= P(n) in)(ni d'n=-
h

P(n) i n)(ni dp'dq'.
Substituting the result for

i f(n*)
i

' just obtained into
Eq. P.9) of Glauber's, we obtain

Kith the I' representation and a few steps of manipula-
tion, we can show that

(q' —q p)'(p' —p p) 'P(n) dp'dq'& 0,

(AP') s(Aq')'= hs+-
h

where the equality holds if P(n)=P(n ns)—=(lt/sr)

( & )s(p& p )sp(n)dp&d ~ X&(q' qe—)3(p' p,—) Th.erefore, (t)p')'(Aq')'&it'andthe
equality (minimum) holds if the state immediately be-
fore the ideal simultaneous measurement is a coherent

Now, we comPute f(ne) by Eq. (4.11) of Glaubers" state, i.e., if P(n)=8'(n —no) or P= ino)(noi.
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It has been argued that the positive-frequency part of the quantized electromagnetic Geld is the "observ-
able" that one would most naturally associate with field measurements using quantum photodetectors.
However, since it is possible in principle to make field measurements via the process of stimulated emission,
the question of the possible solutions of the characteristic-value equation for the creation operator uf is
examined. Various proofs are given to demonstrate that the characteristic kets of af are not physically
admissible states of the radiation Geld. The possible existence of other useful basis states besides ~n), ~n),
and states generated from these by unitary transforrnations is then considered. It is shown that when
certain restrictions are placed on the correspondence between Hermitian combinations of the arbitrary
non-normal operators k and kt and the harmonic-oscillator variables a, p, and H, then the only possible
basis states are the coherent states ~n) and the number states

~
n). A X-dependent variation on the photon

annihilation operator e is also considered. Its characteristic states for —1&X&1are derived, and shown to
form a complete set.

I. INTRODUCTION

'HE recent development' ' of a quantum-mechani-
cal theory of optical coherence has demonstrated

the utility of the characteristic states of the non-
Hermitian, non-normal boson annihilation operator a,
the quasiclassical or coherent states. For a single-mode
radiation. field the coherent state vector in) satisfies
the characteristic value equation,

Gn=nn,
with n as its corresponding complex characteristic value.
Although the in) states are not orthogonal, that is,

l(nil) I'=exp( —ln —Pl'),
' R. J. Glauber, Phys. Rev. Letters 10, 84 (1963).' E.C. G. Sudarshan, Quantum Optics, Lecture &Votes (University

of Bern, Bern, Switzerland, 1963).' R. J. Glauber, Phys. Rev. 130, 2529 (1963).' R. J. Glauber, Phys. Rev. 131, 2766 (1963).' K. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963).' L. Mandel and E. Vfolf, Rev. Mod. Phys. 37, 231 (1965).
" U. M. Titulaer and R.J.Glauber, Phys. Rev. 145, 1041 (1966).

they can be normalized to unity, (nin)=1. The in)
states also constitute a basis for the representation of
arbitrary states and operators of the radiation field
since the nonorthogonal projection operators in)(ni
satisfy a completeness relation of the form'

1
in)(n i

d'n= 1,

where d' n= d( Re n) d(Im n) is the real element of area,
and the integration extends over the entire complex
plane. Because of their nonorthogonality, expansions in
terms of coherent states are in general not unique unless
additional restrictions are placed upon the expansion
coefficients. 4 In contrast to the infinite complete se-
quence of occupation-number states

l rt), rt =0, 1, 2,
~ ~ ~ ~ which form an orthonormal basis for the field
state vectors, the basis formed by the i n) characteristic
states constitutes a complete nondenumerable infinity
of normalized characteristic vectors which are not

s J.R. Klauder, Ann. Phys. (N. Y.) 11, 123 (1960).


